

COMBIVERT H6

INSTRUCTIONS FOR USE | **INSTALLATION ACTIVE INFEED CONVERTER (AIC) AND CHARGING MODULE**

Translation of original manual Document 20105449 EN 07

Preface

The hardware and software described in this document are products of KEB. The information contained in this document is valid at the time of publishing. KEB reserves the right to update this document in response to misprints, mistakes or technical changes.

Signal words and symbols

Certain procedures within this document can cause safety hazards during the installation or operation of the device. Refer to the safety warnings in this document when performing these procedures. Safety signs are also located on the device where applicable. A safety warning is marked by one of the following warning signs:

▲ DANGER

Dangerous situation, which will cause death or serious injury iif this safety warning is ignored.

A WARNING

Dangerous situation, which may cause death or serious injury if this safety warning is ignored.

A CAUTION

Dangerous situation, which may cause minor injury if this safety warning is ignored.

NOTICE

Situation, which can cause damage to property if this safety warning is ignored.

RESTRICTION

Used when the following statements depend on certain conditions or are only valid for certain ranges of values.

Used for informational messages or recommended procedures.

More symbols

- This arrow starts an action step.
- / Enumerations are marked with dots or indents.
- => Cross reference to another chapter or another page.

Laws and guidelines

KEB Automation KG confirms with the EC declaration of conformity and the CE mark on the device nameplate that it complies with the essential safety requirements.

The EC declaration of conformity can be downloaded on demand via our website.

Warranty and liability

The warranty and liability on design, material or workmanship for the acquired device is given in the general sales conditions.

Here you will find our general sales conditions. www.keb.de/terms-and-conditions

Further agreements or specifications require a written confirmation.

Support

Although multiple applications are referenced, not every case has been taking into account. If you require further information or if problems occur which are not referenced in the documentation, you can request the necessary information via the local KEB agency.

The use of our units in the target products is outside of our control and therefore lies exclusively in the area of responsibility of the customer.

The information contained in the technical documentation, as well as any user-specific advice in spoken and written and through tests, are made to best of our knowledge and information about the intended use. However, they are regarded as being only informal and changes are expressly reserved, in particular due to technical changes. This also applies to any violation of industrial property rights of a third-party. Selection of our units in view of their suitability for the intended use must be done generally by the user.

Tests can only be done within the intended end use of the product (application) by the customer. They must be repeated, even if only parts of hardware, software or the unit adjustment are modified.

Copyright

The customer may use the instructions for use as well as further documents or parts from it for internal purposes. Copyrights are with KEB and remain valid in its entirety.

This KEB product or parts thereof may contain third-party software, including free and/ or open source software. If applicable, the license terms of this software are contained in the instructions for use. The instructions for use are already available to you, can be downloaded free of charge from the KEB website or can be requested from the respective KEB contact person.

Other wordmarks or/and logos are trademarks ($^{\text{TM}}$) or registered trademarks ($^{\text{R}}$) of their respective owners.

Table of Contents

	Preface	3
	Signal words and symbols	3
	More symbols	3
	Laws and guidelines	4
	Warranty and liability	4
	Support	4
	Copyright	
	Table of Contents	
	List of Figures	
	List of Tables	
	Glossary	
	Standards for drive converters/control cabinets	
	Product standards that apply directly to the drive converter	
	Basic standards to which drive converter standards refer directly	
	Standards that are used in the environment of the drive converter	14
1	Basic Safety Instructions	15
•	1.1 Target group	
	1.2 Transport, storage and proper use	
	1.3 Installation	
	1.4 Electrical connection	
	1.4.1 EMC-compatible installation	
	1.4.2 Voltage test	
	1.4.3 Insulation measurement	
	1.5 Start-up and operation	
	1.6 Maintenance	
	1.7 Repair	20
	1.8 Disposal	21
2	Product Description	22
2	•	
	2.1 Specified application	
	2.2 Unintended use	
	2.3 Product features	
	2.3 Product Teatures	
	2.3.1 Special realures of the AlC module	
	2.3.2 Particularities of the charging unit	
	2.7 1ypo code	20
3	Technical Data	26
	3.1 Operating conditions	26
	3.1.1 Environmental conditions	
	3.1.2 Mechanical environmental conditions	
	3.1.3 Chemical / mechanical active substances	

TABLE OF CONTENTS

	3.1.4 Electrical operating conditions	28
	3.1.4.1 Device classification	28
	3.1.4.2 Electromagnetic compatibility	28
	3.2 Technical Data of the AIC modules	29
	3.2.1 Technical data of the charging units H6	30
	3.3 DC link capacities of the H6 modules	
	3.4 Mechanical installation	
	3.4.1 Control cabinet installation	
	3.4.1.1 Mounting instructions for control cabinet installation	33
	3.4.2 Installation instructions for flat rear heat sink	33
	3.4.3 Dimensions central heat sink	33
	3.4.3.1 Air heat sink	
	3.4.3.2 Liquid heat sinks	34
	3.4.4 Dimensions and weights of modules with flat rear heat sink	35
	3.4.5 Dimensions and weights of modules with air heat sink	36
	3.4.6 AIC filter 3x400 VAC for switching frequency 816 kHz	40
	3.4.7 AIC filter 3x400 VAC for switching frequency 416 kHz	41
	3.4.8 Sine-wave EMC filter with DC regeneration	
	3.4.8.1 Connection DC regeneration	43
4	Installation and Connection	44
-	4.1 Construction of the device	
	4.1.1 Status LED displays AIC module	
	4.1.1.1 Status LED 1 AIC module	
	4.1.1.2 Status LED 2 safety module	
	4.2 Structure of the charging module	
	4.2.1 Status LED displays charging unit	
	4.2.2 Status LED charging unit	
	4.3 Connection of the power unit	56
	4.3.1 Connection of the DC bus X1D	56
	4.3.2 Connection of the 24V bus X1C	56
	4.3.3 Connection of filter, charging and AIC module	57
	4.3.4 Connection of filter, charging, AIC module and control at DC bus	58
	4.3.5 Connection of sine-wave EMC filter and AIC module size 14	59
	4.3.6 Connection of sine-wave EMC filter, DC terminal and AIC module size 1926	60
	4.3.7 Connection of sine-wave EMC filter, DC terminal and AIC module size 1926	61
	4.3.8 Connection sine-wave EMC filter, DC terminal, AIC module size 1926, 24V module / Ctrl at DC bus	
	4.3.9 Temperature monitoring of the braking resistor	63
	4.3.9.1 Terminals R-T1, R-T2	
	4.4 Connection of the control	
	4.4.1 Error chain terminal X2C, X2D	64
	4 4 1 1 Error chain (channel 1)	64

8	Revision History	87
	7.1 CE-Marking 7.2 UL Marking 7.3 Further informations and documentation	85
7	Certification	
	6.1 Default setting	
b	Start-Up	
C		
	5.4.7 Typically fall of pressure depending on the rate of flow (volume flow)	
	5.4.6 Coolant heating depending on power dissipation and flow rate with water	
	5.4.4 Connection to the cooling system	
	5.4.3.1 Special requirements for open and half-open cooling systems:	
	5.4.3 Requirements on the coolant	
	5.4.2 Materials in the cooling circuit	
	5.4.1 Heat sink and operating pressure	
	5.4 Installation of water-cooled devices	
	5.3 Decommissioning and storage	72
	5.2.1 Flushing the cooling circuit	
	5.2 Start-Up	
_	5.1 Safety instructions for the use of liquid heat sinks	
5	Cooling System	71
	4.5.2 Control release	70
	4.5.1 Module type 0 terminal block X2B	
	4.5 Safety modules terminal block X2B (not for charging module)	
	4.4.4.6 Example for the control of digital inputs and digital outputs	
	4.4.4.5 Connection of the digital outputs	69
	4.4.4.4 Connection of the digital inputs	69
	4.4.4.3 Assignment of the terminal block X2A charging module	68
	4.4.4.2 Assignment of the terminal block X2A AIC module	68
	4.4.4.1 Assembly of the wires to PUSH IN terminals	67
	4.4.4 Digital inputs and outputs X2A	66
	4.4.3.3 Assignment of the interfaces	66
	4.4.3.2 Technical data of the outputs	66
	4.4.3.1 Technical data of the inputs	
	4.4.3 Diagnosis/visualisation X4A	
	4.4.2 EtherCat system bus terminal X4B	
	4.4.1.3 Wiring example error chain	
	4.4.1.2 Error power supply unit (channel 2)	64

List of Figures

Figure 1:	Control cabinet installation	32
Figure 2:	Main heat sink for COMBIVERT H6	34
Figure 3:	Dimensions and weights of the modules	35
Figure 4:	Dimensions housing P	36
Figure 5:	Dimensions housing S	37
Figure 6:	Dimensions housing U	38
Figure 7:	Dimensions housing W	39
Figure 8:	AIC filter 3x400 VAC for switching frequency 816 kHz	40
Figure 9:	AIC filter 3x400 VAC for switching frequency 416 kHz	41
Figure 10:	Front view of the device	44
Figure 11:	Connections of the front side	45
Figure 12:	View of the bottom of the device size C/S	46
Figure 13:	View of the bottom of the device size E/U	47
Figure 14:	View of the bottom of the device size G/W	48
Figure 15:	View upper side of the device	49
Figure 16:	Status LED displays AIC module	50
Figure 17:	Front view of the device	51
Figure 18:	Connections of the front side	52
Figure 19:	Terminal block X1E	52
Figure 20:	Terminal block X1F	52
Figure 21:	View rear side of the device	53
Figure 22:	Terminal block X1A	53
Figure 23:	Terminal block X1B	54
Figure 24:	Connection for protective earth and function earth	54
Figure 25:	Status LED displays charging unit	54
Figure 26:	View upper side of the device	55
Figure 27:	Connection of the DC bus	56
Figure 28:	Connection of the 24V bus	56
Figure 29:	Connection of filter, charging and AIC module	57
Figure 30:	Connection of filter, charging, AIC module and control at DC bus	
Figure 31:	Connection of sine-wave EMC filter and AIC module size 14	59
Figure 32:	Connection of sine-wave EMC filter, DC terminal and AIC module size 1926	60
Figure 33:	Connection of sine-wave EMC filter, DC terminal and AIC module size 1926	61
Figure 34:	Connection sine-wave EMC filter, DC terminal, AIC module size 1926, 24V module / Ctrl at DC bus	62
Figure 35:	Wiring example temperature monitoring	63
Figure 36:	Error chain terminal X2C, X2D	64
Figure 37:	Wiring example error chain	64
Figure 38:	Assignment of the interfaces	66
Figure 39:	Assembly of the control cable	67
Figure 40:	Assignment of the terminal block X2A AIC module	68
Figure 41:	Assignment of the terminal block X2A charging module	68
Figure 42:	Connection of the digital inputs DI1DI4	69
Figure 43:	Connection of the digital outputs DO1DO4	69

LIST OF FIGURES

Figure 44:	Example for the control of digital inputs and digital outputs	69
Figure 45:	Safety module type 0 terminal block X2B (top view)	70
Figure 46:	Connection of the control release via switch and PLC	70
Figure 47:	Coolant heating depending on power dissipation	76
Figure 48:	Typically fall of pressure depending on the rate of flow (volume flow)	76
Figure 49:	Step-by-step start-up H6 AIC	84

LIST OF TABLES

List of Tables

Type code	25
Climatic environmental conditions	26
Mechanical environmental conditions	27
Chemical / mechanical active substances	27
Device classification	28
Electromagnetic compatibility	28
Technical Data AIC modules	29
Technical data of the charging modules H6	30
DC link capacities of the H6 modules	31
Mounting instructions for control cabinet installation	33
Sine-wave EMC filter with DC regeneration	42
Status LED 1 AIC module	50
Status LED 2 safety module	50
Status LED charging unit	54
EtherCat System bus socket X4B	65
Diagnosis/visualisation X4A	65
Technical data of the digital output	66
Wire-end ferrules and stripping length	67
Flushing time for venting the cooling circuit	71
Electrochemical series / standard potentials against hydrogen	73
Requirements on the coolant	73
Special requirements for open and semi-open cooling systems	74
Dew point table	75
	Type code Climatic environmental conditions Mechanical environmental conditions Chemical / mechanical active substances Device classification Electromagnetic compatibility Technical Data AIC modules Technical data of the charging modules H6 DC link capacities of the H6 modules Mounting instructions for control cabinet installation Sine-wave EMC filter with DC regeneration Status LED 1 AIC module Status LED 2 safety module Status LED charging unit EtherCat System bus socket X4B Diagnosis/visualisation X4A Technical data of the digital output. Wire-end ferrules and stripping length Flushing time for venting the cooling circuit Electrochemical series / standard potentials against hydrogen Requirements on the coolant Special requirements for open and semi-open cooling systems Dew point table

Glossary

0V	Earth-potential-free common point	Endat	Bidirectional encoder interface of the
1ph	1-phase mains		company Heidenhain
3ph	3-phase mains	EtherCAT	Real-time Ethernet bus system of the
AC	AC current or voltage		company Beckhoff
AFE	From 07/2019 AIC replaces the pre-	Ethernet	Real-time bus system - defines pro-
	vious name AFE		tocols, plugs, types of cables
AFE filter	From 07/2019 AIC filter replaces the	FE -	Functional earth
	previous name AFE filter	FSoE	Functional Safety over Ethernet
AIC	Active Infeed Converter	FU	Drive converter
AIC filter	Filter for Active Infeed Converter	GND	Reference potential, ground
Application	The application is the intended use	GTR7	Braking transistor
	of the KEB product	HF filter	High frequency filter to the mains
ASCL	Asynchronous sensorless closed	Hiperface	Bidirectional encoder interface of the
Auto motor	loop	1.18.41	company Sick-Stegmann
Auto motor ident.	Automatically motor identification; calibration of resistance and induc-	НМІ	Human machine interface (touch
ident.	tance	HSP5	screen) Fast, serial protocol
AWG	American wire gauge	HTL	Incremental signal with an output
B2B	Business-to-business	ПІС	voltage (up to 30V) -> TTL
BiSS	Open source real-time interface for	IEC	International standard
ыоо	sensors and actuators (DIN 5008)	IP xx	Degree of protection (xx for level)
CAN	Fieldbus system	KEB product	The KEB product is subject of this
CDF	Cyclic duration factor	TILE Product	manual
CDM	Complete drive module including	KTY	Silicium temperature sensor (pola-
	auxiliary equipment (control cabinet)		rized)
COMBIVERT	KEB drive converters	Manufacturer	The manufacturer is KEB, unless
COMBIVIS	KEB start-up and parameterizing		otherwise specified (e.g. as ma-
	software		nufacturer of machines, engines,
Customer	The customer has purchased a KEB		vehicles or adhesives)
	product from KEB and integrates the	MCM	American unit for large wire cross
	KEB product into his product (cus-		sections
	tomer product) or resells the KEB	Modulation	Means in drive technology that the
DO	product (dealer)	NATTE	power semiconductors are controlled
DC	DC current or voltage	MTTF	Mean service life to failure
DI	Demineralized water, also referred to as deionized (DI) water	NN	Sea level
DIN	German Institut for standardization	OC OH	Overboot
DS 402	CiA DS 402 - CAN device profile for	OL	Overheat Overload
D3 402	drives	OSSD	
EMC	Electromagnetic compatibility	0330	Output signal swithching device; - an output signal that is checked in regu-
Emergency	Shutdown of a drive in emergency		lar intervals on its shutdown. (safety
stop	case (not de-energized)		technology)
Emergency	Switching off the voltage supply in	PDS	Power drive system incl. motor and
switching off	emergency case		measuring probe
EMS	Energy Management System	PE	Protective earth
EN	European standard	PELV	Protective Extra Low Voltage
Encoder emu-	Software-generated encoder output	PFD	Term used in the safety technology
lation			(EN 61508-17) for the size of error
End customer	The end customer is the user of the		probability
	customer product		

GLOSSARY

PFH Term used in the safety technology (EN 61508-1...7) for the size of error probability per hour **PLC** Programmable logic controller PT100 Temperature sensor with R0=100 Ω Temperature sensor with R0=1000 Ω PT1000 PTC PTC-resistor for temperature detection PWM Pulse width modulation RJ45 Modular connector with 8 lines Synchronous sensorless closed loop SCL **SELV** Safety Extra Low Voltage (<60 V) The security integrity level is a SIL measure for quantifying the risk reduction. Term used in the safety technology (EN 61508 -1...7) Safety function "Safe stop 1" in ac-SS1 cordance with IEC 61800-5-2 SSI Synchronous serial interface for encoder STO Safety function "Safe Torque Off" in accordance with IEC 61800-5-2 TTL Incremental signal with an output voltage up to 5 V USB Universal serial bus VARAN Real-time Ethernet bus system

Standards for drive converters/control cabinets

Product standards that apply directly to the drive converter

EN 61800-2

Adjustable speed electrical power drive systems - Part 2: General requirements-Rating specifications for low voltage adjustable frequency a.c. power drive systems (VDE 0160-102, IEC 61800-2)

EN 61800-3

Speed-adjustable electrical drives. Part 3: EMC requirements and specific test methods (VDE 0160-103, IEC 61800-3)

EN 61800-5-1

Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy (IEC 61800-5-1); German version EN 61800-5-1

EN61800-5-2 Adjustable speed electrical power drive systems - Part 5-2: Safety Requirements

- Functional (IEC 22G/264/CD)

UL61800-5-1 American version of the EN61800-5-1 with "National Deviations"

Basic standards to which drive converter standards refer directly

	-
EN 55011	Industrial, scientific and medical equipment - Radio frequency disturbance characteristics - Limits and methods of measurement (CISPR 11); German version EN 55011
EN 55021	Interference to mobile radiocommunications in the presence of impulse noise - Methods of judging degradation and measures to improve performance (IEC/CISPR/D/230/FDIS); German version prEN 55021
EN 60529	Degrees of protection provided by enclosures (IP Code) (IEC 60529)
EN 60664-1	Insulation coordination for equipment within low-voltage systems Part 1: Principles, requirements and tests (IEC 60664-1)
EN 60721-3-1	Classification of environmental conditions - Part 3-1: Classification of groups of environmental parameters and their severities - Section 1: Storage (IEC 60721-3-1); German version EN 60721-3-1
EN 60721-3-2	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 2: Transportation and handling (IEC 104/670/CD)
EN 60721-3-3	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities; section 3: Stationary use at weatherprotected locations; Amendment A2 (IEC 60721-3-3); German version EN 60721-3-3
EN 61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems
EN 61000-2-4	Electromagnetic compatibility (EMC) - Part 2-4: Environment; Compatibility levels in industrial plants for low-frequency conducted disturbances (IEC 61000-2-4); German version EN 61000-2-4
EN 61000-4-2	Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test (IEC 61000-4-2); German version EN 61000-4-2
EN 61000-4-3	Electromagnetic compatibility (EMC) - Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test (IEC 61000-4-3); German version EN 61000-4-3
EN 61000-4-4	Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test (IEC 61000-4-4); German version EN 61000-4-4

STANDARDS FOR DRIVE CONVERTERS/CONTROL CABINETS

EN 61000-4-5	Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test (IEC 61000-4-5); German version EN 61000-4-5
EN 61000-4-6	Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields (IEC 61000-4-6); German version EN 61000-4-6
EN 61000-4-34	Electromagnetic compatibility (EMC) - Part 4-34: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests for equipment with mains current more than 16 A per phase (IEC 61000-4-34); German version EN 61000-4-34
EN 61508-17	Functional safety of electrical/electronic/programmable electronic safety-related systems – Part 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Safety of machinery - functional safety of electrical, electronic and programmable electronic safety-related systems (VDE 0113-50, IEC 62061)
EN ISO 13849-1	Safety of machinery - safety-related parts of control systems - Part 1: General principles for design (ISO 13849-1); German version EN ISO 13849-1

Standards that are used in the environment of the drive converter

DGUV regulation 3	Electrical installations and equipment
DIN 46228-1	Wire-end ferrules; Tube without plastic sleeve
DIN 46228-4	Wire-end ferrules; Tube with plastic sleeve
DINIEC 60364-5-54	Low-voltage electrical installations - Part 5-54: Selection and erection of electrical equipment - Earthing arrangements, protective conductors and protective bonding conductors (IEC 64/1610/CD)
DIN VDE 0100-729	Low-voltage electrical installations - Part 7-729: Requirements for special installations or locations - Operating or maintenance gangways (IEC 60364-7-729:2007, modified); German implementation HD 60364-7-729:2009
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
EN 1037	Safety of machinery - Prevention of unexpected start-up; German version EN 1037
EN 12502-15	Protection of metallic materials against corrosion - Part 15
EN 60204-1	Safety of machinery - electrical equipment of machines Part 1: General requirements (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Low-voltage switchgear and controlgear assemblies - Part 1: Type-tested and partially type-tested assemblies (IEC 60439-1); German version EN 60439-1
EN 60947-7-1	Low-voltage switchgear and controlgear - Part 7-1: Ancillary equipment - Terminal blocks for copper conductors (IEC 60947-7-1:2009); German version EN 60947-7-1:2009
EN 60947-8	Low-voltage switchgear and controlgear - Part 8: Control units for built-in thermal protection (PTC) for rotating electrical machines (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN 61373	Railway applications - Rolling stock equipment - Shock and vibration tests (IEC 61373); German version EN 61373
EN 61439-1	Low-voltage switchgear and controlgear assemblies - Part 1: General rules (IEC 121B/40/CDV); German version FprEN 61439-1
VGB R 455 P	Water treatment and use of materials in cooling systems
DIN EN 60939-1	Passive filter units for electromagnetic interference suppression - Part 1: Generic specification (IEC 60939-1:2010); German version EN 60939-1:2010

1 Basic Safety Instructions

The COMBIVERT is designed and constructed in accordance with state-of-the-art technology and the recognized safety rules and regulations However, the use of such devices may cause functional hazards for life and limb of the user or third parties, or damages to the system and other material property.

The following safety instructions have been created by the manufacturer for the area of electric drive technology. They can be supplemented by local, country- or application-specific safety instructions. This list is not exhaustive. Violation of the safety instructions by the customer, user or other third party leads to the loss of all resulting claims against the manufacturer.

NOTICE

Hazards and risks through ignorance.

- ▶ Read the instructions for use!
- Observe the safety and warning instructions!
- If anything is unclear, please contact KEB Automation KG!

1.1 Target group

This instruction manual is determined exclusively for electrical personnel. Electrical personnel for the purpose of this instruction manual must have the following qualifications:

- Knowledge and understanding of the safety instructions.
- · Skills for installation and assembly.
- Start-up and operation of the product.
- · Understanding of the function in the used machine.
- Detection of hazards and risks of the electrical drive technology.
- Knowledge of DIN IEC 60364-5-54.
- Knowledge of national safety regulations.

1.2 Transport, storage and proper use

The transport is carried out by qualified persons in accordance with the environmental conditions specified in this manual. Drive controller shall be protected against excessive strains.

Transport of drive controllers with an edge length >75 cm

The transport by forklift without suitable tools can cause a deflection of the heat sink. This leads to premature aging or destruction of internal components.

- ▶ Transport of drive controllers on suitable pallets.
- ▶ Do not stack drive controllers or burden them with other heavy objects.

NOTICE

Damage to the coolant connections

Bending of the tubes!

▶ Never place the device on the coolant connections

Drive controllers contain electrostatic sensitive components.

- ► Avoid contact.
- ► Wear ESD-protective clothing.

Do not store drive controllers

- in the environment of aggressive and/or conductive liquids or gases.
- with direct sunlight.
- outside the specified environmental conditions.

1.3 Installation

⚠ DANGER

Do not operate in an explosive environment!

➤ The COMBIVERT is not intended for the use in potentially explosive environment.

A CAUTION

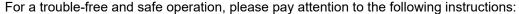
Maximum design edges and high weight!

Contusions and bruises!

- ► Never stand under suspended loads.
- Wear safety shoes.
- ► Secure drive converter accordingly when using lifting gear.

To prevent damages to the device:

- Make sure that no components are bent and/or isolation distances are changed.
- The device must not be put into operation in case of mechanical defects.
- Do not allow moisture or mist to penetrate the unit.
- Avoid dust permeating the device. Allow for sufficient heat dissipation if installed in a dust-proof housing.
- Note installation position and minimum distances to surrounding elements. Do not cover the ventilation openings.
- Mount the drive controller according to the specified degree of protection.
- Make sure that no small parts fall into the COMBIVERT during assembly and wiring (drilling chips, screws etc.). This also applies to mechanical components, which can lose small parts during operation.
- Check the reliable fit of the device connections in order to avoid contact resistances and sparking.
- Do not walk-on drive controller.
- Follow all safety instructions!


1.4 Electrical connection

A DANGER

Voltage at the terminals and in the device!

Danger to life due to electric shock!

- ▶ Never work on the open device or never touch exposed parts.
- ► For any work on the unit switch off the supply voltage and secure it against switching on.
- ▶ In spite of missing supply voltage, the Active Infeed Converter can continue to modulate, e.g. in regenerative operation. The isolation from supply must be checked.
- ► Wait until all drives has stopped in order that no regenerative energy can be generated.
- ► Await capacitor discharge time (5 minutes) if necessary, measure DC voltage at the terminals.
- ► If personal protection is required, install suitable protective devices for drive controllers.
- ▶ Never bridge upstream protective devices (also not for test purposes).
- Always connect the protective earth conductor to drive controller and motor.
- ▶ Install all required covers and protective devices for operation.
- ▶ The control cabinet shall be kept closed during operation.
- ▶ Residual current: This product may cause DC current in the protective earth conductor. When a residual current device (RCD) or residual current monitoring device (RCM) is used for protection in case of direct or indirect contact, only a RCD or RCM of type B is permissible on the power supply side of this product.
- ▶ Drive controllers with a leakage current > 3.5 mA AC current (10 mA DC current) are intended for a fixed connection. Protective conductors are to be designed in accordance with the local regulations for equipment with high leakage currents according to EN 61800-5-1, EN 60204-1 or DIN IEC 60364-5-54.

- The electrical installation shall be carried out in accordance with the relevant requirements.
- Cable cross-sections and fuses must be dimensioned by the user according to the specified minimum / maximum values for the application.
- The wiring must be carried out with flexible copper cable for a temperature > 75 °C.
- Connection of the Active Infeed Converter is only permissible on symmetrical networks with a maximum line voltage (L1, L2, L3) with respect to earth (N/PE) of max.300V (=> "3.2 Technical Data of the AIC modules"). An appropriate transformer must be connected upstream in case of supply networks with higher voltages.

BASIC SAFETY INSTRUCTIONS

- With existing or newly wired circuits the person installing the units or machines must ensure that the PELV requirements are met.
- For drive controllers that are not isolated from the supply circuit (in accordance with *EN 61800-5-1*) all control lines must be included in other protective measures (e.g. double insulation or shielded, earthed and insulated).
- When using components without isolated inputs/outputs, it is necessary that equipotential bonding exists between the components to be connected (e.g. by the equipotential line). Disregard can cause destruction of the components by the equalizing currents.
- Only use the filter components specified by KEB.
- When connecting several drive controllers to the Active Infeed Converter, the maximum permissible DC link capacities or the charging currents of all connected drive controllers and their interconnection must be observed.

If personnel protection is required during installation of the system, suitable protective devices must be used for drive converters.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_general/ti_rcd_0400_0002_gbr.pdf

Installations which include drive controller shall be equipped with additional control and protective devices in accordance with the relevant applicable safety requirements, e.g. act respecting technical equipment, accident prevention rules etc. They must always be complied with, also for drive controller bearing a CE marking.

1.4.1 EMC-compatible installation

Observance of the limit values required by EMC law is the responsibility of the customer.

Notes on EMC-compatible installation can be found here. www.keb.de/fileadmin/media/Manuals/dr/emv/0000neb0000.pdf

1.4.2 Voltage test

Testing with AC voltage (in accordance with *EN 60204-1* chapter 18.4) may not be executed, since there is danger for the power semiconductors in the drive controller.

Due to the radio interference suppression capacitors, the test generator will switch off immediately with a current fault.

According to *EN 60204-1* it is permissible to disconnect already tested components. Drive controllers of the KEB Automation KG are delivered ex works voltage tested to 100% according to product standard.

1.4.3 Insulation measurement

An insulation measurement (in accordance with *EN 60204-1* chapter 18.3) with DC 500 V is permissible, if all power unit connections (grid-connected potential) and all control connections are bridged with PE. The insulation resistance of the respective device can be found in the technical data.

1.5 Start-up and operation

The drive controller must not be started until it is determined that the installation complies with the machine directive; Account is to be taken of *EN* 60204-1.

WARNING

Software protection and programming!

Hazards caused by unintentional behavior of the drive!

- ► Check especially during initial start-up or replacement of the drive controller if parameterization is compatible to application.
- ➤ Securing a unit solely with software-supported functions is not sufficient. It is imperative to install external protective measures (e.g. limit switch) that are independent of the drive controller.
- ► Secure motors against automatic restart.

A CAUTION

High temperatures at heat sink and coolant!

Burning of the skin!

- ► Cover hot surfaces safe-to-touch.
- ▶ If necessary, attach warning signs on the system.
- ▶ Before touching, check the surface and coolant lines.
- ▶ Before working let the unit cool down.
- During operation, all covers and doors shall be kept closed.
- Use only approved accessories for this device.
- · Never touch terminals, busbars or cable ends.

If a drive controller with electrolytic capacitors in a DC link has not been in operation for more than one year, observe the following instructions.

Switching at the input

For applications that require cyclic switching off and on of the drive controller, maintain an off-time of at least 5 min after the last switch on. If you require shorter cycle times please contact KEB Automation KG.

Short-circuit resistance

The drive controllers are conditional short-circuit proof. After resetting the internal protection devices, the intended function is guaranteed.

Exceptions:

- Repeatedly occurring ground faults or short-cicuits at the input can lead to the devective of the unit.
- The Active Infeed Converter is not short-circuit proof at the mains input! Conditional protection at the mains input is possible with a semiconductor fuse.
- The short-circuit protection at the DC output must be ensured by internal / external aR or gR fuses.

1.6 Maintenance

The following maintenance work has to be carried out when required, but at least once per year by authorized and trained personnel. Check unit for loose screws and plugs and tighten if necessary.

- ► Check system for loose screws and plugs and tighten if necessary.
- ► Clean drive controller from dirt and dust deposits. Pay attention especially to cooling fins and protective grid of the fans.
- Examine and clean extracted air filter and cooling air filter of the control cabinet.
- ► Check the function of the fans of the drive controller. The fan must be replaced in case of audible vibrations or squeak.
- ▶ In the case of liquid-cooled drive controllers a visual test of the cooling circuit for leaks and corrosion must be carried out. The cooling circuit must be completely empty if a unit shall be switched off for a longer period. The cooling circuit must be blown out additionally with compressed air at temperatures below 0°C.

1.7 Repair

In case of malfunction, unusual noises or smells inform a person in charge!

A DANGER

Unauthorized exchange, repair and modifications!

Unpredictable malfunctions!

- ➤ The function of the drive controller is dependent on its parameterization. Never replace without knowledge of the application.
- Modification or repair is permitted only by KEB Automation KG authorized personnel.
- Only use original manufacturer parts.
- ▶ Infringement will annul the liability for resulting consequences.

In case of failure, please contact the machine manufacturer. Only the machine manufacturer knows the parameterisation of the used drive controller and can provide an appropriate replacement or induce the maintenance.

1.8 Disposal

Electronic devices of the KEB Automation KG are exclusively professional devices for further industrial processing (so-called B2B devices).

Manufacturers of B2B devices are obliged to take back and recycle devices manufactured after 14.08.2018. These devices may not be disposed at the collection centres of public sector disposal organisations.

If no deviating agreement has been made between the customer and KEB or no deviating mandatory legal regulation exists, KEB products marked in this way can be returned. Company and keyword to the return point can be taken from the list below. Shipping costs are paid by the customer. Thereupon the devices will be professionally recycled and disposed.

The entry numbers are listed country-specific in the following table. The corresponding KEB return addresses can be found on our website.

Withdrawal by	WEEE-RegNo.		Keyword
Austria			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
France			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Germany			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Italy			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Spain			
KEB Automation KG	RII-AEE	7427	Palabra clave "Retirada RAEE"
Česko			
KEB Automation KG	RETELA	09281/20 ECZ	Klíčové slovo: Zpětný odběr OEEZ

The packaging must be feed to paper and cardboard recycling.

2 Product Description

The product family COMBIVERT H6 is optimized for the use in multi-axis drives. The structure is modular and thus it can be optimally adapted to the respective requirements. A system consists of the following components:

Designation	Function
Rectifier module	Served to supply the main energy flow of DC-coupled drive controllers. Consists of a B6 diode or thyristor bridge with following DC link for buffering the energy. The input is supplied with mains voltage. The DC output voltage is equal to the DC link potential. The energy flow is only possible in one direction (no regeneration). The rectifier module controls the precharging. It is used when no Active Infeed Converter module is used. An integrated braking transistor can convert energy into heat via a braking resistor.
Charging module	Used for precharging the DC link in the DC-bus connection of drive controllers. The charging module is used in conjunction with an Active Infeed Converter (AIC). It switches and monitors the mains contactor after successful precharging. An integrated braking transistor can convert energy into heat via a braking resistor.
Active Infeed Converter	From 07/2019 the term AIC replaces the previously used term AFE.
module (AIC)	Served to supply the main energy flow of DC-coupled drive controllers. The input is supplied with mains voltage. The DC output voltage is equal to the DC link potential. The energy flow is possible in two directions (power supply and regeneration). The AIC can regenerate excess energy in sinusoidal form from the DC-bus connection into the mains. Precharging is required when using an AIC.
24V power supply module	Provides the 24V DC power supply for the individual modules. The input is supplied from the mains / DC bus. The 24V power supply module can be omitted if an existing 24V supply is to be used.
Control module with 24V power supply	The control module is used for decentralised control of a H6 device network. The H6 control module can be used as gateway between an external fieldbus and system bus. An integrated 24V power supply supplies the 24V bus.
Single axis module	Module for controlling a single drive axis in a drive system. The single axis module is supplied via the DC link bus. Single axis modules are available in different housing designs and performance levels. Different safety modules can be integrated according to the requirements.
Double axis module	Single module is used to control two different axes. The double axis module is supplied via the DC link bus.
DC connection module	The DC connection module enables the connection of other components to the DC link of the COMBIVERT H6. This allows devices of other series or other manufacturers to be connected to the DC-bus connection. The branch can optionally be protected with DC fuses. Triggering of the fuse(s) is monitored.
DC terminal	The DC terminal enables the branch via cables from the DC bus bars of the COMBIVERT H6. This allows devices of other series or other manufacturers to be connected to the DC-bus connection. The DC terminal is a passive component and has no internal fuses in contrast to the DC connection module.

2.1 Specified application

The COMBIVERT H6 is a DC-coupled drive system for the control of different axes. It serves exclusively for the control and regulation of three-phase motors. The Active Infeed Converter is intended exclusively for installation in electrical systems or machines in the industrial sector.

The used semiconductors and components of the KEB Automation KG are developed and dimensioned for the use in industrial products, such as the Active Infeed Converter.

Restriction

If the product is used in machines, which work under exceptional conditions or if essential functions, life-supporting measures or an extraordinary safety step must be fulfilled, the necessary reliability and security must be ensured by the machine builder.

Residual risks

Despite intended use, Active Infeed Converters can reach unexpected operating conditions in case of error, with wrong parameterization, by faulty connection or unprofessional interventions and repairs. This can be:

- · Automatic start
- Overvoltage at the mains connection point in case of supply network failure

2.2 Unintended use

The operation of other electric consumers is prohibited and can lead to the destruction of the devices. The operation of our products outside the indicated limit values of the technical data leads to the loss of any liability claims. In particular, these are not required for applications with renewable energies or stand-alone systems.

2.3 Product features

These instructions for use describe the power units of the following devices:

Device type: Active Infeed Converter (AIC) / charging module

Series: COMBIVERT H6
Power range: 11...173 kVA / 400 V
Housing: B, C, E, G, P, S, U, W

The COMBIVERT H6 is characterized by the following features:

• System bus EtherCAT 1) Transfer of setpoints and actual values between

control and AIC module.

Error bus
 Channel 1: Error output of the connected DC buses

Channel 2: Charge condition of the DC link bus

• Diagnostic interface RS232/485 interface for the connection of displays

or service tools.

Inputs and outputs 4 digital inputs

4 digital outputs

Separate supply
 Internal supply of the control unit and driver/power

unit are safe separated.

Internal fuses
 The driver/power unit is connected via internal fuses

to the DC link bus.

Cooling System universally by flat rear and air heat sink

2.3.1 Special features of the AIC module

System bus EtherCAT Transfer of setpoints and actual values between

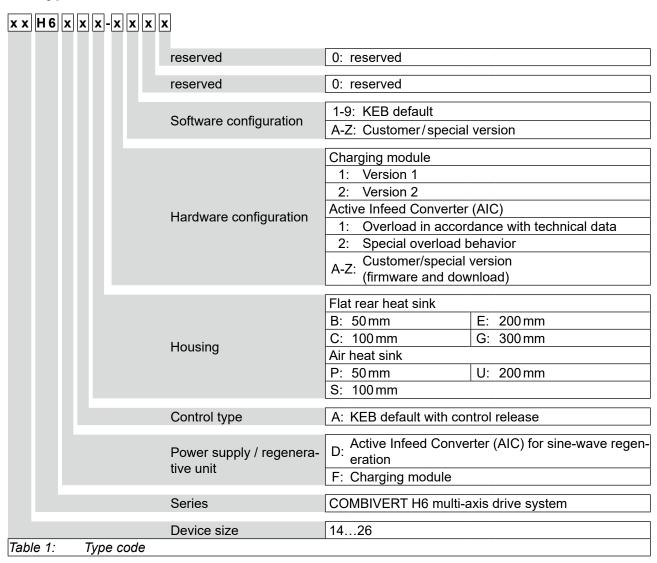
control and AIC module.

2.3.2 Particularities of the charging unit

Temperature inputs
 Temperature inputs for braking resistor and filter

monitoring

Switch input Monitoring of the main contactor with auxiliary con-


tact

EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

2.4 Type code

The type code is not used as order code, it is only used for identification!

3 Technical Data

Unless otherwise indicated, all electrical data in the following chapter refer to a 3-phase AC voltage supply.

3.1 Operating conditions

3.1.1 Environmental conditions

Storage		Standard	Class	Notes	
Ambient temperature		EN 60721-3-1	1K4	-2555°C	
Relative humidity		EN 60721-3-1	1K3	595% (without condensation)	
Storage height		_	_	Max. 3000 m above sea level	
Transport		Standard	Class	Notes	
Ambient temperatur	е	EN 60721-3-2	2K3	-2570°C	
Relative humidity		EN 60721-3-2	2K3	95% at 40 °C (without condensation)	
Operation		Standard	Class	Notes	
Ambient temperatur	е	EN 60721-3-3	3K3	540 °C (extended to -1045 °C)	
Coolant inlet	Air	_	_	540 °C (extended to -1045 °C)	
temperature Water		_	_	540°C	
Relative humidity		EN 60721-3-3	3K3	585% (without condensation)	
		EN 60529	IP20	Protection against foreign material > ø12.5 mm	
Version and degree	of			No protection against water	
protection		LIV 00023	11 20	Non-conductive pollution, occasional condensation when PDS is out of service.	
				Max. 2000 m above sea level	
Site altitude		_	-	 With site altitudes over 1000 m a derating of 1% per 100 m must be taken into consideration. With site altitudes over 2000 m, the control board to the mains has only basic isolation. Additional measures must be taken when wiring the control. 	
Table 2: Climati	ental conditions		-		

3.1.2 Mechanical environmental conditions

Storage	Standard	Class	Notes
Vibratian limita	EN 60721-3-1	1M2	Vibration amplitude 1.5 mm (29 Hz)
Vibration limits			Acceleration amplitude 5 m/s² (9200 Hz)
Shock limit values	EN 60721-3-1	1M2	40 m/s²; 22 ms
Transport	Standard	Class	Notes
			Vibration amplitude 3.5 mm (29 Hz)
Vibration limits	EN 60721-3-2	2M1	Acceleration amplitude 10 m/s² (9200 Hz)
			Acceleration amplitude 15 m/s² (200500 Hz)
Shock limit values	EN 60721-3-2	2M1 100 m/s²; 11 ms	
Operation	Standard	Class	Notes
	EN 60721-3-3	3M4	Vibration amplitude 3.5 mm (29 Hz)
 Vibration limits	EN 00721-3-3	31014	Acceleration amplitude 10 m/s² (9200 Hz)
Vibration limits	EN 64900 E 4	_	Vibration amplitude 0.075 mm (1057 Hz)
	EN 61800-5-1		Acceleration amplitude 10 m/s² (57150 Hz)
Shock limit values	EN 60721-3-3	3M4	100 m/s²; 11 ms
Pressure in the water cooler	 – Max. operating pressure: 10 bar 		Max. operating pressure: 10 bar
Table 3: Mechanical environmental conditions			

3.1.3 Chemical / mechanical active substances

Storage		Standard	Class	Notes
Contamination	Gases	EN 60721-3-1	1C2	-
Contamination	Solids	EN 00721-3-1	1S2	-
Transport		Standard	Class	Notes
Contamination	Gases	EN 60721-3-2	2C2	-
Contamination	Solids		2S2	_
Operation	Operation		Class	Notes
Contamination	Gases	EN 60721-3-3	3C2	-
Contamination	Solids	EN 00721-3-3	3S2	-
Table 4: Chemical / mechanical active substances				

3.1.4 Electrical operating conditions

3.1.4.1 Device classification

Requirement	Standard	Class	Notes	
Overveltage estagen	EN 61800-5-1	III	_	
Overvoltage category	EN 60664-1	111	-	
Pollution degree	EN 60664-1	2	Non-conductive pollution, occasional condensation when PDS is out of service.	
Table 5: Device classification				

3.1.4.2 Electromagnetic compatibility

Devices without internal filter require an external filter to comply with the following limit values.

EMC emitted interference	Standard	Class	Notes		
Line-conducted interferences	EN 61800-3	C2	With ENC filter up to 50 m motor college to other		
Radiated interferences	EN 61800-3	C2	With EMC filter up to 50 m motor cable length		
Interference immunity	Standard	Level	Notes		
Static discharges	EN 61000-4-2	8kV	AD (air discharge)		
Static discharges	EN 61000-4-2	4 kV	CD (contact discharge)		
Burst - Ports for process measuring and control func- tions and signal interfaces	EN 61000-4-4	2kV	_		
Burst - Power ports	EN 61000-4-4	4 kV	_		
Surge Dewer ports	EN 61000-4-5	1kV	Phase-phase		
Surge - Power ports		2kV	Phase-ground		
Cable-fed disturbances, induced by high-frequency fields	EN 61000-4-6	10 V	0.1580 MHz		
		10 V/m	80 MHz1 GHz		
Electromagnetic fields	EN 61000-4-3	3 V/m	1.42 GHz		
		1 V/m	22.7 GHz		
Voltage fluctuations/	EN 61000-2-1		-15%+10%		
voltage drop	EN 61000-4-34	_	90%		
Frequency changes	EN 61000-2-4		≤ 2 %		
Voltage deviations	EN 61000-2-4		±10%		
Voltage unbalances	EN 61000-2-4		≤ 3 %		
Table 6: Electromagnetic compatibility					

3.2 Technical Data of the AIC modules

Device size			14	19	21	24	26
Housing	•		C S	E U	E U	G	G
Input data							
Rated input voltage		Un/V		400 (U	L: 480)		
Input voltage range		Uin / V		320.	480		
Mains frequency		<i>f</i> ∧/ Hz		50/6	0 ±5		
Mains phases				;	3		
Approved mains forms				Т	N		
Rated input apparent power		Sn/kVA	11	42	62	125	173
Max. input apparent power		S_max / kVA	23	75	112	187	260
Rated input current		In/A	16.5	60	90	180	250
Max. input current (for 60s)	1)	Iin_max / A	33	108	162	270	378
Overcurrent cut-off		loc/%	240	216	216	180	180
Overload current		IOL/%	200	180	180	150	150
Max. permissible mains fuse type gR/aR		I_max	25	80	125	250	350
Recommended supply cable section		Ø / mm²	4	25	50	2x70	2x95
Output data							
Rated output voltage		UoutN_dc / V		68	30		
Output voltage range	2)	U_dc / V		500.	840		
Overvoltage switch-off		Uop_dc / V		84	40		
Rated apparent output power		PoutN / kW	11	42	62	125	173
Nominal input/regenerative current		loutN_dc / A	16.5	60	90	180	250
Max. nominal input/regenerative current (for 60s)	1)	Iout_max_dc / A	33	108	162	270	378
Overcurrent cut-off		Ioc_dc / A	39	173	259	378	518
Rated switching frequency		<i>f</i> s∧/ kHz		8		8	4
Other data							
Short circuit factor at the connection point		Skn" / Sn		15 < Skn"	/ Sn < 350		
Power dissipation heat sink	3)	P _{Dext} / W	181	698	1090	2315	1979
Power dissipation interior	3)	P _{Dint} / W	53	95	131	218	189
Max. heat sink temperature		Ths / °C		8	0		
Insulation resistance @ Udc = 500 V		R sio / $M\Omega$		>	5		
Supply control unit							
Rated input voltage		<i>U</i> c∪_dc / V		24 (±			
rtated input current	4)	ICU_dc / A			mA		
Additional input current for air cooler		ICU_dc / A	0.5	2.4	2.4	-	-
Table 7: Technical Data AIC modules	S						

¹⁾ Restrictions: The thermal dimensioning of the heat sinks is based on the rated current and the maximum permissible ambient temperature. At high ambient temperatures and / or high heatsink temperatures (for example, due to a preceding utilization nearby 100%), the drive controller can change to overtemperature error before the protective function OL is triggered.

²⁾ The operation is dependent on the voltage setpoint and the control circuit (see Programming manual).

The data of the power dissipation for heat sinks and interior refer to rated operation. The module is installed on air cooler or heat sinks (water inlet /water outlet temperature 40/45°C). The ambient temperature is 45°C. The splitting will change under other conditions.

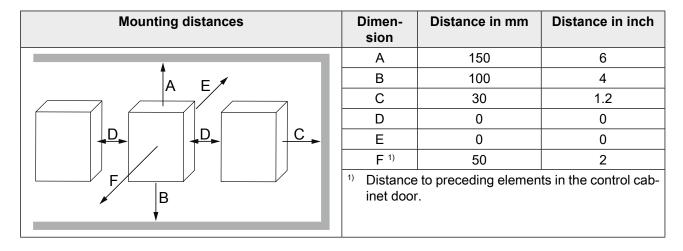
⁴⁾ Rated input current, if no digital output is set. At max. load at the digital outputs the input current can be increased up to max. 1A.

TECHNICAL DATA OF THE AIC MODULES

3.2.1 Technical data of the charging units H6

Device size		00	00
		Version 1	Version 2
Housing		B/P	B / P
Input data			
Rated input voltage	Un/V	400 (UL	
Input voltage range	Uin / V	320	
Mains frequency	f _N / Hz	50/60	
Mains phases		3	
Approved mains forms		TN	N
Max. permissible mains fuse	I_max / A	10)
Supply cable section	Ø / mm²	1.	5
DC output data			
Output voltage range	U_dc / V	452	.840
Rated output current	loutN_dc / A	20)
Output data precharging			
Rated output voltage	UoutN_dc / V	56	
Output voltage range	U_dc / V	452	.680
Overvoltage switch-off	UOP_dc / V	840	
Max. precharging current	IO_dc / A	5	
Braking transistor			
Max. brake power (switching cycle=40%)	P_max / kW	46,	
Max. braking current	IB_max_dc / A	146	176
Min. braking resistor	RB_min / Ω	6 (-10%)	5 (-10%)
Connection cross section	mm²	16	3
Response voltage	U_dc / V	78	0
Switching frequency	fsn/kHz	4	
Switching cycle based on 120s cycle time	ED / %	40	30
Other data			
Power dissipation interior	P _{Dint} / W	5	
Max. heat sink temperature	THS / °C	80	60
Insulation resistance @ $U_{dc} = 500 \text{V}$ $R_{sio} / \text{M}\Omega$		>!	5
Supply control unit			
Input voltage	Ucu_dc / V	24 (±1	0%)
Input current 1)	Icu_dc / A	0.2	2
Table 8: Technical data of the charging modu	ıles H6		

¹⁾ Input current, if no digital input is set. At max. load at the digital outputs the input current can be increased up to max. 1A.



3.3 DC link capacities of the H6 modules

Axis modules				
Device size	Capacity in µF			
7/10/12 single axis module	195			
7/10/12 double axis module	195/195/390			
13	280			
14	390			
15	560			
16	705			
18	1020			
19	1360			
20	1650			
21	1950			
22	2350			
23	3100			
24	3900			
25	4700			
Active Infeed 0	Converter (AIC)			
Device size	Capacity in μF			
14	390			
19	1650			
21	1950			
23	3300			
24	3900			
26	5200			
Table 9: DC link capacities of the H6 modules				

3.4 Mechanical installation

3.4.1 Control cabinet installation

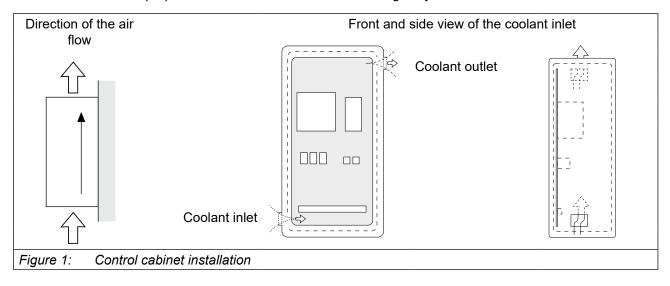
NOTICE

Alignment of the devices during installation

The DC connection between the modules is made via metal bridges.

➤ To ensure perfect installation, the horizontal and vertical displacement between the devices must be kept to a minimum.

A CAUTION


Hot Surface

Heat sinks can reach temperatures, which can cause burns when touching.

▶ If in case of structural measures a direct contact cannot be avoided, a warning notice "hot surface" must be mounted at the machine.

If construction-conditioned the control cabinet cannot be without indoor ventilation, appropriate filters must avoid suction of foreign objects.

Assembly of the drive converter

For reliable operation, the drive converter must be mounted without any clearance on a smooth, closed, bare metal mounting plate.

3.4.1.1 Mounting instructions for control cabinet installation

The following mounting materials with the appropriate quality must be used to assembly the drive converters.

Required material	Tightening torque	
Socket screw ISO 4762 - M6x10 and M6x16 - 8.8		5 Nm
		45 lb inch
Table 10: Mounting instructions for control cabinet installation		

3.4.2 Installation instructions for flat rear heat sink

NOTICE

Overheating of the device.

Never operate flat rear devices without main cooler.

- ➤ Select suitable cooling surfaces (e.g. water heat sink, ribbed heat sink, machine base).
- Screw the flat rear of the devices to the cooling surface.
- ► Ensure good thermal conductivity (e.g. thermal paste)
- ▶ The machine builder is responsible for the cooling of the units.

Heat-conducting paste

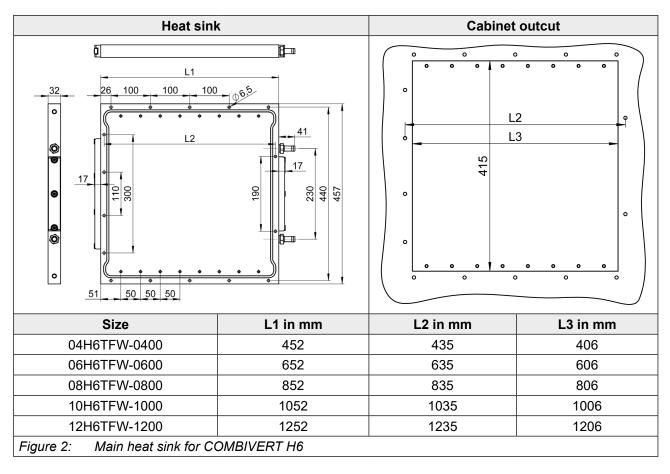
Information about the correct application of the heat-conducting paste are available at www.keb.de under the search term "Heat-conducting paste".

Select correct flow temperature for liquid coolers

➤ The flow temperature must be choose in such a way, that no moisture condensation occurs.

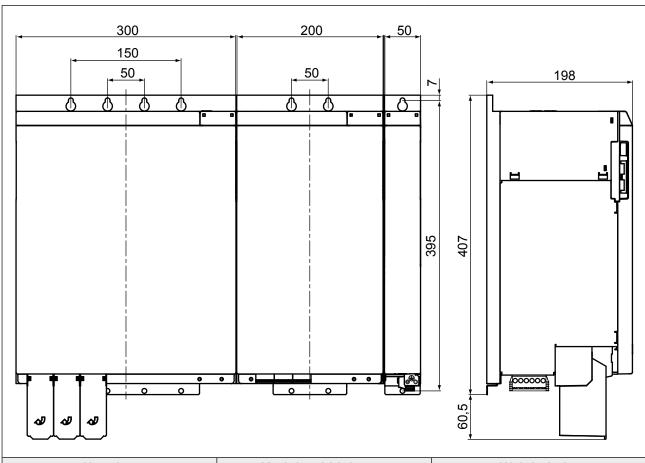
3.4.3 Dimensions central heat sink

3.4.3.1 Air heat sink

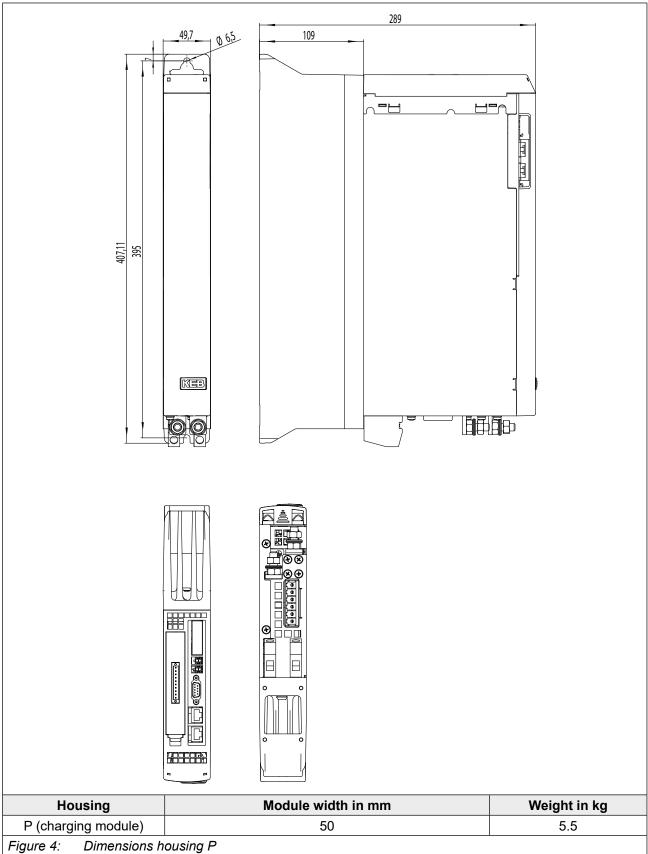

Central heat sink for air-cooling upon request.

33

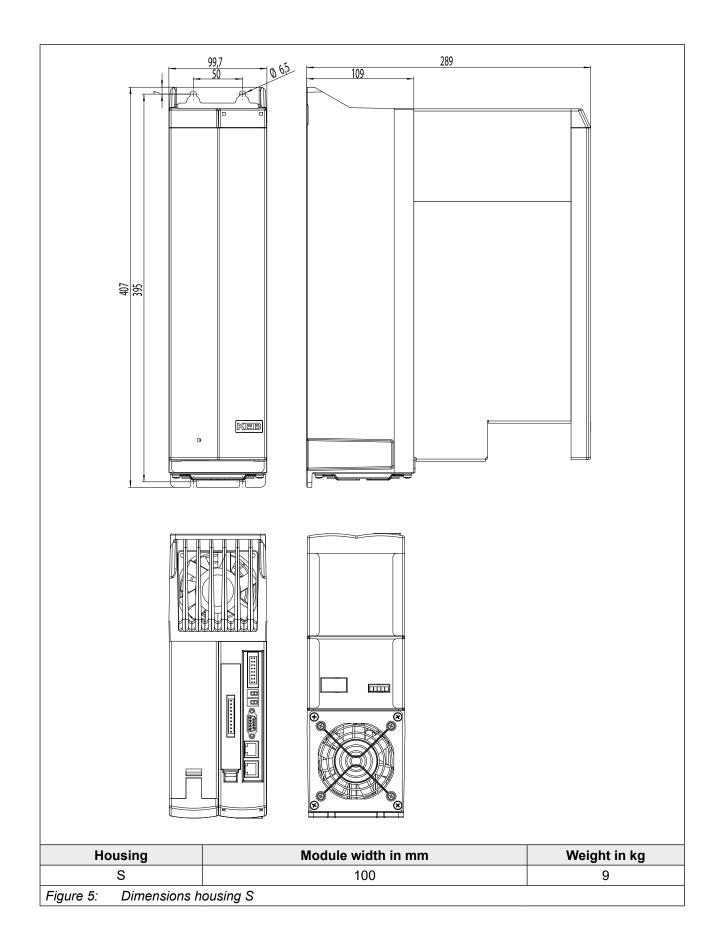
MECHANICAL INSTALLATION

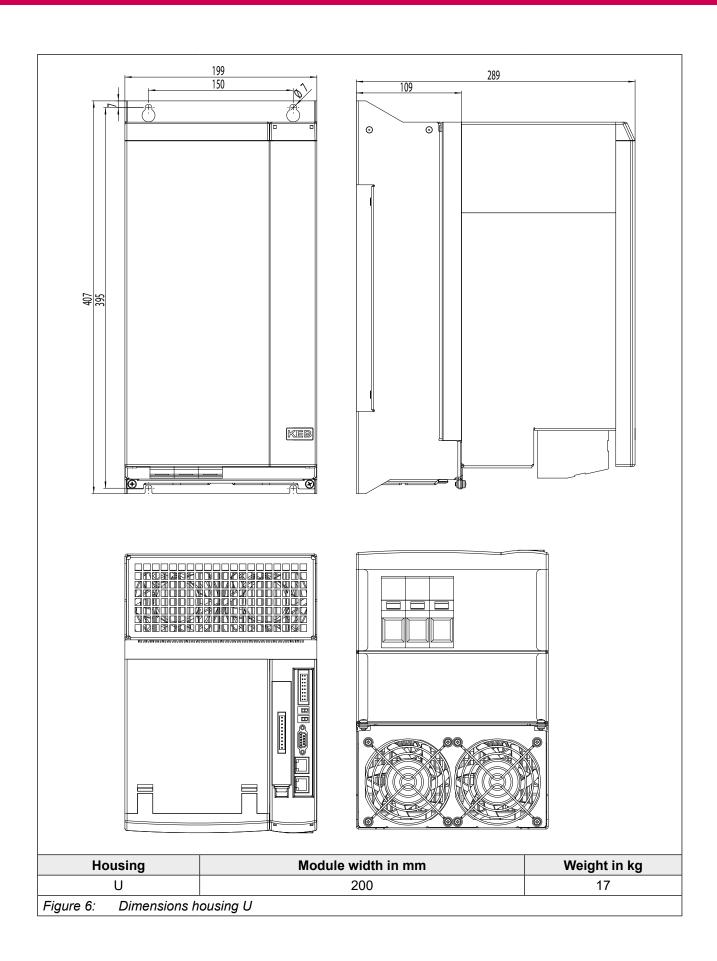

3.4.3.2 Liquid heat sinks

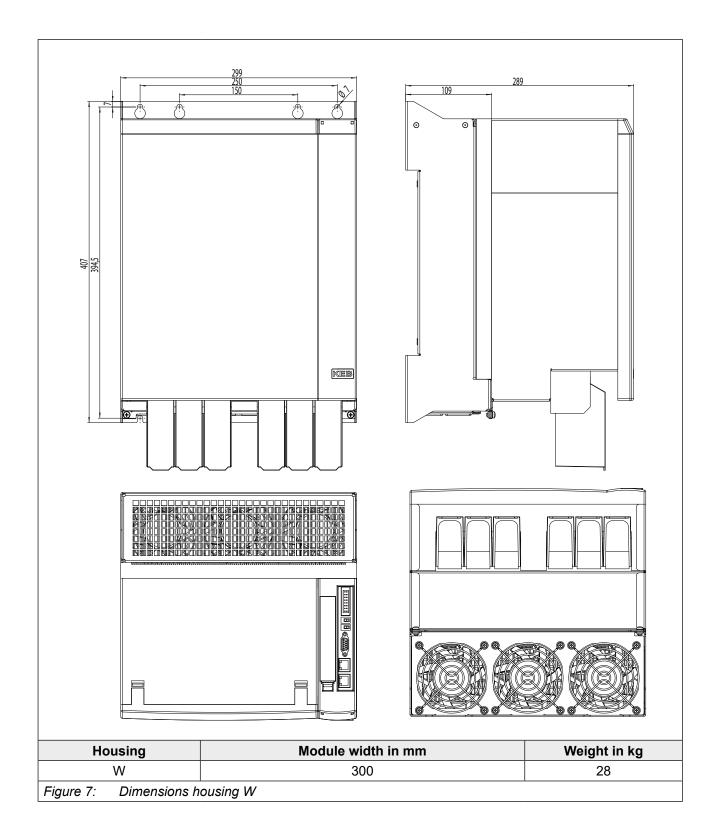
Following liquid heat sinks are available, if no usable cooling surface exists at customer side:

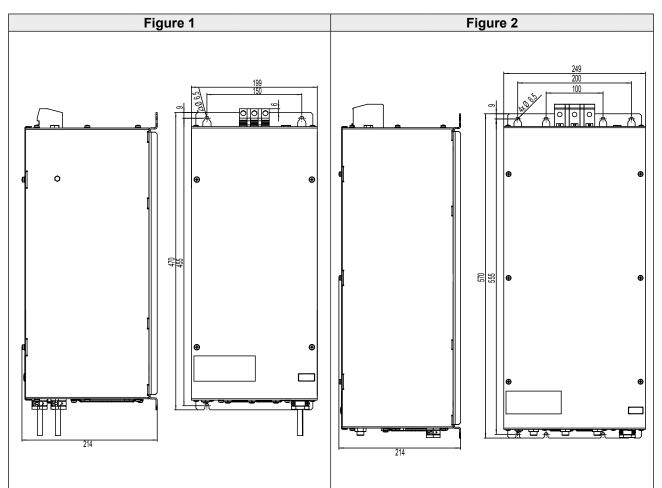

3.4.4 Dimensions and weights of modules with flat rear heat sink

Housing	Module width in mm	Weight in kg			
B (charging module)	50	3.8			
С	100	5.8			
E	200	12.5			
G	300	18			
Figure 0. Disconsistence and excitate at the great day					


Figure 3: Dimensions and weights of the modules


3.4.5 Dimensions and weights of modules with air heat sink


rigure 4. Dimensions nousing F

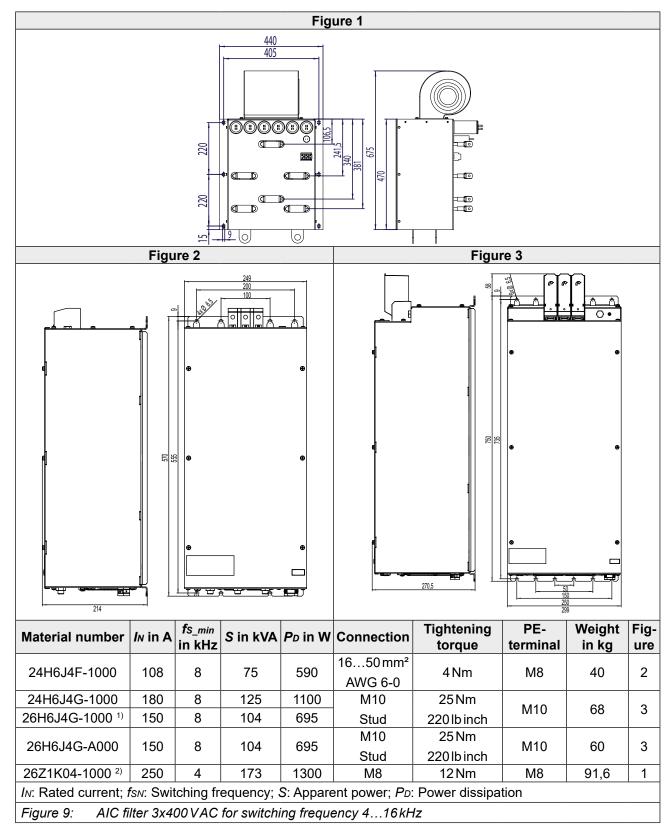


3.4.6 AIC filter 3x400 VAC for switching frequency 8...16 kHz

Material number	<i>I</i> ⊮ in A	S in kVA	<i>P</i> ⊅ in W	Terminal	Tight- ening torque	PE- terminal	Weight in kg	Fig- ure
14H6J4E-1000	16.5	11	160	1025 mm²	2 Nine		16	1
19H6J4E-1000	36	25	275	AWG 20-4 3 Nm			21.5	1
19H6J4F-1000	60	42	395	1650 mm²		M8	34	2
21H6J4F-1000	54	37.4	360		4 Nm		32	2
21H6J4F-1001	90	62	535	AWG 6-0			42.5	2

IN: Rated current; S: Apparent power; PD: Power dissipation

Figure 8: AIC filter 3x400 VAC for switching frequency 8...16kHz



Filter connection

Ring crimp connectors M8 and two terminal blocks (4 mm²) for fan and temperature sensor (KTY +/-) / switch (T1/2) are used for size 26Z1. If a standard AIC or EMC filter is used for the supply unit, KEB must be consulted if more than 6 axes are connected (each with 20 m cable length).

3.4.7 AIC filter 3x400 VAC for switching frequency 4...16 kHz

^{1) 26}H6J4G-1000 with sinus EMC level.

²⁾ For operation without sinus EMC level, the connections U1.2-U1.3, V1.2-V1.3 and W1.2-W1.3 must be bridged. The EMC filter 26E4T60-1001 must be used for rated operation.

3.4.8 Sine-wave EMC filter with DC regeneration

Alternatively, sine-wave EMC filters with DC regeneration and mains chokes can be used.

Drive controller H6 AIC	Sine-wave EMC filter	Mains chokes	EMC filter	In / A	lin_max / A	fs / kHz
14	0DZ1I05-1001	12Z1B04-1000	12E6T60-3000	9.5	16	
14	0HZ1I05-1001	14Z1B04-1000	14E6T60-3000	16.5	26	
19/21	0LZ1I05-1001	18Z1B04-1000	18E6T60-3000	50	75	8
19/21	0PZ1I05-1001	22Z1B04-1000	20E6T60-3000	60/90	108/162	0
24	0PZ1I05-1001	22Z1B04-1000	22E6T60-3000	115	175	
24	0SZ1I05-1001	24Z1B04-1000	24E6T60-3000	180	270	
23	0XZ1I05-1001	27Z1B04-1000	22E6T60-3000	145	290	
26	0XZ1I05-1001	27Z1B04-1000	24E6T60-3000	200	378	4
26	0XZ1I05-1001	27Z1B04-1000	26U5A0U-3000	250	378	
Table 11: Sine-wave	EMC filter with DC i	regeneration				

NOTICE

Inadmissible temperatures!

Overload due to overheating!

After an overload lin_{max} of 60s a partial load operation of 81% of the rated current l_N is mandatory for 540s.

Further information can be found under the following link:

Installation sine-wave EMC filter.

 $www.keb.de/fileadmin/media/Manuals/dr/ma_dr_z1-inst-sinus-emv-filter_20146892_en.pdf$

3.4.8.1 Connection DC regeneration

DC terminal 00H6M10-1100

Installation DC terminal

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_h6-zub-inst-dc-terminal-20178987_en.pdf

A DANGER

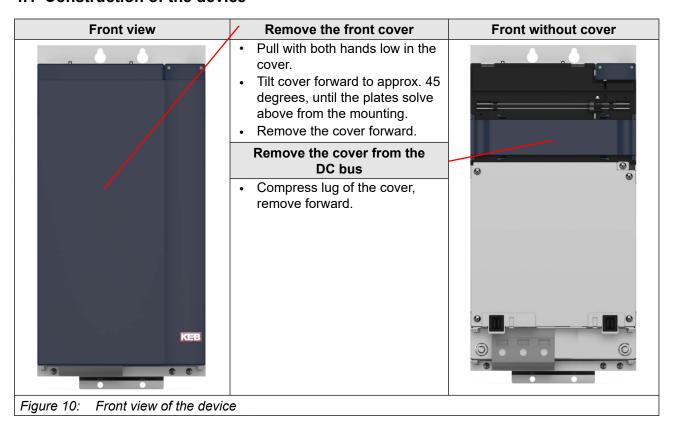
Electrical voltage at the DC terminals!

Danger to life due to electric shock!

- ▶ The customer must ensure protection against accidental contact.
- DC connection module 00H6M1x-x100

Installation DC connection module

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_dc-connection-module-zub-20186874_en.pdf



Insertion profiles from Phoenix Contact UKH50EP/3009228 are not included in the scope of delivery.

4 Installation and Connection

4.1 Construction of the device

A DANGER

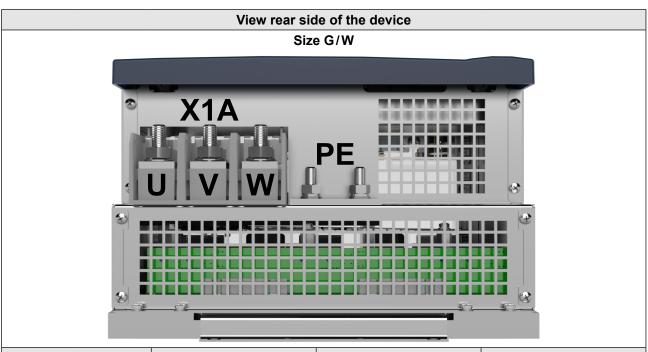
Hazardous voltage under the cover of the DC bus

➤ Secure isolation from supply of the DC bus at the power supply and regenerative unit!

Description	Terminal	Connections of the front side	Terminal	Description
+24V bus	X1C.1		X1C.3	+24V bus
0 V	X1C.2		X1C.4	0 V
DC bus +	X1D.1		X1D.3	DC bus (displayed with protection against
DC bus -	X1D.2		X1D.4	contact for exterior devices)
			Sna	p-in for front cover
Output to the filter	X1A			
Figure 11: Connections	of the fron	t side		

View rear side of the device Size C/S X1A PE PE PE X1B R+ BR- T1A T2A

Terminal cor	nection	Function	Conductor cross-section	Tightening torque
X1A	V W	Connection to the filter (connect inphase)	0.26 mm² AWG 24-10	0.7 Nm 6.2 lb inch
VAD	BR+ BR-	Connection for 24 V DC brake	0.251.5 mm²	0.25 Nm
X1B	T1 T2	Connection for PTC/KTY filter temperature monitoring	AWG 28-16	2.2 lb inch
PE	\(\begin{array}{c} \\ \end{array} \end{array} \)	Connection for shielding/ earthing	M6 stud for ring crimp con- nector	1.3 Nm 11.5 lb inch
Figure 12: View	of the bottom	of the device size C/S		

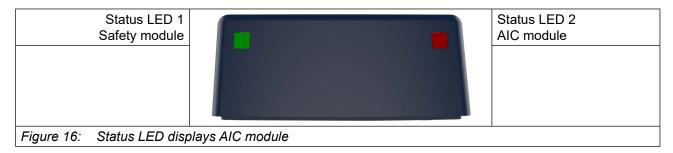


View rear side of the device Size E/U

Terminal o	connection	Function	Conductor cross-sec- tion	Tightening torque		
X1A	V W	Connection to the filter. Connect inphase.	3595 mm² AWG 4-0	15 Nm 132 lb inch		
PE	-	Connection for shielding/ earthing	M8 stud for ring crimp connector	12 Nm 110 lb inch		
Figure 13:	e 13: View of the bottom of the device size E/U					

Terminal o	connection	Function	Conductor cross-sec- tion	Tightening torque				
X1A	V W	Connection to the filter. Connect inphase.	M10 stud for ring crimp connector max. width 30 mm	12 Nm 110 lb inch				
PE	(Connection for shielding/ earthing	M8 stud for ring crimp connector	12 Nm 110 lb inch				
Figure 4.4.	Flower AA. Misses of the heattern of the device of a O MAI							

Figure 14: View of the bottom of the device size G/W



	View	up	per side of t	he de	evice				
				Di	gital	input	s and outpu	ts	
			Dig. inp	ut 4	16	15	0V		
			Dig. inp	ut 3	14	13	0V		
			Dig. inp		12	11	0V		
	X2A		Dig. inp		10	9	0V		
XZA			Dig. outp	ut 4	8	7	0V		
			Dig. outp	ut 3	6	5	0V		
			Dig. outp	ut 2	4	3	0V		
			Dig. outp	ut 1	2	1	0V		
X2C	X2C		Error ch	nain	2	1	Charging sta		
X2D X2D	X2D		Error ch	nain	2	1	modules		
			reser	ved	1				
	X4A		TxD (RS2	232)	2	6	reserved		
44 A			RxD (RS2		3	7	DGND (reference potential) TxD-A (RS485)		tential)
	747		RxD-A (RS4		4	8			
X2B		`		9	TxD-B (RS4	85)			
			RxD-B (RS4	85)	5				
Ų					LE	D	1	TX+	
×	V40			4			Speed	2	TX-
	X4C		EtherCAT	out				3	RX+
							4	_	
X4B								5	_
								6	RX-
	X4B		EtherCA7	in		Lir	nk/Activity	7	_
				LE		8	_		
		Sat	fety module (tvne	ი "ძი		' is displayed		
		4	Brake		funct		io diopiayed	11010)	
	X2B	3	0V				ential		
					V/100 mA				
		1 ST Contr							
Figure 15: View upper side of the device									

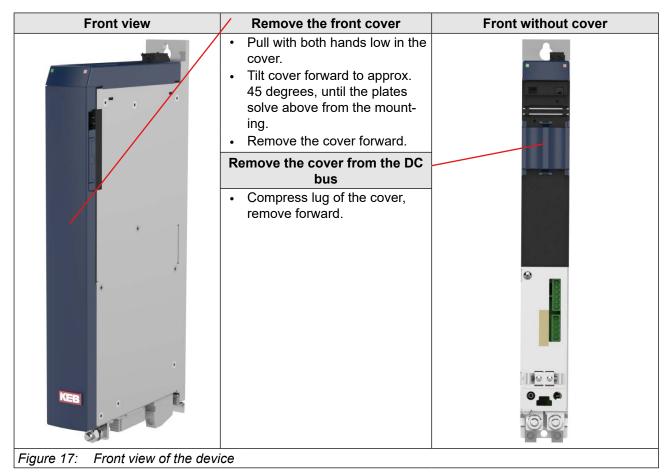
INSTALLATION AND CONNECTION

4.1.1 Status LED displays AIC module

4.1.1.1 Status LED 1 AIC module

The LED displays the status of the AIC module.

LED Status				
off No voltage supply of the device				
yellow	Device initialised			
green Device ready for operation				
red Device in error routine				
Table 12: Status LED 1 AIC module				


4.1.1.2 Status LED 2 safety module

The LED indicate the state of the safety module.

LED Status			
off No voltage supply of the safety module			
green Safety module ready for operation			
red Safety module in error routine			
Table 13: Status LED 2 safety module			

4.2 Structure of the charging module

▲ DANGER

Hazardous voltage under the cover of the DC bus

► Secure isolation from supply of the DC bus at the power supply and regenerative unit!

INSTALLATION AND CONNECTION

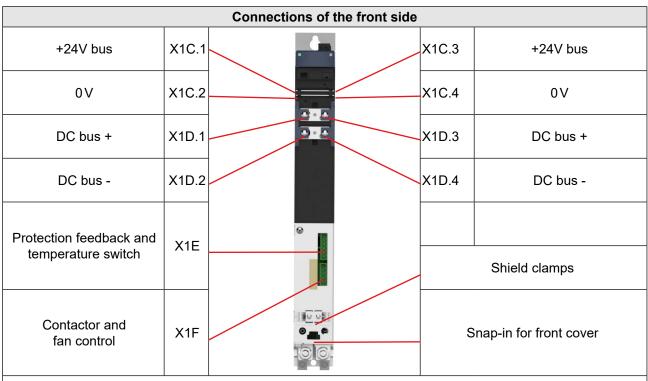


Figure 18: Connections of the front side

X1E	Name	Function	Connection data
	C2	Control input	Permissible connection cross section:
2 (1	C1	(for checking whether the contactor has switched)	0.22.5 mm², AWG 24-12
	FT2	Temperature monitoring of the AIC	Stripping length: 10 mm
	FT1	filter	
RIZ	RT2	Temperature monitoring of the	
RT1	RT1 braking resistor		
Figure 19: Termin	al block X	(1E	

X1F	Name	Function	Connection data					
DO-O	C-out	Control for supply /regenerative contactor; switches after comple-	Permissible connection cross section: 0.22.5 mm², AWG 24-12					
	C-in	tion of the precharging	Stripping length: 10 mm					
	_	not assigned	max. load: 6A/1500VA					
F-out	F-out	Control for fans of the AIC filter	max. inductive load:					
	F-in	Control for fails of the Alo lines	24 V DC (DC13): 2A 250 V AC (AC15): 3A					
			max. starting current (capacitive load of the protective circuit):					
			< 2.0A during the relevant time of 1 ms					
Figure 20: Termin								

	View re	ear side of the device				
PE L3 L2 L1		Protective earth and function earth				
	X1A	Power unit terminal strip				
	X1B	Connection for braking resistor				
Figure 21: View rear side of	Figure 21: View rear side of the device					

X1A Name F		Function	Conductor cross-section	Tightening torque
	L1, L2, L3	Mains connection for pre- charging		
PE L3	PE	Connection for protective earth	0.26 mm² AWG 24-10	0.7Nm 6.2lbinch
	+, -	DC link connection for sine- wave EMC filter		
Figure 22: Terminal blo	ock X1A			

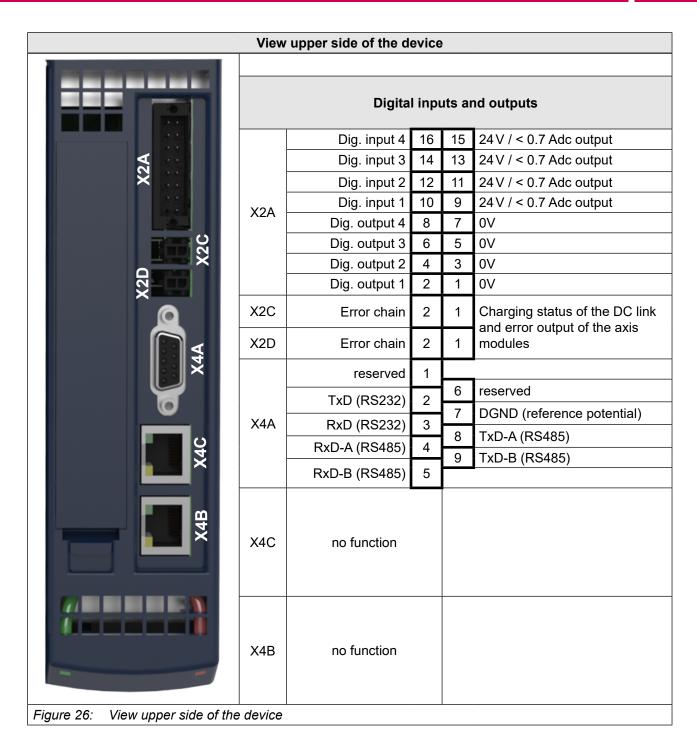
INSTALLATION AND CONNECTION

X1B	Name	Function	Conductor cross-section	Tightening torque
PA PB	PA	Connection for	0.516 mm²	2 Nm
	РВ	braking resistor	AWG 20-4	18 lb inch

Figure 23: Terminal block X1B

Name Fu		Function	Conductor cross-section	Tightening torque
		Connection for protective earth and function earth	M8	4.5 Nm 40 lb inch

Figure 24: Connection for protective earth and function earth


4.2.1 Status LED displays charging unit

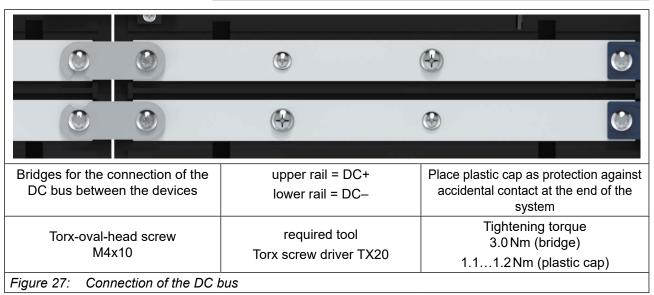
4.2.2 Status LED charging unit

LED	Status				
off	No voltage supply of the device				
yellow	Device initialised				
green	Device ready for operation				
red	Device in error routine				
Table 14: Status I	Table 14: Status LED charging unit				

4.3 Connection of the power unit

4.3.1 Connection of the DC bus X1D

The tinned copper bars connect the DC bus of the different H6 devices. Precharging, power supply and regeneration (if required) is provided by the power supply module. The electrical connection is made with metal bridges, which must be mounted (as illustrated in the photo). A plastic cap must be installed at both ends of the H6 system as protection against accidental contact.



If the DC current is greater than 350A, the current must be limited to this value for each DC bus connection X1D and the total current must be divided between the right and left connection.

A DANGER

Dangerous voltage

► The voltage on the DC bus during operation can be up to DC 840 V!

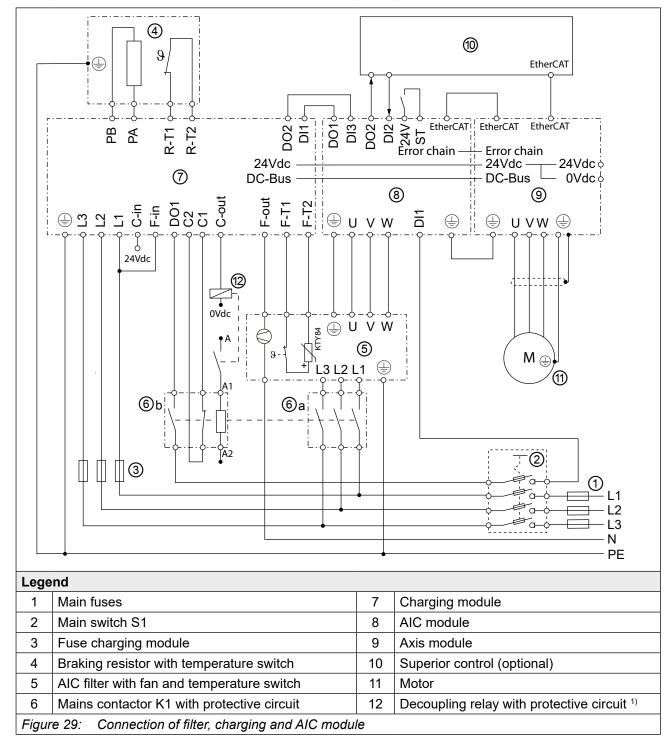
Attach the cover for the DC bus again after the installation.

4.3.2 Connection of the 24V bus X1C

The 24V bus supplies the control and the driver circuit of the axis module and the power supply and regenerative unit with 24V DC voltage. Generally this voltage is provided by the COMBIVERT H6 power supply module, but also an existing voltage source can be used.

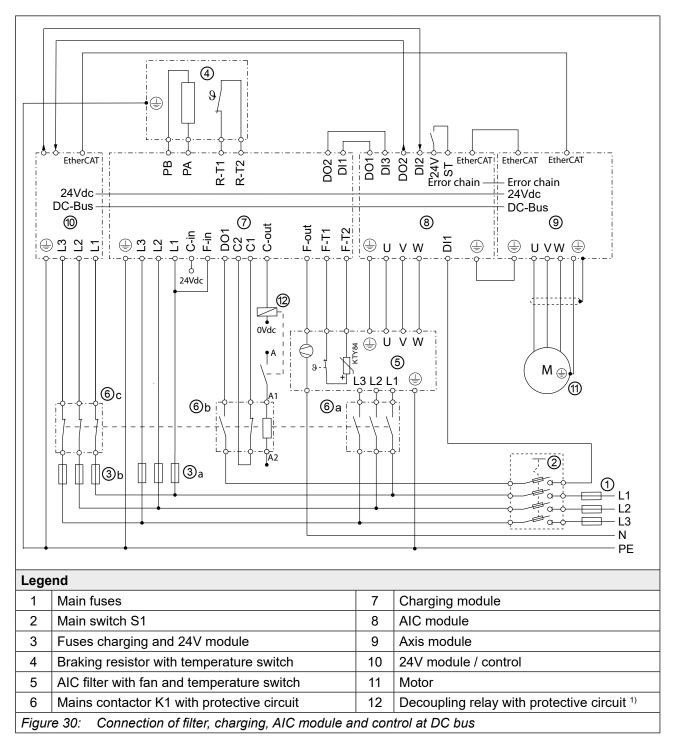
The bridge for the connection of the 24V bus is attached to the devices and fixed with a screw.

Cross-head screw M3x10 Tightening torque 0.5 Nm


Figure 28: Connection of the 24V bus

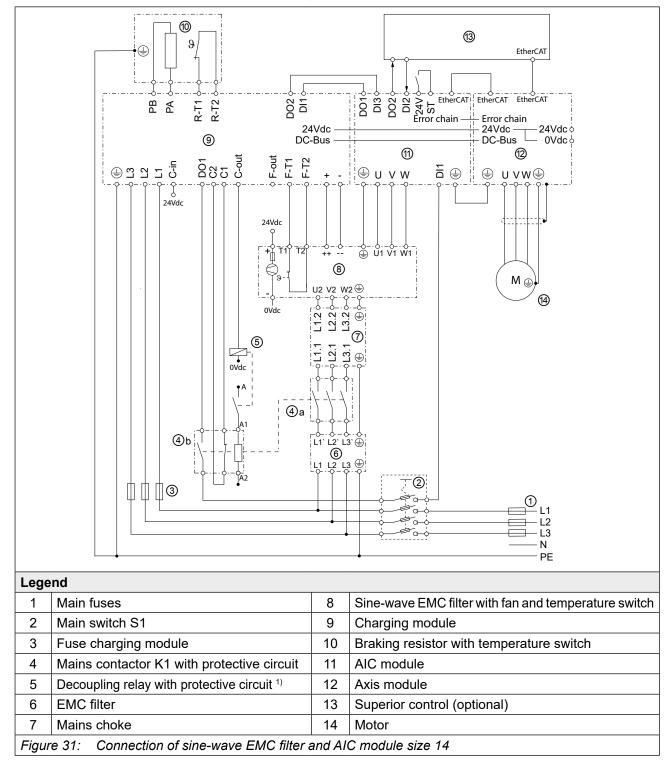
NOTICE

The assembly of the jumper must be carried out with special care. Tilting or breaking the plug contacts is to be prevented.

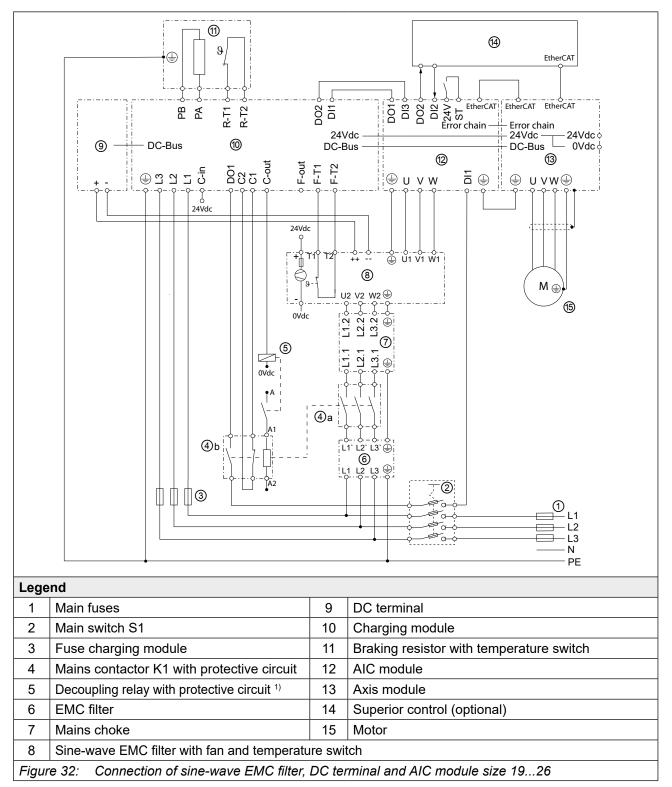

4.3.3 Connection of filter, charging and AIC module

The decoupling relay is not required, if ensured that the load capacitiy of the relais contact is not exceeding, no capacitive load.

4.3.4 Connection of filter, charging, AIC module and control at DC bus

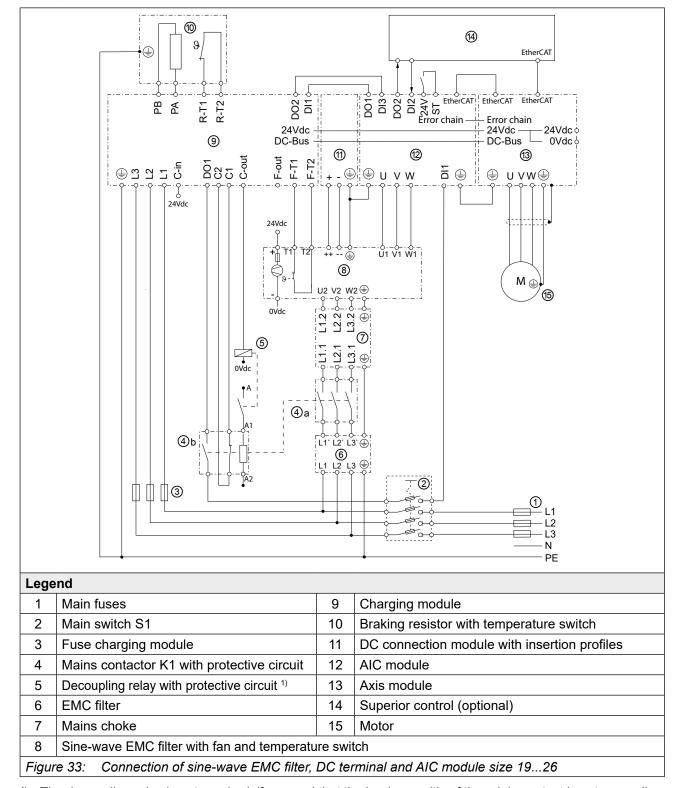


The decoupling relay is not required, if ensured that the load capacitiy of the relais contact is not exceeding, no capacitive load.

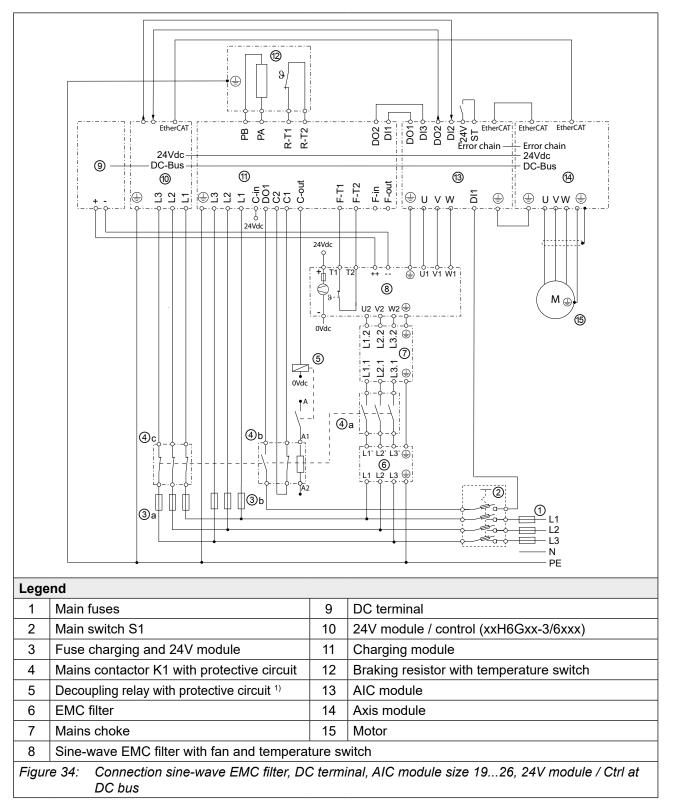

4.3.5 Connection of sine-wave EMC filter and AIC module size 14

The decoupling relay is not required, if ensured that the load capacitiy of the relais contact is not exceeding, no capacitive load.

4.3.6 Connection of sine-wave EMC filter, DC terminal and AIC module size 19...26



The decoupling relay is not required, if ensured that the load capacitiy of the relais contact is not exceeding, no capacitive load.


4.3.7 Connection of sine-wave EMC filter, DC terminal and AIC module size 19...26

The decoupling relay is not required, if ensured that the load capacitiy of the relais contact is not exceeding, no capacitive load.

4.3.8 Connection sine-wave EMC filter, DC terminal, AIC module size 19...26, 24V module / Ctrl at DC bus

The decoupling relay is not required, if ensured that the load capacitiy of the relais contact is not exceeding, no capacitive load.

4.3.9 Temperature monitoring of the braking resistor

4.3.9.1 Terminals R-T1, R-T2

NOTICE

Connection temperature switch!

Connect the safe separated temperature switch at the input of the charging unit.

Thermal contact (NC contact) minimum switching current: 2 mA

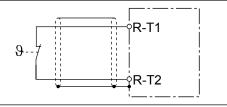


Figure 35: Wiring example temperature monitoring

NOTICE

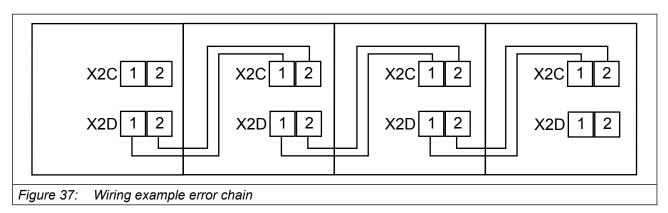
Operation without braking resistor!

If no braking resistor is required, a bridge must be installed between R-T1 and R-T2 to evaluate the input, otherwise there is no precharging and modulation.

4.4 Connection of the control

4.4.1 Error chain terminal X2C, X2D

Cha	nnel		Description		Connecting coble arror obein
2	1	Name	Description		Connecting cable error chain
2		X2C X2D	The terminal strips X2C ternally parallel connect terminal strip can be used put. Based on the power sup chain contains two channel ply maximally 64 axis mostatus channel 1: OK = U>9V Error = U<5V Status channel 2: Release axis modules	ted. Thus, each d as input or out- ply unit the error tels and can sup-	
			no release axis modules	= U > 9V	
Figure	e 36:	⊥ Error cha	in terminal X2C, X2D		


4.4.1.1 Error chain (channel 1)

The first error channel is an error chain. If there is an error in a module, the other modules can be notified of the error directly via this channel. The response to the error can be parameterized.

4.4.1.2 Error power supply unit (channel 2)

At this error channel the axis modules get the information that the power supply unit is in error status and the modulation of all axis modules must be switched off.

4.4.1.3 Wiring example error chain

4.4.2 EtherCat system bus terminal X4B

The EtherCAT system bus serves for the communication of the master with the axis modules and the power supply and regenerative unit. "CanOpen over EtherCAT " is used as protocol. Upto eight axes can be operated isochron with a cycle time of <250 µs.

De	Description of the LEDs		RJ45 socket		signment
LED green	Link			1	TX+
			X4C	2	TX-
off	Connection off		EtherCAT	3	RX+
flashing	Communication	™ ∞	OUT	4	_
on	Connection on				
				5	_
LED yellow	Speed		X4B	6	RX-
off	10 MBit		EtherCAT IN	7	_
on	100 Mbit		IIN	8	_
Table 15: EtherCat System bus socket X4B					

Does not apply to the charging module!

4.4.3 Diagnosis/visualisation X4A

The integrated RS232/485 interface serves for the connection of service tools (e.g. COMBIVIS) and displays. Telegram DIN66019II is used as communication protocol.

Interface		Standard	Connecting cable
RS485		TIA/EIA-485 and ISO 8482	_
RS232		ANSI TIA/EIA-232	0058025-001D and if necessary USB serial converter
Table 16:	Diagnosis/vi	sualisation X4A	

NOTICE

Defect with wrong potential!

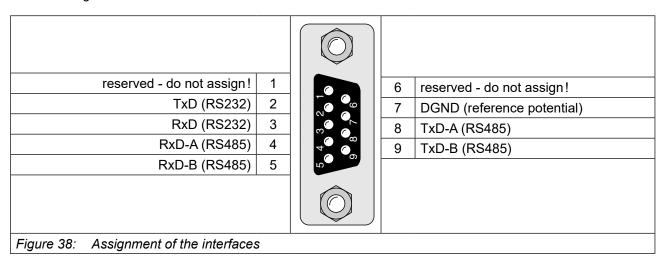
Destruction of the interface!

The diagnostic interface is not electrically isolated, it has the same potential as control potential.

CONNECTION OF THE CONTROL

4.4.3.1 Technical data of the inputs

The digital inputs are specified in accordance with IEC61131-2 type 3.


Status "0"	Status "1"
-35V	1130 V

4.4.3.2 Technical data of the outputs

The digital outputs are short-circuit proof and specified in accordance with IEC61131-2.

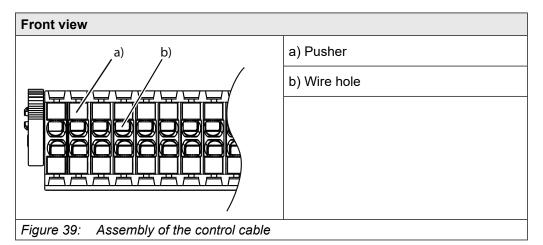
Technical Data	Technical Data					
Max. switching voltage	U/V	30				
Max. current	//A	0.7 (per output)				
Max. Current	IIA	1 (total current for all outputs)				
Internal resistance	R/Ω	250				
Max. switching frequency	f / kHz	1				
Inductive load L / m		max. 300 (without free-wheeling diode)				
Table 17: Technical data of the digital output						

4.4.3.3 Assignment of the interfaces

4.4.4 Digital inputs and outputs X2A

Additionally to the central inputs and outputs of the control unit each axis module is equipped with own inputs and outputs. Terminal block X2A includes four digital inputs and four digital outputs with the appropriate mass terminals.

4.4.4.1 Assembly of the wires to PUSH IN terminals


NOTICE

Malfunctions caused by loose cable connections!

► Observe metal sleeve length and stripping length

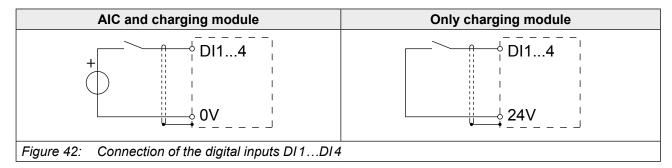
Cross-section	Wire-end ferrule	Metal sleeve length	Stripping length				
0.50 mm ²	with plantic collers	10 mm	12 mm				
0.75 mm ²	with plastic collars (DIN 46228-4)	12 mm	14 mm				
1.00 mm ²	(DIN 40220-4)	12 mm	15 mm				
1.50 mm ²	without plastic collars (DIN 46228-1)	10 mm	10 mm				
0.21.5 mm² single-wire or fine-wire	without wire-end ferrule	-	1015 mm				
Table 18: Wire and farrules and stripping length							

Table 18: Wire-end ferrules and stripping length

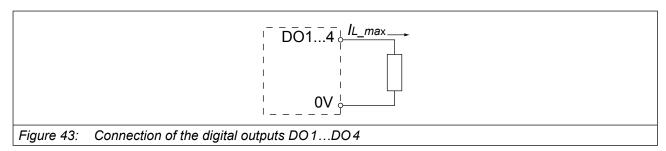
- Press pusher by hand. Insert connecting wires into the respective hole, that no single wires can be seen from the outside or bend outward. A first resistance must be overcome when inserting. Release the pusher.
- Check that the connecting wire is fixed and can not be pulled-out. It is important to
 ensure that the connecting wire and not the insulation is clamped. The connecting
 wire can also be inserted without pressing the pusher in case of cross-sections
 upto 1.00 mm².

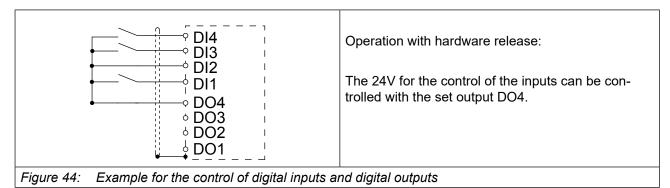
CONNECTION OF THE CONTROL

4.4.4.2 Assignment of the terminal block X2A AIC module


Digital inputs and outputs								
Function	Default setting	Pin		Pin	Function			
Digital input DI4	Reset, unchangeable	16		15	0 V			
Digital input DI3	Prog. error, unchangeable	14	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	13	0V			
Digital input DI2	Release AIC/Reset, unchangeable	12	200=	11	0V			
Digital input DI1	Precharging complet- ed, unchangeable	10		9	0V			
Digital output DO4	Not preset	8		7	0V			
Digital output DO3	Not preset	6		5	0V			
Digital output DO 2	Ready for operation, changeable	4		3	0V			
Digital output DO 1	Start pre-charge, unchangeable	2		1	0V			
Figure 40: Assignment of the	e terminal block X2A AIC	modu	ile					

4.4.4.3 Assignment of the terminal block X2A charging module


Digital inputs and outputs								
Function	Default setting	Pin		Pin	Function			
Digital input DI4	Not preset	16		15	24 V/<0.7 Adc			
Digital input DI3	Not preset	14	1 <u>2002</u>	13	24 V/<0.7 Adc			
Digital input DI2	Not preset	12	<u> </u>	11	24 V/<0.7 Adc			
Digital input DI1	Start precharging, unchangeable	10	2002	9	24 V/<0.7 Adc			
Digital output DO4	Not preset	8		7	0V			
Digital output DO3	Not preset	6		5	0V			
Digital output DO 2	Supply failure, unchangeable	4	4000	3	ov			
Digital output DO 1	Precharging completed (main contactor active), unchangeable	2		1	0V			
Figure 41: Assignment of the terminal block X2A charging module								


4.4.4.4 Connection of the digital inputs

4.4.4.5 Connection of the digital outputs

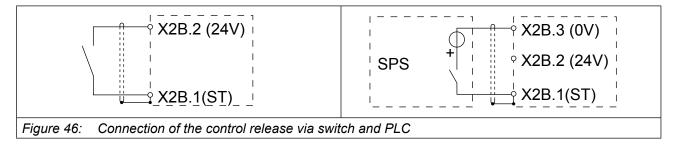
4.4.4.6 Example for the control of digital inputs and digital outputs

4.5 Safety modules terminal block X2B (not for charging module)

4.5.1 Module type 0 terminal block X2B

Module type 0 is used for switching the control release and brake control release if no safety requirements are made.

	Pin	Name	Description		
112	4	BR	no function		
8	3	0V	Mass		
63	2	24V	24 V output (IN = 100 mA)		
	1	ST	Control release		
	Assembly and cable cross-sections => "4.4.4.1 Assembly of the wires to PUSH IN terminals".				


Figure 45: Safety module type 0 terminal block X2B (top view)

The digital inputs are specified in accordance with IEC61131-2 Type 3.

Status "0"	Status "1"	
-35V	1130 V	

4.5.2 Control release

The driver modules of the power modules are supplied with voltage by switching the control release.

5 Cooling System

5.1 Safety instructions for the use of liquid heat sinks

A CAUTION

High temperatures at heat sink and coolant!

Burns of the skin

- ► Cover hot surfaces safe-to-touch.
- ▶ If necessary, attach warning signs on the system.
- ▶ Before touching, check surface and coolant lines.
- ▶ Before working let the unit cool down.

NOTICE

Keep electrochemical processes low!

▶ In the case of water cooling, ensure an appropriate conductor cross-section for equipotential bonding.

5.2 Start-Up

5.2.1 Flushing the cooling circuit

In order to vent the system beforehand, it is necessary to flush the cooling circuit. To do this

- first check the tightness of the cooling circuit.
- Check valves and pumps for function.
- · Open the shut-off valves, if available.
- Open solenoid valve manually.

The times of the flushing process can be found in the table.

Volume flow / I/min	Time / s	
5	10	
10	5	
15	2	
Table 19: Flushing time for venting the cooling circuit		

NOTICE

Observe flushing time!

➤ A flushing time of 10 seconds must not be exceeded, as condensation can already occur at very low flow temperatures.

5.3 Decommissioning and storage

In order to avoid deposits and corrosion, the cooling circuit must be completely emptied if it is switched off or stored for a longer period of time. If there is a risk of frost, the cooling circuit must be blown out with compressed air.

5.4 Installation of water-cooled devices

Water-cooled drive controllers are operated in continuous operation with lower temperature than air-cooled devices. This has positive effects on lifetime-relevant components such as fan and DC link capacitors and power modules (IGBT). Also the temperature dependent switching losses are positively effected. The use of water-cooled KEB COMBIVERT drive controllers is offered in the drive technology, because there are process-caused coolants available with some applications. The following instructions must be observed absolutely when this units are used.

5.4.1 Heat sink and operating pressure

Design system	Material (voltage)	Max. operating pressure	Connecting duct	
Extrusion casting heat sink	Aluminium (-1.67 V)	10 bar	0000650-G140	

The heat sinks are sealed by sealing rings and also have surface protection (anodized) in the channels.

NOTICE

Maximum operating pressure

The heat sink is permitted for a pressure or leak test upto 2-fold, maximum operating pressure. An UL acceptance with 5-fold, maximum operating pressure was executed. Pay attention to the guidelines 97/23/EC of pressure units.

5.4.2 Materials in the cooling circuit

For the screw connections and also for the metallic articles in the cooling circuit which are in contact with the coolant (electrolyte) a material is to be selected, which forms a small voltage difference to the heat sink in order to avoid contact corrosion and/or pitting corrosion (electro-chemical voltage series, see table). An aluminum screw connection or ZnNi coated steel screw connection is recommended. Other materials must be examined in each case before employment. The specific case of application must be checked by the customer in tuning of the complete cooling circuit and must be classified according to the used materials. With hoses and seals take care that halogen-free materials are used.

A liability for occuring damages by wrongly used materials and from this resulting corrosion cannot be taken over!

Material	Generated Ion	Standard poten- tial	Material	Generated Ion	Standard potential	
Lithium	Li ⁺	-3.04 V	Cobald	Co ²⁺	-0.28 V	
Potassium	K ⁺	-2.93 V	Nickel	Ni ²⁺	-0.25 V	
Calcium	Ca ²⁺	-2.87 V	Tin	Sn ²⁺	-0.14 V	
continued on the next page						

Material	Generated Ion	Standard poten- tial	Material	Generated Ion	Standard poten- tial		
Sodium	Na⁺	-2.71V	Lead	Pb ³⁺	-0.13 V		
Magnesium	um Mg ²⁺ -2.3		Iron	Fe ³⁺	-0.037 V		
Titan	Ti ²⁺	-1.75 V	Hydrogen	2H⁺	0.00 V		
Aluminium	Al ³⁺	-1.67 V	Copper	Cu ²⁺	0.34 V		
Manganese	Mn ²⁺	-1.05 V	Carbon	C ²⁺	0.74 V		
Zinc	Zn ²⁺	-0.76 V	Silver	Ag⁺	0.80 V		
Chrome	Cr ³⁺	-0.71V	Platinum	Pt ²⁺	1.20 V		
Iron	Fe ²⁺	-0.44 V	Gold	Au ³⁺	1.42 V		
Cadmium	Cd ²⁺	-0.40 V	Gold	Au⁺	1.69 V		
Table 20: Electrochemical series / standard potentials against hydrogen							

5.4.3 Requirements on the coolant

The requirements on the coolant are depending on the ambient conditions, as well as from the used cooling system. General requirements on the coolant:

Requirements	Description				
VGB Coolant-Guide- lines	The VGB cooling water guideline (<i>VGB R 455 P</i>) contains instructions about common process technology of the cooling. Particularly the interactions between cooling water and components of the cooling system are described.				
Suspended particles	The size and the proportion of suspended particles in the cooling water should not exceed the following values: <100 μ m <10 mg per liter. Water filters can offer a remedy.				
pH-value	Aluminum is particularly corroded by lixiviums and salts. The optimal pH-value for aluminum should be in the range of 7.5 8.0.				
Abrasive substances	Abrasive substances as used in abrasive (quartz sand), clogging the cooling circuit.				
Copper cuttings	Copper cuttings can attach the aluminum and this leads to a galvanic corrosion. Copper should not be used together with aluminum due to electro-chemical voltage difference.				
Hard water	Cooling water may not cause scale deposits or loose excretions. It should have a low total hardness (<20 °dH) especially carbon hardness.				
Soft water	Soft water (<7 °dH) corrodes the material.				
Frost protection	An appropriate antifreeze must be used for applications when the heat sink or th coolant is exposed temperatures below zero. Use only products of one manufacturer for a better compatibility with other additives.				
Corrosion protection	Additives can be used as corrosion protection. In connection with frost protection the antifreeze must have a concentration of 2025 Vol %, in order to avoid a change of the additives.				
Table 21: Requiremen	nts on the coolant				

NOTICE

Corrosion at the heat sink! Do not use pure water for cooling!

- ► Mandatory use of corrosion protection inhibitors.
- ▶ Use an antifreeze / glycol mixture for use below 0 °C.

COOLING SYSTEM

5.4.3.1 Special requirements for open and half-open cooling systems:

Requirements	Description					
Impurities	Mechanical impurities in half-open cooling systems can be counteracted when appropriate water filters are used.					
Salt concentration	The salt content can increase through evaporation at half-open systems. The the water is more corrosive. Adding of fresh water and removing of process wat works against.					
Algae and myxobacteria	Algae and myxobacteria can arise caused by increased water temperature and contact with atmospheric oxygen. The algae and myxobacteria clog the filters and obstruct the water-flow. Biocide containing additives can avoid this. Especially at longer off periods of the cooling circuit preventive maintenance is necessary.					
Organic materials	The contamination with organic materials must be kept as small as possible, because separate slime can be caused by this.					
Table 22: Special requirements for open and semi-open cooling systems						

NOTICE

Loss of the warranty claims

Damages at the unit which are caused by clogged, corroded heat sinks or other obvious operating errors, leads to the loss of the warranty claims.

5.4.4 Connection to the cooling system

- Screw in connecting duct in accordance with the manual.
- The connection to the coolant must be carried out with flexible, pressure-resistant hoses and secured with clamps.
- Pay attention to flux direction and check tightness!
- The cooling flow must always be started before starting the KEB COMBIVERT.

The connection to the cooling system can occur as closed or open cooling circuit. The connection to a closed cycle cooling circuit is recommended, because the danger of contamination of coolant is very small. Preferably also a monitoring of the pH value of the coolant should be installed. Pay attention to a corresponding conductor cross-section at required equipotential bonding in order to avoid electro-chemical procedures.

5.4.5 Coolant temperature and moisture condensation

The inlet temperature may not exceed 40 °C. The maximum heat sink temperature is 60 °C or 80 °C depending on the power unit and overload capacity. To ensure a safe operation the coolant output temperature must be 10 K below this temperature.

Due to high air humidity and high temperatures it can lead to moisture condensation. Moisture condensation is dangerous for the drive controller, because the drive controller can be destroyed through eventual occurring short-circuits.

NOTICE

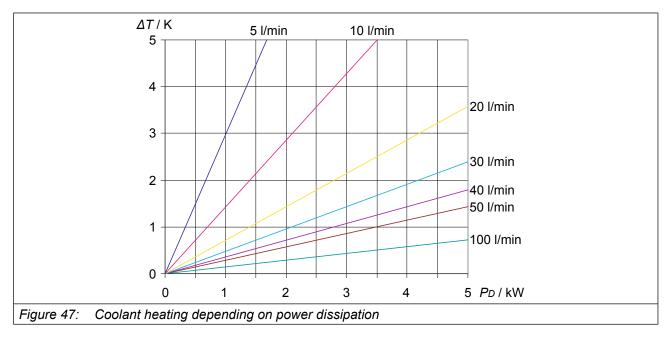
Destruction of the drive controller by short circuit!

The user must guarantee that any moisture condensation is avoided!

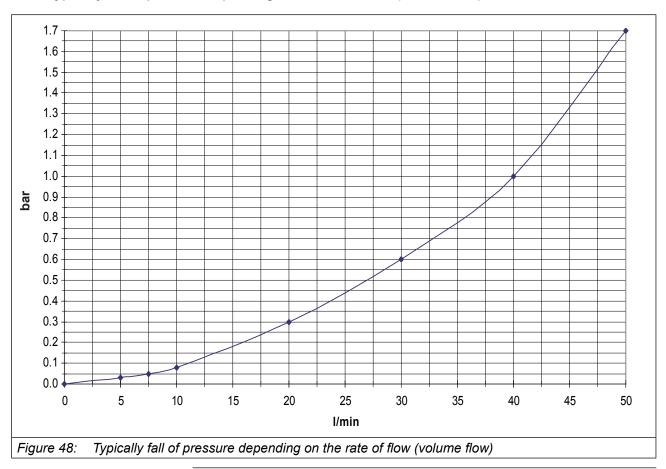
The following dew point table is used to determine the permissible temperature differences. The table shows the coolant inlet temperature depending on ambient temperature and air humidity.

Air humidity in 9	6 10	20	30	40	50	60	70	80	90	100
Ambient										
temperature in °C										
-25	-45	-40	-36	-34	-32	-30	-29	-27	-26	-25
-20	-42	-36	-32	-29	-27	-25	-24	-22	-21	-20
-15	-37	-31	-27	-24	-22	-20	-18	-16	-15	-15
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11	-10
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6	-5
0	-26	-19	-14	-11	-8	-6	-4	-3	-2	0
5	-23	-15	-11	-7	-5	-2	0	2	3	5
10	-19	-11	-7	-3	0	1	4	6	8	9
15	-18	-7	-3	1	4	7	9	11	13	15
20	-12	-4	1	5	9	12	14	16	18	20
25	-8	0	5	10	13	16	19	21	23	25
30	-6	3	10	14	18	21	24	26	28	30
35	-2	8	14	18	22	25	28	31	33	35
40	1	11	18	22	27	31	33	36	38	40
45	4	15	22	27	32	36	38	41	43	45
50	8	19	28	32	36	40	43	45	48	50
Table 23: Dew point table										

To avoid condensation, the following options are available:


- Supply of temper coolant
- Coolant control

Further information can be found under the following link:



5.4.6 Coolant heating depending on power dissipation and flow rate with water

5.4.7 Typically fall of pressure depending on the rate of flow (volume flow)

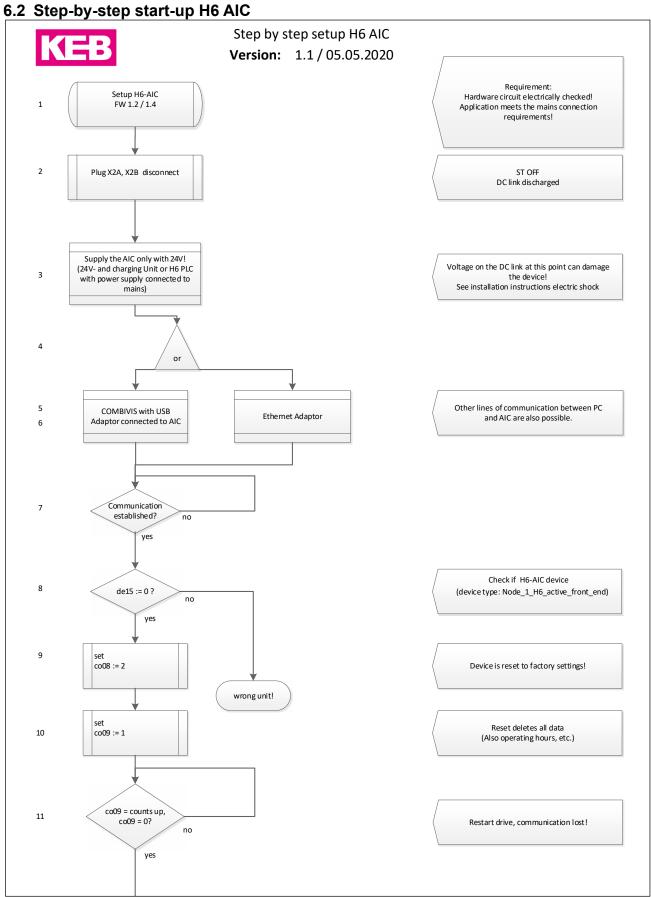
In order to monitor the flow in the cooling system, KEB recommends the use of a flow monitor.

6 Start-Up

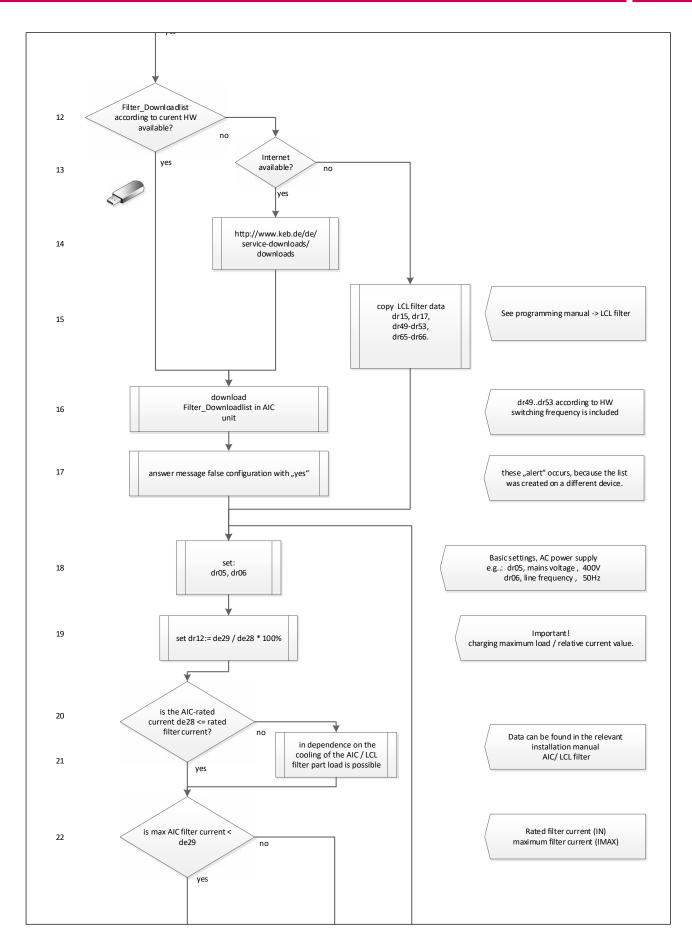
NOTICE

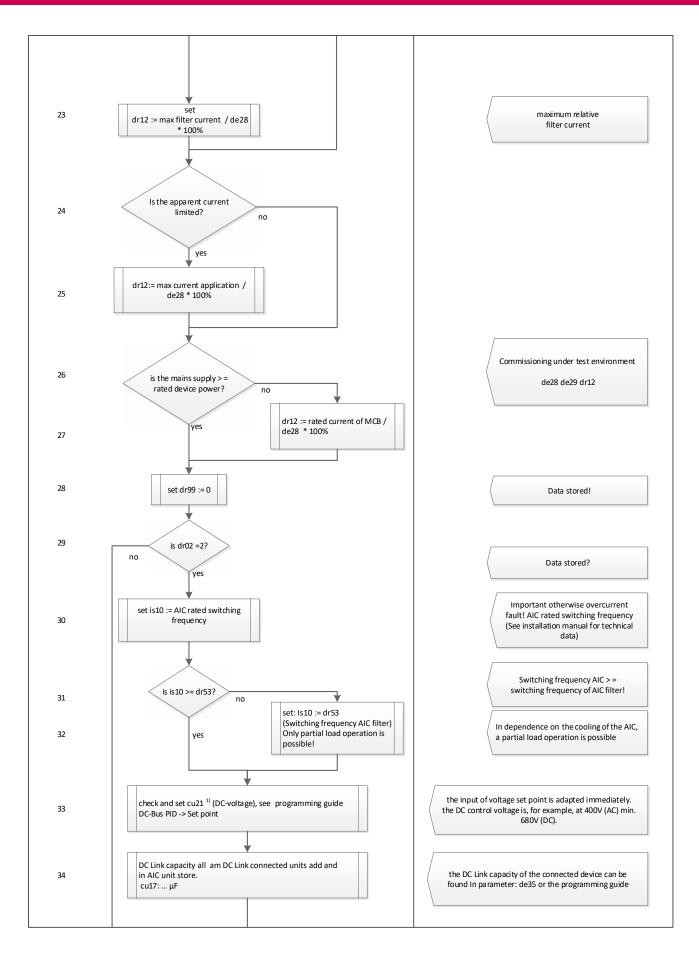
Avoidance of hardware damage!

In order to avoid hardware damage it is absolutely necessary to parameterize the initial settings before switching on the AC voltage for the first time!

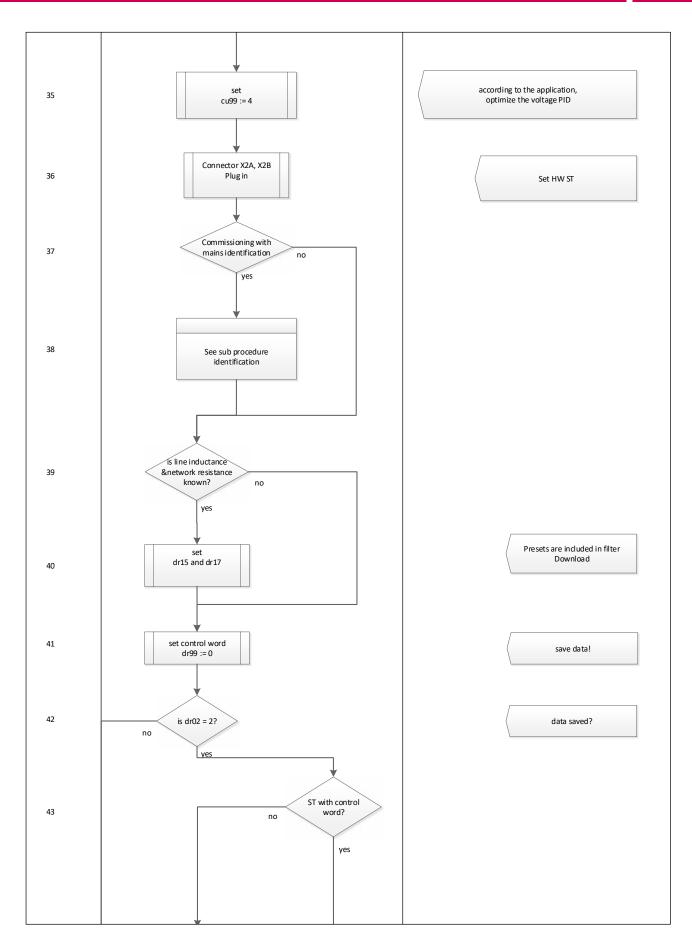

Further information about start-up => "6.2 Step-by-step start-up H6 AIC".

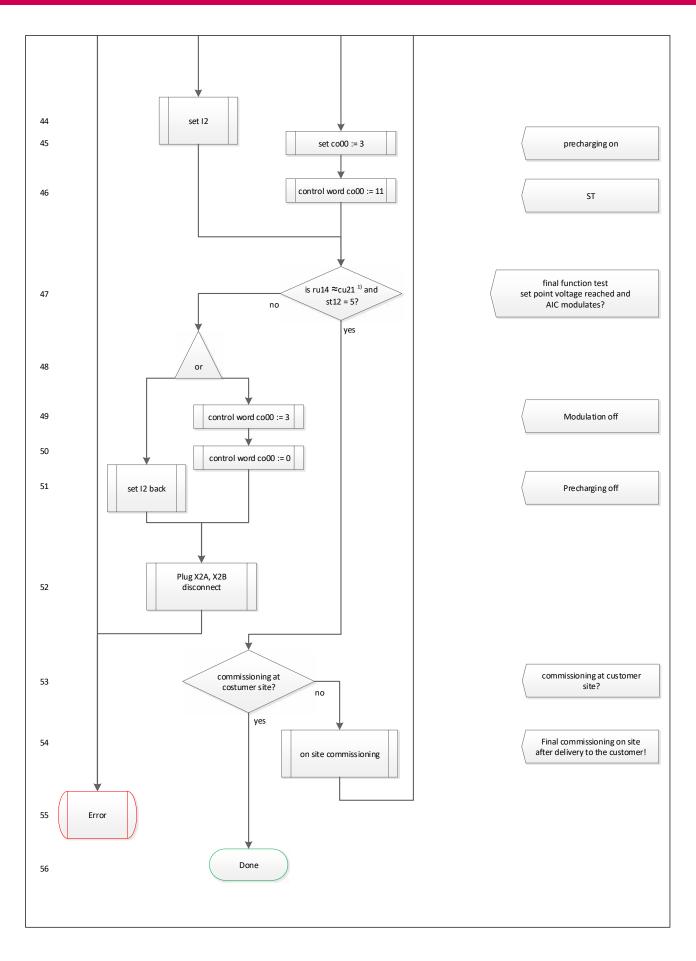
6.1 Default setting

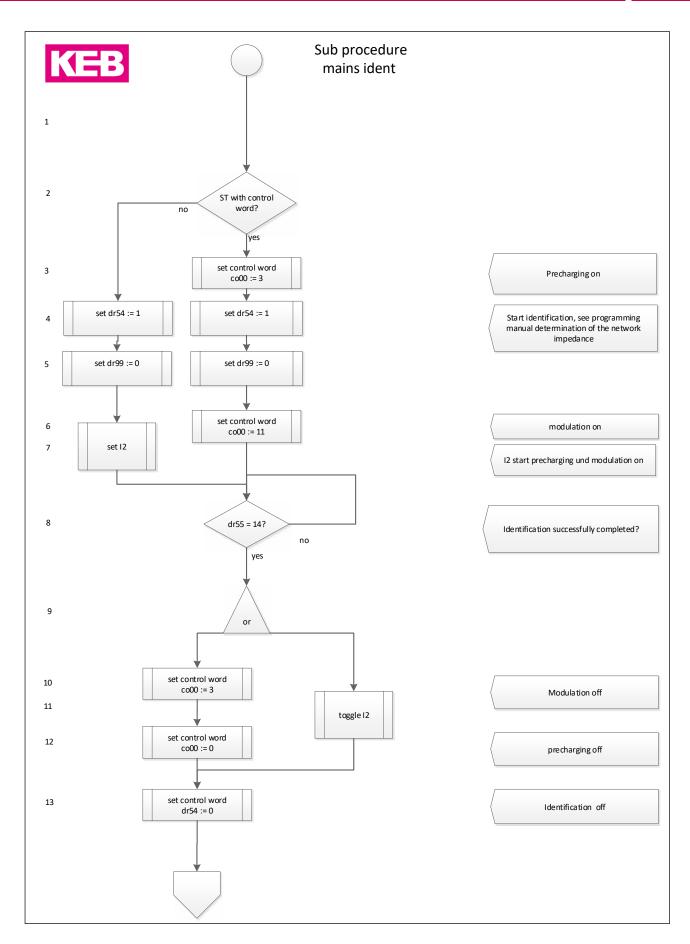

The COMBIVERT H6 AIC is an universally applicable power supply / regenerative unit that requires an individual adjustment of the basic settings depending on the mains supply, used filters and the connected devices.

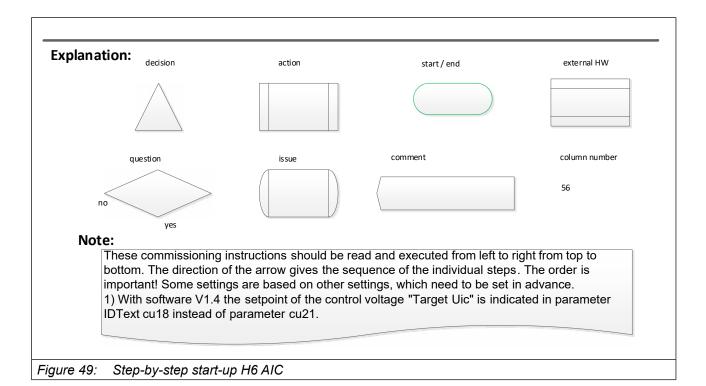


The appropriate COMBIVIS files can be downloaded from www.keb.de under the search term "Download H6 AFE Filter".









7 Certification

7.1 CE-Marking

CE marked drive controllers have been developed and manufactured in accordance with the regulations of the Low Voltage Directive and EMC Directive. The harmonised standards of the series *EN* 61800-5-1 and *EN* 61800-3 are applied.

For more information on the CE declarations of conformity

=> "7.3 Further informations and documentation".

7.2 UL Marking

- In preparation -

7.3 Further informations and documentation

You find supplementary manuals and instructions for the download under www.keb.de/de/service/downloads

General instructions

- EMC and safety instructions
- Manuals for additional control boards, safety modules, fieldbus modules, etc.

Instruction and information for construction and development

- · Input fuses in accordance with UL
- Programming manual for control and power unit
- Motor configurator to select the appropriate drive converter and to create downloads for parameterizing the drive converter

Approvals and approbations

- Declaration of conformity CE
- TÜV certificate
- · FS certification

Others

- COMBIVIS, the software for comfortable parameterization of drive converters via PC (available per download)
- EPLAN drawings

8 Revision History

Version	Date	Description
00	2015-10	Completion Pre-series
01	2016-08	Heatsink concepts, wrong terminal
02	2017-09	New CI, general revision, linkage with InCopy components
03	2018-05	Editorial changes
04	2019-06	Product description adapted, updates have been made
05	2020-05	Change of the assignment table for the filters and the flow chart
06	2021-03	Renaming of Active Front End (AFE) to Active Infeed Converter (AIC); general revisions
07	2022-01	Adaptation of the general safety instructions and various circuit diagrams

NOTES

Austria | KEB Automation GmbH Ritzstraße 8 4614 Marchtrenk Austria Tel: +43 7243 53586-0 Fax: +43 7243 53586-21 E-Mail: info@keb.at Internet: www.keb.at

Benelux | KEB Automation KG

Dreef 4 - box 4 1703 Dilbeek Belgium

Tel: +32 2 447 8580

E-Mail: info.benelux@keb.de Internet: www.keb.de

Brazil | KEB South America - Regional Manager
Rua Dr. Omar Pacheco Souza Riberio, 70
CEP 13569-430 Portal do Sol, São Carlos Brazil
Tel: +55 16 31161294 E-Mail: roberto.arias@keb.de

Czech Republic | KEB Automation GmbH Videnska 188/119d 61900 Brno Czech Republic Tel: +420 544 212 008 E-Mail: info@keb.cz Internet: www.keb.cz

France | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel
94510 La Queue en Brie France
Tel: +33 149620101 Fax: +33 145767495

E-Mail: info@keb.fr Internet: www.keb.fr

Germany | Geared Motors

KEB Antriebstechnik GmbH
Wildbacher Straße 5 08289 Schneeberg Germany
Telefon +49 3772 67-0 Telefax +49 3772 67-281
Internet: www.keb-drive.de E-Mail: info@keb-drive.de

Italy | KEB Italia S.r.I. Unipersonale
Via Newton, 2 20019 Settimo Milanese (Milano) Italia
Tel: +39 02 3353531 Fax: +39 02 33500790
E-Mail: info@keb.it Internet: www.keb.it

 Japan | KEB Japan Ltd.

 15 - 16, 2 - Chome, Takanawa Minato-ku Tokyo 108 - 0074 Japan

 Tel: +81 33 445-8515 Fax: +81 33 445-8215

 E-Mail: info@keb.jp Internet: www.keb.jp

P. R. China | KEB Power Transmission Technology (Shanghai) Co. Ltd.
 No. 435 QianPu Road Chedun Town Songjiang District
 201611 Shanghai P.R. China
 Tel: +86 21 37746688 Fax: +86 21 37746600
 E-Mail: info@keb.cn Internet: www.keb.cn

Poland | KEB Automation KG

Tel: +48 60407727

E-Mail: roman.trinczek@keb.de Internet: www.keb.de

Republic of Korea | KEB Automation KG

Deoksan-Besttel 1132 ho Sangnam-ro 37

Seongsan-gu Changwon-si Gyeongsangnam-do Republic of Korea
Tel: +82 55 601 5505 Fax: +82 55 601 5506

E-Mail: jaeok.kim@keb.de Internet: www.keb.de

Russian Federation | KEB RUS Ltd. Lesnaya str, house 30 Dzerzhinsky MO 140091 Moscow region Russian Federation Tel: +7 495 6320217 Fax: +7 495 6320217 E-Mail: info@keb.ru Internet: www.keb.ru

Spain | KEB Automation KG
c / Mitjer, Nave 8 - Pol. Ind. LA MASIA
08798 Sant Cugat Sesgarrigues (Barcelona) Spain
Tel: +34 93 8970268 Fax: +34 93 8992035 E-Mail: vb.espana@keb.de

Switzerland | KEB Automation AGWitzbergstrasse 248330 Pfaeffikon/ZHSwitzerlandTel: +41 43 2886060Fax: +41 43 2886088E-Mail: info@keb.chInternet: www.keb.ch

United Kingdom | KEB (UK) Ltd.
5 Morris Close | Park Farm Indusrial Estate
Wellingborough, Northants, NN8 6 XF | United Kingdom
Tel: +44 1933 402220 | Fax: +44 1933 400724
E-Mail: info@keb.co.uk | Internet: www.keb.co.uk

United States | KEB America, Inc
5100 Valley Industrial Blvd. South
Shakopee, MN 55379 United States
Tel: +1 952 2241400 Fax: +1 952 2241499
E-Mail: info@kebamerica.com Internet: www.kebamerica.com

MORE KEB PARTNERS WORLDWIDE:

Automation with Drive

www.keb.de

KEB Automation KG Suedstrasse 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de