

COMBIVERT F6

GEBRAUCHSANLEITUNG | INSTALLATION F6 GEHÄUSE 4

Originalanleitung Dokument 20116235 DE 06

Vorwort

Die beschriebene Hard- und / oder Software sind Produkte der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

A GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

A WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

Weitere Symbole

- Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Hinweis auf weiterführende Dokumentation.

www.keb.de/nc/de/suche

Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit der EU-Konformitätserklärung und dem CE-Zeichen auf dem Gerätetypenschild, dass es den grundlegenden Sicherheitsanforderungen entspricht.

Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden.

Gewährleistung und Haftung

Die Gewährleistung und Haftung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den allgemeinen Verkaufsbedingungen zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen. www.keb.de/de/agb

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über den bestimmungsgemäßen Gebrauch. Sie gelten jedoch nur als unverbindliche Hinweise und Änderungen sind insbesondere aufgrund von technischen Änderungen ausdrücklich vorbehalten. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter. Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der bestimmungsgemäßen Endverwendung des Produktes (Applikation) vom Kunden erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Dieses KEB-Produkt oder Teile davon können fremde Software, inkl. Freier und/oder Open Source Software enthalten. Sofern einschlägig, sind die Lizenzbestimmungen dieser Software in den Gebrauchsanleitungen enthalten. Die Gebrauchsanleitungen liegen Ihnen bereits vor, sind auf der Website von KEB zum Download frei verfügbar oder können bei dem jeweiligen KEB-Ansprechpartner gerne angefragt werden.

Andere Wort- und/oder Bildmarken sind Marken (™) oder eingetragene Marken (®) der jeweiligen Inhaber.

Inhaltsverzeichnis

	Vorwort	3
	Signalwörter und Auszeichnungen	3
	Weitere Symbole	3
	Gesetze und Richtlinien	4
	Gewährleistung und Haftung	4
	Unterstützung	4
	Urheberrecht	4
	Inhaltsverzeichnis	5
	Abbildungsverzeichnis	10
	Tabellenverzeichnis	12
	Glossar	
	Normen für Antriebsstromrichter	16
	Produktnormen, die direkt für den Antriebsstromrichter gelten:	16
	Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:	16
	Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:	17
1	Grundlegende Sicherheitshinweise	. 18
	1.1 Zielgruppe	
	1.2 Transport, Lagerung und sachgemäße Handhabung	
	1.3 Einbau und Aufstellung	19
	1.4 Elektrischer Anschluss	20
	1.4.1 EMV-gerechte Installation	21
	1.4.2 Spannungsprüfung	21
	1.4.3 Isolationsmessung	21
	1.5 Inbetriebnahme und Betrieb	22
	1.6 Wartung	23
	1.7 Instandhaltung	24
	1.8 Entsorgung	24
2	Produktbeschreibung	. 25
	2.1 Bestimmungsgemäßer Gebrauch	
	2.1.1 Restgefahren	
	2.2 Nicht bestimmungsgemäßer Gebrauch	
	2.3 Produktmerkmale	
	2.4 Typenschlüssel	27
	2.5 Typenschild	29
	2.5.1 Konfigurierbare Optionen	30

INHALTSVERZEICHNIS

3	Technische Daten	31
	3.1 Betriebsbedingungen	31
	3.1.1 Klimatische Umweltbedingungen	
	3.1.2 Mechanische Umweltbedingungen	
	3.1.3 Chemisch/Mechanisch aktive Stoffe	
	3.1.4 Elektrische Betriebsbedingungen	
	3.1.4.1 Geräteeinstufung	
	3.1.4.2 Elektromagnetische Verträglichkeit	
	3.2 Gerätedaten der 230V-Geräte	
	3.2.1 Übersicht der 230V-Geräte	34
	3.2.2 Spannungs- und Frequenzangaben für 230 V-Geräte	35
	3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V	36
	3.2.3 Ein- und Ausgangsströme / Überlast für 230V-Geräte	36
	3.2.3.1 Überlastcharakteristik (OL) für 230V-Geräte	37
	3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230V-Geräte	39
	3.2.4 Verlustleistung bei Bemessungsbetrieb für 230V-Geräte	41
	3.2.5 Absicherung der Antriebsstromrichter für 230V-Geräte	42
	3.3 Gerätedaten der 400V-Geräte	43
	3.3.1 Übersicht der 400V-Geräte	43
	3.3.2 Spannungs- und Frequenzangaben für 400 V-Geräte	44
	3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V	45
	3.3.3 Ein- und Ausgangsströme/ Überlast für 400V-Geräte	45
	3.3.3.1 Überlastcharakteristik (OL) für 400V-Geräte	46
	3.3.3.2 Frequenzabhängiger Maximalstrom (OL2) 400V-Geräte	48
	3.3.4 Verlustleistung bei Bemessungsbetrieb 400 V-Geräte	52
	3.3.5 Absicherung der Antriebsstromrichter 400 V-Geräte	52
	3.4 Allgemeine elektrische Daten	53
	3.4.1 Schaltfrequenz und Temperatur	53
	3.4.2 DC-Zwischenkreis / Bremstransistorfunktion	54
	3.4.2.1 DC-Zwischenkreis / Bremstransistorfunktion der 230V-Geräte	55
	3.4.2.2 DC-Zwischenkreis / Bremstransistorfunktion der 400V-Geräte	
	3.4.3 Lüfter	56
	3.4.3.1 Schaltverhalten der Lüfter	57
	3.4.3.2 Schaltpunkte der Lüfter	57
	3.5 Gerätedaten der Lift-Geräte	
	3.5.1 Übersicht der Lift-Geräte	
	3.5.2 Spannungs- und Frequenzangaben für 400 V-Geräte	59
	3.5.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V	60
	3.5.3 Ein- und Ausgangsströme/ Überlast für Lift-Geräte	
	3.5.3.1 Überlastcharakteristik (OL) für Lift-Geräte	
	3.5.3.2 Frequenzabhängiger Maximalstrom (OL2) Lift-Geräte	
	3.5.4 Verlustleistung bei Bemessungsbetrieb Lift-Geräte	65

	3.5.5 Absicherung der Antriebsstromrichter Lift-Geräte	66
	3.6 Allgemeine elektrische Daten	67
	3.6.1 Schaltfrequenz und Temperatur der Lift-Geräte	67
	3.6.2 DC-Zwischenkreis / Bremstransistorfunktion	68
	3.6.2.1 DC-Zwischenkreis / Bremstransistorfunktion der Lift-Geräte	69
	3.6.3 Lüfter	69
	3.6.3.1 Schaltverhalten der Lüfter	70
	3.6.3.2 Schaltpunkte der Lüfter	70
4	Einbau	71
	4.1 Abmessungen und Gewichte	71
	4.1.1 Einbauversion Luftkühler	71
	4.1.2 Einbauversion Fluidkühler (Wasser)	72
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready	73
	4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready	74
	4.1.5 Durchsteckversion Fluidkühler (Öl) IP54-ready	75
	4.2 Schaltschrankeinbau	76
	4.2.1 Befestigungshinweise	76
	4.2.2 Einbauabstände	77
	4.2.3 Montage von IP54-ready Geräten	78
	4.2.4 Schaltschranklüftung	79
	4.2.5 Luftströme der F6 Antriebsstromrichter	80
5	Installation und Anschluss	81
	5.1 Übersicht des COMBIVERT F6	81
	5.2 Anschluss des Leistungsteils	
	5.2.1 Anschluss der Spannungsversorgung	84
	5.2.1.1 Klemmleiste X1A	
	5.2.2 Schutz- und Funktionserde	86
	5.2.2.1 Schutzerdung	86
	5.2.2.2 Funktionserdung	86
	5.2.3 AC-Netzanschluss	87
	5.2.3.1 AC-Versorgung 3-phasig	87
	5.2.3.2 Netzzuleitung	87
	5.2.3.3 Hinweis zu harten Netzen	88
	5.2.4 DC-AnschlussKlemmleiste X1A DC-Anschluss	89
	5.2.4.1 Klemmleiste X1A DC-Anschluss	89
	5.2.5 Anschluss des Motors	90
	5.2.5.1 Verdrahtung des Motors	90
	5.2.5.2 Klemmleiste X1A Motoranschluss	91
	5.2.5.3 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung	92
	5.2.5.4 Auswahl der Motorleitung	92

INHALTSVERZEICHNIS

	5.2.5.5 Motorleitungslänge bei Parallelbetrieb von Motoren	93
	5.2.5.6 Motorleitungsquerschnitt	93
	5.2.5.7 Verschaltung des Motors	93
	5.2.5.8 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)	94
	5.2.6 Anschluss und Verwendung von Bremswiderständen	96
	5.2.6.1 Klemmleiste X1A Anschluss Bremswiderstand	97
	5.2.6.2 Verwenfung eigensicherer Bremswiderstände	98
	5.2.6.3 Verwendung eines nicht eigensicheren Bremswiderstands	98
	5.3 Zubehör	
	5.3.1 Filter und Drosseln	99
	5.3.2 Schirmauflageblech Anbausatz	99
	5.3.3 Dichtung IP54-ready Geräte	99
	5.3.4 Kühlmittelanschlüsse	99
	5.3.5 Nebenbaubremswiderstände	100
C	Patriah van flüggigkeitegekühlten Caröten	404
O	Betrieb von flüssigkeitsgekühlten Geräten	
	6.1 Wassergekühlte Geräte	
	6.1.1 Kühlkörper und Betriebsdruck	
	6.1.2 Materialien im Kühlkreislauf	
	6.1.3 Anforderungen an das Kühlmittel	
	6.1.4 Anschluss des Wasserkühlsystems	
	6.1.5 Kühlmitteltemperatur und Betauung	
	6.1.5.1 Betauung	
	6.1.5.2 Zuführung temperierter Kühlflüssigkeit.	
	6.1.6 Zulässiger Volumenstrom bei Wasserkühlung	
	6.1.7 Kühlmittelerwärmung	
	6.1.8 Typischer Druckverlust des Kühlkörpers	
	6.2 Ölgekühlte Geräte	
	6.2.1 Kühlkörper und Betriebsdruck für ölgekühlte Geräte	
	6.2.2 Anforderungen an das Öl	
	6.2.3 Anschluss des Ölkühlsystems	
	6.2.4 Zulässiger Volumenstrom bei Öl	
	6.2.5 Kühlmitteltemperatur und Betauung bei Öl	
	6.2.5.1 Betauung	
	6.2.5.2 Zuführung temperiertes Öl	
	6.1.6 Zulässiger Volumenstrom bei Wasserkühlung	
	6.1.7 Kühlmittelerwärmung	
	6.1.8 Typischer Druckverlust des Kühlkörpers	
	6.2.1 Kühlkörper und Betriebsdruck für ölgekühlte Geräte	
	6.2.2 Anforderungen an das Öl	
	6.2.3 Anschluss des Ölkühlsystems	
	0.2.0 AHSUHUSS UGS OKUHISYSISHIS	110

INHALTSVERZEICHNIS

	6.2.4 Zulässiger Volumenstrom bei Öl	110
	6.2.5 Kühlmitteltemperatur und Betauung bei Öl	111
	6.2.5.1 Betauung	111
	6.2.5.2 Zuführung temperiertes Öl	
7	Zertifizierung	113
	7.1 CE-Kennzeichnung	113
	7.2 UL-Zertifizierung	114
	7.3 Weitere Informationen und Dokumentation	115
8	Änderungshistorie	116

Abbildungsverzeichnis

Abbildung 1:	Typenschild	29
Abbildung 2:	Konfigurierbare Optionen	30
Abbildung 3:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC Level 180 % (OL)	38
Abbildung 4:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 18er-Gerät	40
Abbildung 5:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC Level 180 % (OL)	47
Abbildung 6:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 19er-Gerät	
Abbildung 7:	Blockschaltbild des Energieflusses	54
Abbildung 8:	Schaltverhalten der Lüfter Beispiel Kühlkörperlüfter	57
Abbildung 9:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC Level 270 % (OL)	62
Abbildung 10:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. Lift-Gerät	64
Abbildung 11:	Blockschaltbild des Energieflusses	68
Abbildung 12:	Schaltverhalten der Lüfter Beispiel Kühlkörperlüfter	70
Abbildung 13:	Abmessungen Einbauversion Luftkühler	71
Abbildung 14:	Abmessungen Einbauversion Fluidkühler (Wasser)	72
Abbildung 15:	Abmessungen Durchsteckversion Luftkühler IP20, IP54-ready	73
Abbildung 16:	Abmessungen Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready	74
Abbildung 17:	Abmessungen Durchsteckversion Fluidkühler (Öl) IP54-ready	75
Abbildung 18:	Einbauabstände	77
Abbildung 19:	Montage von IP54-ready Geräten	78
Abbildung 20:	Schaltschranklüftung	79
Abbildung 21:	Luftströme der Lüfter	80
Abbildung 22:	F6 Gehäuse 4 Draufsicht	81
Abbildung 23:	F6 Gehäuse 4 Vorderansicht	82
Abbildung 24:	F6 Gehäuse 4 Rückansicht mit Steuerkarte KOMPAKT	83
Abbildung 25:	Eingangsbeschaltung	84
Abbildung 26:	Klemmleiste X1A	
Abbildung 27:	Anschluss für Schutzerde	86
Abbildung 28:	Anschluss der Netzversorgung 3-phasig	87
Abbildung 29:	Klemmleiste X1A DC-Anschluss	89
Abbildung 30:	Verdrahtung des Motors	90
Abbildung 31:	Klemmleiste X1A Motoranschluss	91
Abbildung 32:	Symmetrische Motorleitung	92
Abbildung 33:	Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT	94
Abbildung 34:	Klemmleiste X1C für Steuerkarte PRO	94
Abbildung 35:	Anschluss der Bremsenansteuerung	95
Abbildung 36:	Anschluss eines KTY-Sensors	95
Abbildung 37:	Klemmleiste X1A Anschluss Bremswiderstand	97
Abbildung 38:	Verwendung eigensicherer Bremswiderstände	98
Abbildung 39:	Offene Rohrenden zum Anschluss des Wasserkühlsystems	104

ABBILDUNGSVERZEICHNIS

Abbildung 40:	Volumenstrom in Abhängigkeit von der Gesamtverlustleistung und Temperaturdiffe-	
_	renz bei Wasser-Glykolgemisch	107
Abbildung 41:	Typischer Druckverlust in Abhängigkeit des Volumenstroms	108
Abbildung 42:	Anschluss des Ölkühlsystems	110

TABELLENVERZEICHNIS

Tabellenverzeichnis

Tabelle 1:	Typenschlüssel	28
Tabelle 2:	Klimatische Umweltbedingungen	31
Tabelle 3:	Mechanische Umweltbedingungen	32
Tabelle 4:	Chemisch/Mechanisch aktive Stoffe	32
Tabelle 5:	Geräteeinstufung	33
Tabelle 6:	Elektromagnetische Verträglichkeit	33
Tabelle 7:	Übersicht der 230 V-Gerätedaten	35
Tabelle 8:	Eingangsspannungen und -frequenzen der 230 V-Geräte	35
Tabelle 9:	DC-Zwischenkreisspannung für 230 V-Geräte	35
Tabelle 10:	Ausgangsspannungen und -frequenzen der 230 V-Geräte	36
Tabelle 11:	Beispiel zur Berechnung der möglichen Motorspannung für 230 V	36
Tabelle 12:	Eingangsströme der 230V-Geräte	36
Tabelle 13:	Ausgangsströme 230 V-Geräte	36
Tabelle 14:	Frequenzabhängiger Maximalstrom für Gerätegröße 18	41
Tabelle 15:	Verlustleistung der 230V-Geräte	41
Tabelle 16:	Absicherungen der 230 V / 240 V-Geräte	42
Tabelle 17:	Übersicht der 400 V-Gerätedaten	
Tabelle 18:	Eingangsspannungen und -frequenzen der 400 V-Geräte	44
Tabelle 19:	DC-Zwischenkreisspannung für 400 V-Geräte	44
Tabelle 20:	DC-Zwischenkreisspannung für 400 V-Geräte	
Tabelle 21:	Beispiel zur Berechnung der möglichen Motorspannung für 400 V	
Tabelle 22:	Eingangsströme der 400 V-Geräte	45
Tabelle 23:	Ausgangsströme 400 V-Geräte	
Tabelle 24:	Frequenzabhängiger Maximalstrom für Gerätegröße 18	
Tabelle 25:	Frequenzabhängiger Maximalstrom für Gerätegröße 19	
Tabelle 26:	Frequenzabhängiger Maximalstrom für Gerätegröße 20	
Tabelle 27:	Frequenzabhängiger Maximalstrom für Gerätegröße 21	50
Tabelle 28:	Frequenzabhängiger Maximalstrom für Gerätegröße 22	51
Tabelle 29:	Verlustleistung der 400V-Geräte	52
Tabelle 30:	Absicherungen der 400 V / 480 V-Geräte	
Tabelle 31:	Schaltfrequenz und Temperatur	53
Tabelle 32:	DC-Zwischenkreis / Bremstransistorfunktion der 230V-Geräte	55
Tabelle 33:	DC-Zwischenkreis / Bremstransistorfunktion der 400V-Geräte	56
Tabelle 34:	Lüfter	56
Tabelle 35:	Schaltpunkte der Lüfter	57
Tabelle 36:	Übersicht der Lift-Gerätedaten	59
Tabelle 37:	Eingangsspannungen und -frequenzen der 400 V-Geräte	59
Tabelle 38:	DC-Zwischenkreisspannung für 400 V-Geräte	
Tabelle 39:	DC-Zwischenkreisspannung für 400 V-Geräte	
Tabelle 40:	Beispiel zur Berechnung der möglichen Motorspannung für 400 V	
Tabelle 41:	Eingangsströme der Lift-Geräte	
Tabelle 42:	Ausgangsströme Lift-Geräte	60
Tabelle 43:	Frequenzahhängiger Maximalstrom für Gerätegröße 19 Lift	65

TABELLENVERZEICHNIS

Tabelle 44:	Verlustleistung der Lift-Geräte	65
Tabelle 45:	Absicherungen der Lift-Geräte	66
Tabelle 46:	Schaltfrequenz und Temperatur für Lift-Geräte	67
Tabelle 47:	DC-Zwischenkreis / Bremstransistorfunktion der Lift-Geräte	69
Tabelle 48:	Lüfter	69
Tabelle 49:	Schaltpunkte der Lüfter	70
Tabelle 50:	Befestigungshinweise für Einbauversion	76
Tabelle 51:	Befestigungshinweise für Durchsteckversion	76
Tabelle 52:	Maximale Motorleitungslänge	92
Tabelle 53:	Filter und Drosseln für 230V-Geräte	99
Tabelle 54:	Filter und Drosseln für 400V-Geräte	99
Tabelle 55:	Schirmauflageblech Anbausatz	99
Tabelle 56:	Dichtung für IP54-ready Geräte	99
Tabelle 57:	Dichtung für IP54-ready Geräte	99
Tabelle 58:	Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff	102
Tabelle 59:	Anforderungen an das Kühlmittel	102
Tabelle 60:	Besondere Anforderungen bei offenen und halboffenen Kühlsystemen	103
Tabelle 61:	Taupunkttabelle	105
Tabelle 62:	Zulässiger Volumenstrom bei Wasserkühlung	106
Tabelle 63:	Anforderungen an das Öl	109
Tabelle 64:	Besondere Anforderungen bei offenen und halboffenen Kühlsystemen beim Öll	kühler. 109
Tabelle 65:	Zulässiger Volumenstrom beim Ölkühler	110
Tabelle 66:	Taupunkttabelle	112

Glossar

0V	Erdpotenzialfreier Massepunkt	FU	Antriebsstromrichter
1ph	1-phasiges Netz	Gebernachbil-	Softwaregenerierter Geberausgang
3ph	3-phasiges Netz	dung	
AC	Wechselstrom oder -spannung	GND	Bezugspotenzial, Masse
AFE	Ab 07/2019 ersetzt AIC die bisherige	GTR7	Bremstransistor
	Bezeichnung AFE	Hersteller	Der Hersteller ist KEB, sofern nicht
AFE-Filter	Ab 07/2019 ersetzt AIC-Filter die		anders bezeichnet (z.B. als Ma-
	bisherige Bezeichnung AFE-Filter		schinen-, Motoren-, Fahrzeug- oder
AIC	Active Infeed Converter		Klebstoffhersteller)
AIC-Filter	Filter für Active Infeed Converter	HF-Filter	Hochfrequenzfilter zum Netz
Applikation	Die Applikation ist die bestimmungs-	Hiperface	Bidirektionale Geberschnittstelle der
	gemäße Verwendung des KEB-		Fa. Sick-Stegmann
	Produktes	HMI	Visuelle Benutzerschnittstelle
ASCL	Geberlose Regelung von Asynchron-		(Touchscreen)
	motoren	HSP5	Schnelles, serielles Protokoll
Auto motor	Automatische Motoridentifikation;	HTL	Inkrementelles Signal mit einer Aus-
ident.	Einmessen von Widerstand und		gangsspannung (bis 30V) -> TTL
	Induktivität	IEC	Internationale Norm
AWG	Amerikanische Kodierung für Lei-	IP xx	Schutzart (xx für Level)
	tungsquerschnitte	KEB-Produkt	Das KEB-Produkt ist das Produkt
B2B	Business-to-business		welches Gegenstand dieser Anlei-
BiSS	Open-Source-Echtzeitschnittstelle		tung ist
	für Sensoren und Aktoren (DIN	KTY	Silizium Temperatursensor (gepolt)
	5008)	Kunde	Der Kunde hat ein KEB-Produkt von
CAN	Feldbussystem		KEB erworben und integriert das
CDM	Vollständiges Antriebsmodul inkl.		KEB-Produkt in sein Produkt (Kun-
	Hilfsausrüstung (Schaltschrank)		den-Produkt) oder veräußert das
COMBIVERT	KEB Antriebsstromrichter	MONA	KEB-Produkt weiter (Händler)
COMBIVIS	KEB Inbetriebnahme- und Paramet-	MCM	Amerikanische Maßeinheit für große Leitungsquerschnitte
DO	riersoftware	Modulation	Bedeutet in der Antriebstechnik,
DC	Gleichstrom oder -spannung	Modulation	dass die Leistungshalbleiter ange-
DI	Demineralisiertes Wasser, auch als		steuert werden
DIN	deionisiertes (DI) Wasser bezeichnet	MTTF	Mittlere Lebensdauer bis zum Ausfall
DIN	Deutsches Institut für Normung	NN	Normalnull
DS 402	CiA DS 402 - CAN-Geräteprofil für	Not-Aus	Abschalten der Spannungsversor-
ED	Antriebe Einschaltdauer	11017105	gung im Notfall
EMS	Energy Management System	Not-Halt	Stillsetzen eines Antriebs im Notfall
EMV	Elektromagnetische Verträglichkeit		(nicht spannungslos)
EN	Europäische Norm	ос	Überstrom (Overcurrent)
EnDat	Bidirektionale Geberschnittstelle der	ОН	Überhitzung
EliDal	Fa. Heidenhain	OL	Überlast
Endkunde	Der Endkunde ist der Verwender des	OSSD	Ausgangsschaltelement; Ausgangs-
Litakuliae	Kunden-Produkts		signal, dass in regelmäßigen Ab-
EtherCAT	Echtzeit-Ethernet-Bussystem der Fa.		stände auf seine Abschaltbarkeit hin
Luiororti	Beckhoff		geprüft wird. (Sicherheitstechnik)
Ethernet	Echtzeit-Bussystem - definiert Proto-	PDS	Leistungsantriebssystem inkl. Motor
	kolle, Stecker, Kabeltypen		und Meßfühler
FE	Funktionserde	PE	Schutzerde
FSoE	Funktionale Sicherheit über Ethernet	PELV	Sichere Schutzkleinspannung, ge-
	= 1 <u>= -</u> 11•		erdet

PFD Begriff aus der Sicherheitstechnik (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit PFH Begriff aus der Sicherheitstechnik (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit pro Stunde Pt100 Temperatursensor mit R0=100Ω Pt1000 Temperatursensor mit R0=1000Ω PTC Kaltleiter zur Temperaturerfassung **PWM** Pulsweitenmodulation (auch Pulsbreitenmodulation) Modulare Steckverbindung mit 8 RJ45 Leitungen Geberlose Regelung von Synchron-SCL motoren **SELV** Sichere Schutzkleinspannung, ungeerdet (<60V) SIL Der Sicherheitsintegritätslevel ist eine Maßeinheit zur Quantifizierung der Risikoreduzierung. Begriff aus der Sicherheitstechnik (EN 61508 -1...7) SPS Speicherprogrammierbare Steuerung SS1 Sicherheitsfunktion "Sicherer Halt 1" gemäß IEC 61800-5-2 SSI Synchron-serielle Schnittstelle für Geber STO Sicherheitsfunktion "sicher abgeschaltetes Drehmoment" gemäß IEC 61800-5-2 Inkrementelles Signal mit einer Aus-TTL gangsspannung bis 5 V **USB** Universell serieller Bus VARAN Echtzeit-Ethernet-Bussystem

Normen für Antriebsstromrichter

Produktnormen, die direkt für den Antriebsstromrichter gelten:

EN 61800-2	Drehzahlveränderbare elektrische Antriebe Teil 2: Allgemeine Anforderungen - Festlegungen für die Bemessung von Niederspannungs-Wechselstrom-Antriebssystemen mit einstellbarer Frequenz (VDE 0160-102, IEC 61800-2)
EN 61800-3	Drehzahlveränderbare elektrische Antriebe. Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren (VDE 0160-103, IEC 61800-3)
EN 61800-5-1	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-1: Anforderungen an die Sicherheit – Elektrische, thermische und energetische Anforderungen (VDE 0160-105-1, IEC 61800-5-1)
EN 61800-5-2	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-2: Anforderungen an die Sicherheit – Funktionale Sicherheit (VDE 0160-105-2, UL 61800-5-2, IEC 22G/264/CD)
UL61800-5-1	Amerikanische Version der EN 61800-5-1 mit "National Deviations"

Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:

•	
EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen - Grenzwerte und Messverfahren (IEC/CISPR 11)
EN 55021	Störung von Mobilfunkübertragungen in Gegenwart von Impulsstörgrößen - Verfahren zur Beurteilung der Beeinträchtigung und Maßnahmen zur Verbesserung der Übertragungsqualität (IEC/CISPR/D/230/FDIS)
EN 60529	Schutzarten durch Gehäuse (IP-Code) (VDE 0470, IEC 60529)
EN 60664-1	Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen Teil 1: Grundsätze, Anforderungen und Prüfungen (IEC 60664-1)
EN 60721-3-1	Klassifizierung von Umgebungsbedingungen - Teil 3-1: Klassifizierung von Einflussgrößen in Gruppen und deren Grenzwerte - Hauptabschnitt 1: Langzeitlagerung (IEC 60721-3-1)
EN 60721-3-2	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 2: Transport (IEC 60721-3-2)
EN 60721-3-3	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 3: Ortsfester Einsatz, wetterge- schützt (IEC 60721-3-3)
EN 61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems
EN 61000-2-4	Elektromagnetische Verträglichkeit (EMV) - Teil 2-4: Umgebungsbedingungen; Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in Industrieanlagen (IEC 61000-2-4)
EN61000-4-2	Elektromagnetische Verträglichkeit (EMV) - Teil 4-2: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität (IEC 61000-4-2)
EN 61000-4-3	Elektromagnetische Verträglichkeit (EMV) - Teil 4-3: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder (IEC 61000-4-3)
EN 61000-4-4	Elektromagnetische Verträglichkeit (EMV) - Teil 4-4: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst (IEC 61000-4-4)
EN 61000-4-5	Elektromagnetische Verträglichkeit (EMV) - Teil 4-5: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen Stoßspannungen (IEC 61000-4-5)

EN 61000-4-6	Elektromagnetische Verträglichkeit (EMV) - Teil 4-6: Prüf- und Messverfahren - Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder (IEC 61000-4-6)
EN 61000-4-34	Elektromagnetische Verträglichkeit (EMV) - Teil 4-34: Prüf- und Messver- fahren - Prüfungen der Störfestigkeit von Geräten und Einrichtungen mit einem Netzstrom > 16 A je Leiter gegen Spannungseinbrüche, Kurzzeitunterbre- chungen und Spannungsschwankungen (IEC 61000-4-34)
EN 61508-17	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme Teil 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme (VDE 0113-50, IEC 62061)
ENISO 13849-1	Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze (ISO 13849-1)

Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:

DGUV Vorschrift 3	Elektrische Anlagen und Betriebsmittel
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
DIN EN 12502-15	Korrosionsschutz metallischer Werkstoffe - Teil 15
DINIEC 60364-5-54	Errichten von Niederspannungsanlagen - Teil 5-54: Auswahl und Errichtung elektrischer Betriebsmittel - Erdungsanlagen, Schutzleiter und Schutzpotential-ausgleichsleiter (IEC 364/1610/CD)
DIN VDE 0100-729	Errichten von Niederspannungsanlagen - Teil 7-729: Anforderungen für Betriebsstätten, Räume und Anlagen besonderer Art - Bedienungsgänge und Wartungsgänge (IEC 60364-7-729); Deutsche Übernahme HD 60364-7-729
EN 1037	Sicherheit von Maschinen - Vermeidung von unerwartetem Anlauf; Deutsche Fassung EN 1037
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Typgeprüfte und partiell typgeprüfte Kombinationen (IEC 60439-1)
EN 60947-7-1	Niederspannungsschaltgeräte - Teil 7-1: Hilfseinrichtungen - Reihenklemmen für Kupferleiter (IEC 60947-7-1:2009)
EN 60947-8	Niederspannungsschaltgeräte - Teil 8: Auslösegeräte für den eingebauten thermischen Schutz (PTC) von rotierenden elektrischen Maschinen (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN 61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken (IEC 61373)
EN 61439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Allgemeine Festlegungen (IEC 121B/40/CDV:2016); Deutsche Fassung FprEN 61439-1:2016
VGB R 455 P	Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen
DIN EN 60939-1	Passive Filter für die Unterdrückung von elektromagnetischen Störungen - Teil 1: Fachgrundspezifikation (IEC 60939-1:2005 + Corrigendum: 2005)

1 Grundlegende Sicherheitshinweise

Die Produkte sind nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Die Nichtbeachtung der Sicherheitshinweise durch den Kunden, Anwender oder sonstigen Dritten führt zum Verlust aller dadurch verursachten Ansprüche gegen den Hersteller.

ACHTUNG

Gefahren und Risiken durch Unkenntnis.

- ▶ Lesen Sie die Gebrauchsanleitung!
- ▶ Beachten Sie die Sicherheits- und Warnhinweise!
- ► Fragen Sie bei Unklarheiten nach!

1.1 Zielgruppe

Diese Gebrauchsanleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- Kenntnis und Verständnis der Sicherheitshinweise.
- · Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über DIN IEC 60364-5-54.
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).

1.2 Transport, Lagerung und sachgemäße Handhabung

Der Transport ist durch entsprechend unterwiesene Personen unter Beachtung der in dieser Anleitung angegebenen Umweltbedingungen durchzuführen. Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen.

Transport von Antriebsstromrichtern mit einer Kantenlänge >75 cm

Der Transport per Gabelstapler ohne geeignete Hilfsmittel kann zu einer Durchbiegung des Kühlkörpers führen. Dies führt zur vorzeitigen Alterung bzw. Zerstörung interner Bauteile.

- ► Antriebsstromrichter auf geeigneten Paletten transportieren.
- ► Antriebsstromrichter nicht stapeln oder mit anderen schweren Gegenständen belasten.

ACHTUNG

Beschädigung der Kühlmittelanschlüsse

Abknicken der Rohre!

▶ Das Gerät niemals auf die Kühlmittelanschlüsse abstellen!

Produkt enthält elektrostatisch gefährdete Bauelemente.

- Berührung vermeiden.
- ► ESD-Schutzkleidung tragen.

Lagern Sie das Produkt nicht

- in der Umgebung von aggressiven und/oder leitfähigen Flüssigkeiten oder Gasen.
- in Bereichen mit direkter Sonneneinstrahlung.
- außerhalb der angegebenen Umweltbedingungen.

1.3 Einbau und Aufstellung

▲ GEFAHR

Nicht in explosionsgefährdeter Umgebung betreiben!

▶ Das Produkt ist nicht für den Einsatz in explosionsgefährdeter Umgebung vorgesehen.

A VORSICHT

Bauartbedingte Kanten und hohes Gewicht!

Quetschungen und Prellungen!

- ▶ Nie unter schwebende Lasten treten.
- Sicherheitsschuhe tragen.
- ▶ Produkt beim Einsatz von Hebewerkzeugen entsprechend sichern.

Um Schäden am und im Produkt vorzubeugen:

- Darauf achten, dass keine Bauelemente verbogen und/oder Isolationsabstände verändert werden.
- Bei mechanischen Defekten darf das Produkt nicht in Betrieb genommen werden. Die Einhaltung angewandter Normen ist nicht mehr gewährleistet.
- Es darf keine Feuchtigkeit oder Nebel in das Produkt eindringen.
- Das Eindringen von Staub ist zu vermeiden. Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- Einbaulage und Mindestabstände zu umliegenden Elementen beachten. Lüftungsöffnungen nicht verdecken.
- Produkt entsprechend der angegebenen Schutzart montieren.
- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile (Bohrspäne, Schrauben usw.) in das Produkt fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Geräteanschlüsse auf festen Sitz prüfen, um Übergangswiderstände und Funkenbildung zu vermeiden.
- · Produkt nicht begehen.
- Die Sicherheitshinweise sind aufzubewahren!

1.4 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät!

Lebensgefahr durch Stromschlag!

- ▶ Niemals am offenen Gerät arbeiten oder offen liegende Teile berühren.
- ▶ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten, gegen Wiedereinschalten sichern und Spannungsfreiheit an den Eingangsklemmen durch Messung feststellen.
- ► Warten bis alle Antriebe zum Stillstand gekommen sind, damit keine generatorische Energie erzeugt werden kann.
- ► Kondensatorentladezeit (5 Minuten) abwarten. Spannungsfreiheit an den DC-Klemmen durch Messung feststellen.
- ➤ Sofern Personenschutz gefordert ist, für Antriebsstromrichter geeignete Schutzvorrichtungen einbauen.
- ▶ Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken.
- ▶ Schutzleiter immer an Antriebsstromrichter und Motor anschließen.
- Zum Betrieb alle erforderlichen Abdeckungen und Schutzvorrichtungen anbringen.
- ► Schaltschrank im Betrieb geschlossen halten.
- ▶ Fehlerstrom: Dieses Produkt kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produktes nur ein RCD oder RCM vom Typ B zulässig.
- ➤ Antriebsstromrichter mit einem Ableitstrom > 3,5 mA Wechselstrom (10 mA Gleichstrom) sind für einen ortsfesten Anschluss bestimmt. Schutzleiter sind gemäß den örtlichen Bestimmungen für Ausrüstungen mit hohen Ableitströmen nach EN 61800-5-1, EN 60204-1 oder DIN IEC 60364-5-54 auszulegen.

Wenn beim Errichten von Anlagen Personenschutz gefordert ist, müssen für Antriebsstromrichter geeignete Schutzvorrichtungen benutzt werden.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_general/ti_rcd_0400_0002_deu.pdf

Anlagen, in die Antriebsstromrichter eingebaut sind, müssen ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen gemäß den jeweils gültigen Sicherheitsbestimmungen, z.B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw. ausgerüstet werden. Diese Hinweise sind auch bei CE gekennzeichneten Antriebsstromrichtern stets zu beachten.

Für einen störungsfreien und sicheren Betrieb sind folgende Hinweise zu beachten:

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der angegebenen Minimal-/ Maximalwerte für die Anwendung durch den Anwender zu dimensionieren.
- Die Verdrahtung ist mit flexibler Kupferleitung für eine Temperatur > 75°C auszuführen.
- Der Anschluss der Antriebsstromrichter ist nur an symmetrische Netze mit einer Spannung Phase (L1, L2, L3) gegen Nulleiter/Erde (N/PE) von maximal 300 V zulässig. Bei Versorgungsnetzen mit höheren Spannungen muss ein entsprechender Trenntransformator vorgeschaltet werden. Bei Nichtbeachtung gilt die Steuerung nicht mehr als PELV-Stromkreis.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit PELV die Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß EN 61800-5-1) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.

1.4.1 EMV-gerechte Installation

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Kunden.

Hinweise zur EMV-gerechten Installation sind hier zu finden.

1.4.2 Spannungsprüfung

Eine Prüfung mit AC-Spannung (gemäß *EN 60204-1* Kapitel 18.4) darf nicht durchgeführt werden, da eine Gefährdung für die Leistungshalbleiter im Antriebsstromrichter besteht.

Aufgrund der Funkentstörkondensatoren wird sich der Prüfgenerator sofort mit Stromfehler abschalten.

Nach *EN 60204-1* ist es zulässig, bereits getestete Komponenten abzuklemmen. Antriebsstromrichter der KEB Automation KG werden gemäß Produktnorm zu 100% spannungsgeprüft ab Werk geliefert.

1.4.3 Isolationsmessung

Eine Isolationsmessung (gemäß *EN 60204-1* Kapitel 18.3) mit DC 500V ist zulässig, wenn alle Anschlüsse im Leistungsteil (netzgebundenes Potenzial) und alle Steueranschlüsse mit PE gebrückt sind. Der Isolationswiderstand des jeweiligen Produkts ist in den technischen Daten zu finden.

1.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

WARNUNG

Softwareschutz und Programmierung!

Gefährdung durch ungewolltes Verhalten des Antriebes!

- ► Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichters prüfen, ob Parametrierung zur Applikation passt.
- ▶ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- ► Motoren gegen selbsttätigen Anlauf sichern.

A VORSICHT

Hohe Temperaturen an Kühlkörper und Kühlflüssigkeit!

Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.
- ▶ Oberfläche und Kühlflüssigkeitsleitungen vor Berührung prüfen.
- ► Vor jeglichen Arbeiten Gerät abkühlen lassen.
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.
- Nur für das Gerät zugelassenes Zubehör verwenden.
- Anschlusskontakte, Stromschienen oder Kabelenden nie berühren.

Sofern ein Antriebsstromrichter mit Elektrolytkondensatoren im Gleichspannungszwischenkreis länger als ein Jahr nicht in Betrieb war, beachten Sie folgende Hinweise.

ACHTUNG

Dauerbetrieb (S1) mit Auslastung > 60 % oder Motorbemessungsleistung ab 55 kW!

Vorzeitige Alterung der Elektrolytkondensatoren!

► Netzdrossel mit *U_k* = 4% einsetzen.

Schalten am Ausgang

Bei Einzelantrieben ist das Schalten zwischen Motor und Antriebsstromrichter während des Betriebes zu vermeiden, da es zum Ansprechen der Schutzeinrichtungen führen kann. Ist das Schalten nicht zu vermeiden, muss die Funktion "Drehzahlsuche" aktiviert sein. Diese darf erst nach dem Schließen des Motorschützes eingeleitet werden (z.B. durch Schalten der Reglerfreigabe).

Bei Mehrmotorenantrieben ist das Zu- und Abschalten zulässig, wenn mindestens ein Motor während des Schaltvorganges zugeschaltet ist. Der Antriebsstromrichter ist auf die auftretenden Anlaufströme zu dimensionieren.

Wenn der Motor bei einem Neustart (Netz ein) des Antriebsstromrichters noch läuft (z.B. durch große Schwungmassen), muss die Funktion "Drehzahlsuche" aktiviert sein.

Schalten am Eingang

Bei Applikationen, die zyklisches Aus- und Einschalten des Antriebsstromrichters erfordern, muss nach dem letzten Einschalten eine Zeit von mindestens 5 min vergangen sein. Werden kürzere Taktzeiten benötigt, setzen Sie sich bitte mit der KEB Automation KG in Verbindung.

Kurzschlussfestigkeit

Die Antriebsstromrichter sind bedingt kurzschlussfest. Nach dem Zurücksetzen der internen Schutzeinrichtungen ist die bestimmungsgemäße Funktion gewährleistet.

Ausnahmen:

- Treten am Ausgang wiederholt Erd- oder Kurzschlüsse auf, kann dies zu einem Defekt am Gerät führen.
- Tritt ein Kurzschluss während des generatorischen Betriebes (zweiter bzw. vierter Quadrant, Rückspeisung in den Zwischenkreis) auf, kann dies zu einem Defekt am Gerät führen.

1.6 Wartung

Die folgenden Wartungsarbeiten sind nach Bedarf, mindestens jedoch einmal pro Jahr, durch autorisiertes und eingewiesenes Personal durchzuführen.

- ▶ Anlage auf lose Schrauben und Stecker überprüfen und ggf. festziehen.
- ► Antriebsstromrichter von Schmutz und Staubablagerungen befreien. Dabei besonders auf Kühlrippen und Schutzgitter von Ventilatoren achten.
- ▶ Ab- und Zuluftfilter vom Schaltschrank überprüfen bzw. reinigen.
- ► Funktion der Ventilatoren des Antriebsstromrichters überprüfen. Bei hörbaren Vibrationen oder Quietschen sind die Ventilatoren zu ersetzen.
- ▶ Bei flüssigkeitsgekühlten Antriebsstromrichtern ist eine Sichtprüfung des Kühlkreislaufs auf Dichtigkeit und Korrosion durchzuführen. Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

1.7 Instandhaltung

Bei Betriebsstörungen, ungewöhnlichen Geräuschen oder Gerüchen informieren Sie eine dafür zuständige Person!

▲ GEFAHR

Unbefugter Austausch, Reparatur und Modifikationen!

Unvorhersehbare Fehlfunktionen!

- ▶ Die Funktion des Antriebsstromrichters ist von seiner Parametrierung abhängig. Niemals ohne Kenntnis der Applikation austauschen.
- ► Modifikation oder Instandsetzung ist nur durch von der KEB Automation KG autorisiertem Personal zulässig.
- ► Nur originale Herstellerteile verwenden.
- Zuwiderhandlung hebt die Haftung für daraus entstehende Folgen auf.

Im Fehlerfall wenden Sie sich an den Maschinenhersteller. Nur dieser kennt die Parametrierung des eingesetzten Antriebsstromrichters und kann ein entsprechendes Ersatzgerät liefern oder die Instandhaltung veranlassen.

1.8 Entsorgung

Elektronische Geräte der KEB Automation KG sind für die professionelle, gewerbliche Weiterverarbeitung bestimmt (sog. B2B-Geräte).

Hersteller von B2B-Geräten sind verpflichtet, Geräte, die nach dem 14.08.2018 hergestellt wurden, zurückzunehmen und zu verwerten. Diese Geräte dürfen grundsätzlich nicht an kommunalen Sammelstellen abgegeben werden.

Sofern keine abweichende Vereinbarung zwischen Kunde und KEB getroffen wurde oder keine abweichende zwingende gesetzliche Regelung besteht, können so gekennzeichnete KEB-Produkte zurückgegeben werden. Firma und Stichwort zur Rückgabestelle sind u.a. Liste zu entnehmen. Versandkosten gehen zu Lasten des Kunden. Die Geräte werden daraufhin fachgerecht verwertet und entsorgt.

In der folgenden Tabelle sind die Eintragsnummern länderspezifisch aufgeführt. KEB Adressen finden Sie auf unserer Webseite.

Rücknahme durch	WEEE-Registrierungsnr.		Stichwort:
Deutschland			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Frankreich			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Italien			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Österreich			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
Spanien			
KEB Automation KG	RII-AEE	7427	Palabra clave "Retirada RAEE"
Tschechische Republik			
KEB Automation KG	RETELA	09281/20-ECZ	Klíčové slovo "Zpětný odběr OEEZ"

Die Verpackung ist dem Papier- und Kartonage-Recycling zuzuführen.

2 Produktbeschreibung

Bei der Gerätereihe COMBIVERT F6 handelt es sich um Antriebsstromrichter, die für den Betrieb an synchronen und asynchronen Motoren optimiert sind. Der COMBIVERT kann mit einem Sicherheitsmodul für den Einsatz in sicherheitsgerichteten Anwendungen erweitert werden. Durch ein Feldbusmodul kann er an unterschiedlichen Feldbussystemen betrieben werden. Die Steuerkarte verfügt über ein systemübergreifendes Bedienkonzept.

Der COMBIVERT erfüllt die Anforderungen der Niederspannungsrichtlinie. Die harmonisierten Normen der Reihe *UL 61800-5-1* für Antriebsstromrichter werden angewendet.

Der COMBIVERT ist ein Produkt mit eingeschränkter Erhältlichkeit nach *EN 61800-3*. Dieses Produkt kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann es für den Betreiber erforderlich sein, entsprechende Maßnahmen durchzuführen.

Abhängig von der Ausführung sind die Maschinenrichtlinie, EMV-Richtlinie, Niederspannungsrichtline sowie weitere Richtlinien und Verordnungen zu beachten.

2.1 Bestimmungsgemäßer Gebrauch

Der COMBIVERT dient ausschließlich zur Steuerung und Regelung von Drehstrommotoren. Er ist zum Einbau in elektrische Anlagen oder Maschinen bestimmt.

Die technischen Daten sowie die Angaben zu Anschlussbedingungen sind dem Typenschild und der Gebrauchsanleitung zu entnehmen und unbedingt einzuhalten.

Die bei der KEB Automation KG eingesetzten Halbleiter und Bauteile sind für den Einsatz in industriellen Produkten entwickelt und ausgelegt.

Einschränkung

Wenn das Produkt in Maschinen eingesetzt wird, die unter Ausnahmebedingungen arbeiten, lebenswichtige Funktionen, lebenserhaltende Maßnahmen oder eine außergewöhnliche Sicherheitsstufe erfüllen, ist die erforderliche Zuverlässigkeit und Sicherheit durch den Maschinenbauer sicherzustellen und zu gewährleisten.

2.1.1 Restgefahren

Trotz bestimmungsgemäßen Gebrauch kann der Antriebsstromrichter im Fehlerfall, bei falscher Parametrierung, durch fehlerhaften Anschluss oder nicht fachmännische Eingriffe und Reparaturen unvorhersehbare Betriebszustände annehmen. Dies können sein:

- Falsche Drehrichtung
- Zu hohe Motordrehzahl
- Motor läuft in die Begrenzung
- Motor kann auch im Stillstand unter Spannung stehen
- Automatischer Anlauf

2.2 Nicht bestimmungsgemäßer Gebrauch

Der Betrieb anderer elektrischer Verbraucher ist untersagt und kann zur Zerstörung der Geräte führen. Der Betrieb unserer Produkte außerhalb der in den technischen Daten angegebenen Grenzwerte führt zum Verlust jeglicher Schadensersatzansprüche.

2.3 Produktmerkmale

Diese Gebrauchsanleitung beschreibt die Leistungsteile folgender Geräte:

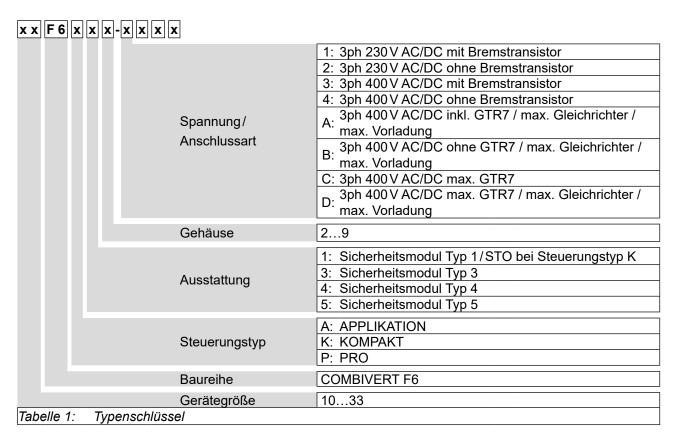
Gerätetyp: Antriebsstromrichter
Serie: COMBIVERT F6
Leistungsbereich: 22 kW / 230 V

22...55 kW / 400 V

Gehäuse: 4

Der COMBIVERT F6 zeichnet sich durch die folgenden Merkmale aus:

- Betrieb von Drehstromasynchronmotoren und Drehstromsynchronmotoren, jeweils in den Betriebsarten gesteuert oder geregelt mit und ohne Drehzahlrückführung
- Folgende Feldbussysteme werden unterstützt: EtherCAT, VARAN, PROFINET, POWERLINK oder CAN
- · Systemübergreifendes Bedienkonzept
- · Großer Betriebstemperaturbereich
- · Geringe Schaltverluste durch IGBT-Leistungsteil
- · Geringe Geräuschentwicklung durch hohe Schaltfrequenzen
- · Verschiedene Kühlkörperkonzepte
- Temperaturgesteuerte Lüfter, leicht austauschbar
- Zum Schutz von Getrieben sind Momentengrenzen sowie S-Kurven einstellbar
- Generelle Schutzfunktionen der COMBIVERT Serie gegen Überstrom, Überspannung, Erdschluss und Übertemperatur
- Analoge Ein- und Ausgänge, digitale Ein- und Ausgänge, Relaisausgang (potentialfrei), Bremsenansteuerung und -versorgung, Motorschutz durch l²t, KTY- oder PTC-Eingang, zwei Geberschnittstellen, Diagnoseschnittstelle, Feldbusschnittstelle (abhängig von der Steuerkarte)
- Integrierte Sicherheitsfunktion nach EN 61800-5-2



2.4 Typenschlüssel

x x F 6 x x x - x x x x

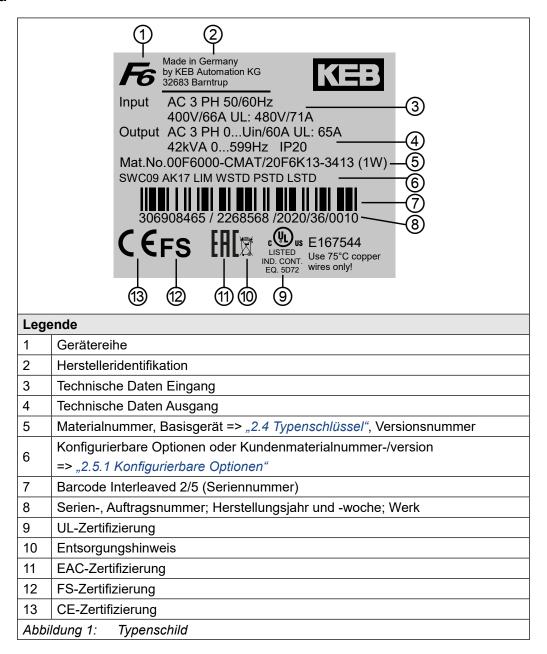
XXF6XXXXX	X		
	Kühlkörperausführung	1: Luftkühler, Einbauversion 2: Fluidkühler (Wasser), Einb 3: Luftkühler, Durchsteckvers 4: Fluidkühler (Wasser), Durc 5: Luftkühler, Durchsteckvers 6: Fluidkühler (Wasser), Durc 1: Luftkühler, Durchsteckvers 1: Luftkühler (Wasser), Durc 1: Luftkühler (Öl), Durchsteck 1: Fluidkühler (Öl), Durchsteck 1: Luftkühler (Öl), Durchsteck 1: Luftkühler (Wasser), Einb 1: Unterbaubremswiderständ 1: Luftkühler (Wasser), Einb 1: Luftkühler, Einbauversion, 1: D Luftkühler, Einbauversion, 1: Luftkühler (Wasser), Einb 1: Luftkühler, Durchsteckvers 1: Luftkühler, Durchsteckvers 1: Luftkühler (Wasser), Durch 1: Luftkühler (Wasser), Durch 1: Luftkühler (Wasser), Durch 1: Luftkühler, Konvektion, Durch 1: Luftkühler, Konvektion, Durch 2: Luftkühler, Konvektion, Durch 2: Luftkühler, Konvektion, Durch 2: Luftkühler, Einbauversion, Durch 2: Luftkühler, Konvektion, Durch 3: Luftkühler, Konvektion, Durch 3: Luftkühler, Einbauversion, Durch 3: Luftkühler, Einbauversion, Einbauve	chsteckversion IP54-ready chsteckversion IP54-ready chsteckversion IP54-ready, e ckversion IP54-ready ckversion IP54-ready, e auversion, e Version 2 High-Performance auversion, cion IP54-ready, chsteckversion IP54-ready,
	Steuerkartenvariante	4: Sicheres Relais	AN® 2), STO, EtherCAT® 1) AN® 2), STO, VARAN AN® 2), Real-Time Ethernetentialfrei -Time Ethernetschnittstelle 3), AN® 2), Real-Time Ethernetelais 7: 16 kHz/150%/180%
	Schaltfrequenz, Softwarestromgrenze, Abschaltstrom	1: 4kHz/125%/150% 2: 8kHz/125%/150% 3: 16kHz/125%/150% 4: 2kHz/150%/180% 5: 4kHz/150%/180% 6: 8kHz/150%/180%	8: 2kHz/180%/216% 9: 4kHz/180%/216% A: 8kHz/180%/216% B: 8kHz/125%/150% C: 6kHz/125%/150% D: Lift /200%/300%
			weiter auf nächster Seite

PRODUKTBESCHREIBUNG

¹⁾ EtherCAT.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH. Deutschland.

CANopen® ist eine eingetragene Marke der CAN in AUTOMATION - International Users and Manufacturers Group e.V.


³⁾ Das Real-Time Ethernetbusmodul / die Real-Time Ethernetschnittstelle enthält diverse Feldbussteuerungen welche sich per Software (Parameter fb68) einstellen lassen.

Der Typenschlüssel dient nicht als Bestellcode, sondern ausschließlich zur Identifikation!

2.5 Typenschild

PRODUKTBESCHREIBUNG

2.5.1 Konfigurierbare Optionen

Merkmale	Merkmalswerte	Beschreibung	
Software	SWxxx	Softwarestand des Antriebsstromrichters	
7	Axxx	Gewähltes Zubehör	
Zubehör	NAK	Kein Zubehör	
Ausgangsfrequenz-	LIM	Begrenzung auf 599 Hz	
freischaltung	ULO	> 599 Hz freigeschaltet	
C # - - - - - - - -	WSTD	Gewährleistung - Standard	
Gewährleistung	Wxxx	Gewährleistungsverlängerung	
Darametriarung	PSTD	Parametrierung - Standard	
Parametrierung	Pxxx	Parametrierung - Kundespezifisch	
Turanaahildlaga	LSTD	Logo - Standard	
Typenschildlogo	Lxxx	Logo - Kundespezifisch	
Abbildung 2: Konfigurierbare Optionen			

[&]quot;x" steht für einen variablen Wert.

3 Technische Daten

Sofern nicht anders gekennzeichnet, beziehen sich alle elektrischen Daten im folgenden Kapitel auf ein 3-phasiges Wechselspannungsnetz.

3.1 Betriebsbedingungen

3.1.1 Klimatische Umweltbedingungen

Lagerung		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-1	1K4	-2555°C
Relative Luftfeuchte)	EN 60721-3-1	1K3	595% (ohne Kondensation)
Lagerungshöhe		_	_	Max. 3000 m über NN
Transport		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-2	2K3	-2570°C
Relative Luftfeuchte)	EN 60721-3-2	2K3	95% bei 40°C (ohne Kondensation)
Betrieb		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-3	3K3	540°C (erweitert auf -1045°C)
12	Luft	_	_	540°C (-1045°C)
Kühlmitteleintritts- temperatur	Wasser	_	_	540°C
temperatur	Öl	_	_	4055 °C
Relative Luftfeuchte	,	EN 60721-3-3	3K3	585% (ohne Kondensation)
				Schutz gegen Fremdkörper > ø12,5 mm Kein Schutz gegen Wasser
Bau- und Schutzart		EN 60529	IP20	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist.
				Antriebsstromrichter generell, ausgenommen Leistungsanschlüsse und Lüftereinheit (IPxxA)
Aufstellhöhe		_	_	 Max. 2000 m über NN Ab 1000 m ist eine Leistungsreduzierung von 1% pro 100 m zu berücksichtigen. Ab 2000 m hat die Steuerkarte zum Netz nur noch Basisisolation. Es sind zusätzliche Maßnahmen bei der Verdrahtung der Steuerung vorzunehmen.
Tabelle 2: Klimatische Umweltbedingungen				

3.1.2 Mechanische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen
Cobuingungagranzwarta	EN 60721 2 1	1110	Schwingungsamplitude 1,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-1	1M2	Beschleunigungsamplitude 5 m/s² (9200 Hz)
Schockgrenzwerte	EN 60721-3-1	1M2	40 m/s²; 22 ms
Transport	Norm	Klasse	Bemerkungen
			Schwingungsamplitude 3,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-2	2M1	Beschleunigungsamplitude 10 m/s² (9200 Hz)
			(Beschleunigungsamplitude 15 m/s² (200500 Hz))*
Schockgrenzwerte	EN 60721-3-2	2M1	100 m/s²; 11 ms
Betrieb	Norm	Klasse	Bemerkungen
	EN 60721 2 2	2114	Schwingungsamplitude 3,0 mm (29 Hz)
Sobwingungagranzworta	EN 60721-3-3	3M4	Schwingungsamplitude 3,0 mm (29 Hz) Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte		3M4	
Schwingungsgrenzwerte	EN 60721-3-3 EN 61800-5-1	3M4 _	Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte Schockgrenzwerte		3M4 - 3M4	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz)
Schockgrenzwerte	EN 61800-5-1	_	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz) Beschleunigungsamplitude 10 m/s² (57150 Hz)
	EN 61800-5-1	_	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz) Beschleunigungsamplitude 10 m/s² (57150 Hz) 100 m/s²; 11 ms

^{*}Nicht getestet

3.1.3 Chemisch/Mechanisch aktive Stoffe

Lagerung		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-1	1C2	_
Kontamination	Feststoffe	EN 00721-3-1	1S2	_
Transport		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-2	2C2	_
Kontamination	Feststoffe	EN 00721-3-2	2S2	-
Betrieb		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60704 2 2	3C2	-
Kontamination	Feststoffe	EN 60721-3-3	3S2	-
Tabelle 4: Chemisch/Mechanisch aktive Stoffe				

3.1.4 Elektrische Betriebsbedingungen

3.1.4.1 Geräteeinstufung

Anforderung	Norm	Klasse	Bemerkungen
Überenannungsketegerie	EN 61800-5-1	III	-
Überspannungskategorie	EN 60664-1	111	-
Verschmutzungsgrad	EN 60664-1	2	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist
Tabelle 5: Geräteeinstufung			

3.1.4.2 Elektromagnetische Verträglichkeit

Bei Geräten ohne internen Filter ist zur Einhaltung der folgenden Grenzwerte ein externer Filter erforderlich.

EMV-Störaussendung	Norm	Klasse	Bemerkungen	
Leitungsgebundene Störungen	EN 61800-3	C2	-	
Abgestrahlte Störungen	EN 61800-3	C2	-	
Störfestigkeit	Norm	Pegel	Bemerkungen	
Ctations - Futland	EN 64000 4.0	8kV	AD (Luftentladung)	
Statische Entladungen	EN 61000-4-2	4 kV	CD (Kontaktentladung)	
Burst - Anschlüsse für pro- zessnahe Mess- und Regel- funktionen und Signalschnitt- stellen	EN 61000-4-4	2kV	_	
Burst - Leistungsschnittstellen	EN 61000-4-4	4 kV	-	
Surgo Leistungaashnittatallan	EN 61000-4-5	1kV	Phase-Phase	
Surge - Leistungsschnittstellen	EN 61000-4-5	2kV	Phase-Erde	
Leitungsgeführte Störgrößen, induziert durch hochfrequente Felder	EN 61000-4-6	10 V	0,1580 MHz	
		10 V/m	80 MHz1 GHz	
Elektromagnetische Felder	EN 61000-4-3	3V/m	1,42 GHz	
		1 V/m	22,7 GHz	
Spannungsschwankungen/	EN 61000-2-1	_	-15 %+10 %	
-einbrüche	EN 61000-4-34		90%	
Frequenzänderungen	EN 61000-2-4		≤ 2 %	
Spannungsabweichungen	EN 61000-2-4	_	±10%	
Spannungsunsymmetrien	EN 61000-2-4	_	≤ 3 %	
Tabelle 6: Elektromagnetische Verträglichkeit				

3.2 Gerätedaten der 230V-Geräte

3.2.1 Übersicht der 230V-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			18
Gehäuse			4
Ausgangsbemessungsscheinleistung		Sout / kVA	34
Max. Motorbemessungsleistung	1)	Pmot / kW	22
Eingangsbemessungsspannung		Un / V	230 (UL: 240)
Eingangsspannungsbereich		Uin / V	170264
Netzphasen			3
Netzfrequenz		f _N / Hz	50 / 60 ±2
Eingangsbemessungsstrom @ UN = 230V		lin / A	101
Eingangsbemessungsstrom @ UN = 240V		Iin_UL / A	101
Isolationswiderstand @ Udc = 500V		Riso / MΩ	> 20
Ausgangsspannung		Uout / V	0 <i>Uin</i>
Ausgangsfrequenz	2)	fout / Hz	0599
Ausgangsphasen			3
Ausgangsbemessungsstrom @ UN = 230 V		In / A	85
Ausgangsbemessungsstrom @ UN = 240 V		IN_UL / A	85
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %	150
Softwarestromgrenze	3)	Iim %	150
Abschaltstrom	3)	loc / %	180
Bemessungsschaltfrequenz		<i>f</i> s∧ / kHz	4
Max. Schaltfrequenz	5)	fs_max / kHz	16
Verlustleistung bei Bemessungsbetrieb	1)	<i>P</i> D / W	776
Überlaststrom über Zeit	3)	IOL / %	=> "3.2.3.1 Überlastcharakteristik (OL) für 230V-Geräte"
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	175 / 180
Maximalstrom 0Hz/50Hz bei fs=4kHz		lout_max / %	147 / 180
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	110 / 180
Maximalstrom 0Hz/50Hz bei fs=16kHz		lout_max / %	73 / 128
	,		weiter auf nächster Seite

Gerätegröße		18
Gehäuse		4
Max. Bremsstrom	IB_max / A	105
Min. Bremswiderstandswert	R_{B_min} / Ω	4
Bremstransistor	6)	Max. Spieldauer: 120s; ED: 50%
Schutzfunktion für Bremstransistor		Kurzschlussüberwachung
Schutzfunktion Bremswiderstand	7)	Feedbacksignalauswertung und
(Error GTR7 always on)	.,	Stromabschaltung
Tabelle 7: Übersicht der 230 V-Geräted	daten	

¹⁾ Bemessungsbetrieb entspricht $U_N = 230V$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

3.2.2 Spannungs- und Frequenzangaben für 230 V-Geräte

Eingangsspannungen und -frequenzen		
Eingangsbemessungsspannung	Un / V	230
Nominal-Netzspannung (USA)	Un_ul / V	240
Eingangsspannungsbereich	UIN / V	170264
Netzphasen		3
Netzfrequenz	f _N / Hz	50/60
Netzfrequenztoleranz	±fn / Hz	2
Tabelle 8: Eingangsspannungen und -frequenzen der 230 V-Geräte		

DC-Zwischenkreisspannung		
Zwischenkreis Bemessungsspannung @ UN = 230 V	U _{N_dc} / V	325
Zwischenkreis Bemessungsspannung @ UN_UL = 240 V	U _{N_UL_dc} / V	339
Zwischenkreis Arbeitsspannungsbereich	U_dc / V	240373
Tabelle 9: DC-Zwischenkreisspannung für 230 V-Geräte		

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

⁴⁾ Einschränkungen beachten => "3.2.3.1 Überlastcharakteristik (OL) für 230V-Geräte".

⁵⁾ Eine genaue Beschreibung des Derating => "3.4.1 Schaltfrequenz und Temperatur".

⁶⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.

Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

GERÄTEDATEN DER 230V-GERÄTE

Ausgangsspannungen und -frequenzen		
Ausgangsspannung bei AC-Versorgung	1) Uout / V	0 <i>Uin</i>
Ausgangsfrequenz	2) fout / Hz	0599
Ausgangsphasen		3
Tabelle 10: Ausgangsspannungen und -frequenzen der 230 V-Geräte		

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren (=> "3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V").

3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel	
Netzdrossel <i>U</i> _k	4		
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und	
Antriebsstromrichter geregelt	8	Motordrossel an einem weichen Netz:	
Motordrossel Uk	1	230 V-Netzspannung (100%) - 15,3V reduzieSpannung (11%) = 204,7 V-Motorspannung	
Weiches Netz	2	Spanning (1170) 201,1 V Motoropanning	
Tabelle 11 Beispiel zur Berechnung der möglichen Motorspannung für 230 V			

rabelle 11. Beispiel zur Berechnung der möglichen Motorspannung für 250 (

3.2.3 Ein- und Ausgangsströme / Überlast für 230V-Geräte

Gerätegröße			18
Eingangsbemessungsstrom @ UN = 230V	1)	Iin / A	101
Eingangsbemessungsstrom @ UN_UL = 240V	1)	Iin_UL / A	101
Tabelle 12: Eingangsströme der 230V-Geräte			

Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

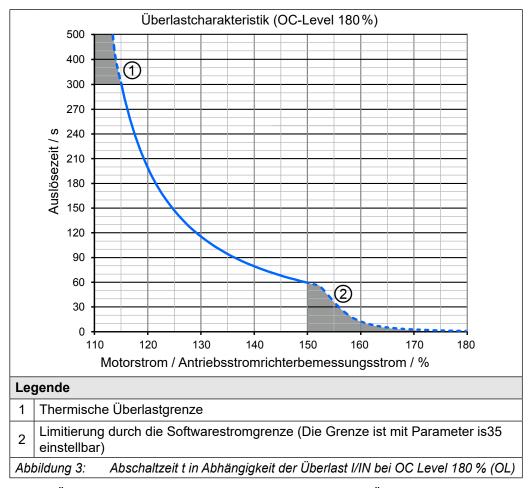
Gerätegröße			18
Ausgangsbemessungsstrom @ UN = 230V		In / A	85
Ausgangsbemessungsstrom @ UN_UL = 240V		IN_UL / A	85
Ausgangsbemessungsüberlast (60s)	1)	160s / %	150
Überlaststrom	1)	<i>I</i> ol / %	=> "3.2.3.1 Überlastcharakteristik (OL) für 230V-Geräte"
Softwarestromgrenze	1) 2)	Iim %	150
Abschaltstrom	1)	loc / %	180
Tabelle 13: Ausgangsströme 230 V-Geräte			

Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

²⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

3.2.3.1 Überlastcharakteristik (OL) für 230V-Geräte


Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 150 % für 60 s betrieben werden.

Bei der OL-Überlastfunktin handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=> "Abbildung 3: Abschaltzeit t in Abhängigkeit der Überlast I/ IN bei OC Level 180 % (OL)") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden => "3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230V-Geräte".

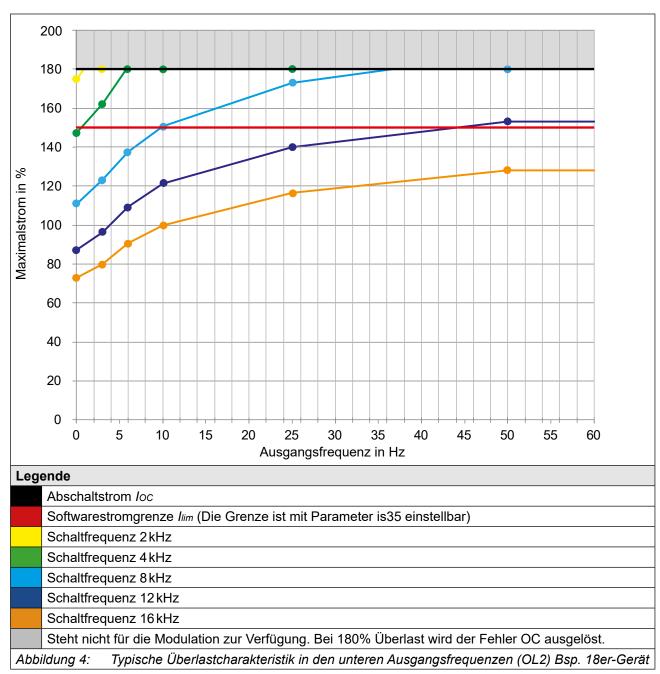
- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- · Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

Nach Ablauf einer Abkühlzeit kann dieser nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast im Bereich ① nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.

3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230V-Geräte


Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gelten folgende Regeln:

- Für die Bemessungsschaltfrequenz gilt: Bei 0 Hz Ausgangsfrequenz kann der Antriebsstromrichter mindestens den Ausgangsbemessungsstrom stellen.
- Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

GERÄTEDATEN DER 230V-GERÄTE

Die folgenden Kennlinien geben den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0 Hz, 3 Hz, 6 Hz, 10 Hz 25 Hz und 50 Hz an. Es wird beispielhaft die Gerätegröße 18 dargestellt.

Der frequenzabhängie Maximalstrom *I*_{lim} bezieht sich prozentual auf den Ausgangsbemessungsstrom *I*_N.

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom

Gerätegröße					18						
Bemessungsschaltfrequenz			4 kHz								
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50			
		2kHz	175	180	180	180	180	180			
Fraguenzahhängiger Meyimeletrem @ fe	1 . /0/	4 kHz	147	162	180	180	180	180			
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8kHz	111	124	138	151	173	180			
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	73	80	91	100	117	128			
	lout_max / %	1,75 kHz	175	180	180	180	180	180			
Frequenzabhängiger Maximalstrom @ fs		3,5 kHz	154	171	180	180	180	180			
		7 kHz	120	133	149	162	180	180			
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	80	88	100	111	128	141			
		1,5 kHz	175	180	180	180	180	180			
	1	3kHz	161	179	180	180	180	180			
Frequenzabhängiger Maximalstrom @ fs	Iout_max / %	6kHz	129	143	159	174	180	180			
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	87	96	109	121	140	153			
		1,25 kHz	175	180	180	180	180	180			
	1 . 10/	2,5 kHz	168	180	180	180	180	180			
Frequenzabhängiger Maximalstrom @ fs	Iout_max / %	5kHz	138	153	170	180	180	180			
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	99	110	124	136	157	171			
Tabelle 14: Frequenzabhängiger Maximalstron	n für Geräte	größe 18	Tabelle 14: Frequenzabhängiger Maximalstrom für Gerätegröße 18								

3.2.4 Verlustleistung bei Bemessungsbetrieb für 230V-Geräte

Gerätegröße			18
Verlustleistung bei Bemessungsbetrieb	1)	<i>P</i> D / W	776
Tabelle 15: Verlustleistung der 230V-Geräte			

¹⁾ Bemessungsbetrieb entspricht U_N = 230 V; f_{SN}; I_N; f_N = 50 Hz (typischer Wert)

GERÄTEDATEN DER 230V-GERÄTE

3.2.5 Absicherung der Antriebsstromrichter für 230V-Geräte

	Max. Größe der Sicherung / A									
Geräte- größe	<i>U∾</i> =230V gG (IEC)	<i>U</i> _N = 240V Class "J"	Un	= 240V gR						
	SCCR 30 kA	SCCR 5kA	SCCR 30 kA	Тур						
18	125	110	125	SIBA 20 189 20.125						
10	120	110	125	EATON 170M1368						
Tabelle 16: Absicherungen der 230 V / 240 V-Geräte										

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30 kA eff. geeignet.

3.3 Gerätedaten der 400V-Geräte

3.3.1 Übersicht der 400V-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			18 ⁸⁾	19	20	21	22
Gehäuse					4		
Ausgangsbemessungsscheinleistung		Sout / kVA	35	42	52	62	76
Max. Motorbemessungsleistung	1)	Pmot / kW	22	30	37	45	55
Eingangsbemessungsspannung		Un / V		4	00 (UL: 48	30)	
Eingangsspannungsbereich		Uin / V			280550)	
Netzphasen					3		
Netzfrequenz		f _N / Hz			50 / 60 ±2	2	
Eingangsbemessungsstrom @ U _N = 400V		lin / A	59	66	82	99	121
Eingangsbemessungsstrom @ $U_N = 480V$		lin_UL / A	48	57	71	85	106
Isolationswiderstand @ Udc = 500V		Riso / MΩ			> 20		
Ausgangsspannung		Uout / V			0 <i>Uin</i>		
Ausgangsfrequenz	2)	fout / Hz			0599		
Ausgangsphasen					3		
Ausgangsbemessungsstrom @ $U_N = 400 \text{ V}$		In / A	50	60	75	90	110
Ausgangsbemessungsstrom @ U _N = 480 V		IN_UL / A	40	52	65	77	96
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %			150		
Softwarestromgrenze	3)				150		
Abschaltstrom	3)	loc / %			180		
Bemessungsschaltfrequenz		fsn / kHz	4	4	4	2	2
Max. Schaltfrequenz	5)	fs_max / kHz			16	,	
Verlustleistung bei Bemessungsbetrieb	1)	<i>P</i> _D / W	513	698	896	895	1082
Überlaststrom über Zeit	3)	IOL / %	=> "3.3.3	3.1 Überla	stcharakte Geräte"	ristik (OL)	für 400V-
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	180/180	176/180	141/180	117/180	111/180
Maximalstrom 0Hz/50Hz bei fs=4kHz		lout_max / %	162/180	135/180	108/180	90/153	82/138
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	106/180	88/156	70/125	58/104	51/93
Maximalstrom 0Hz/50Hz bei fs=16kHz		lout_max / %	56/104	46/86	37/69	31/57	24/47
					weit	er auf näc	hster Seite

GERÄTEDATEN DER 400V-GERÄTE

Gerätegröße			19	20	21	22			
Gehäuse			4						
Max. Bremsstrom	IB_max / A	93							
Min. Bremswiderstandswert	R_{B_min} / Ω	9				8			
Bremstransistor	6)	Max. Spieldauer: 120s; ED: 50%							
Schutzfunktion für Bremstransistor		Kurzschlussüberwachung							
Schutzfunktion Bremswiderstand	7)	Feedbacksignalauswertung und							
(Error GTR7 always on)	.,	Stromabschaltung							
Tabelle 17: Übersicht der 400 V-Gerä	tedaten			·	·				

Bemessungsbetrieb entspricht $U_N = 400V$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

- ³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.
- 4) Einschränkungen beachten => "3.3.3.1 Überlastcharakteristik (OL) für 400V-Geräte".
- ⁵⁾ Eine genaue Beschreibung des Derating => "3.4.1 Schaltfrequenz und Temperatur".
- ⁶⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.
- Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.
- 8) Nur als ölgekühltes Gerät erhältlich.

3.3.2 Spannungs- und Frequenzangaben für 400 V-Geräte

Eingangsspannungen und -frequenzen					
Eingangsbemessungsspannung	Un / V	400			
Nominal-Netzspannung (USA)	UN_UL / V	480			
Eingangsspannungsbereich	UIN / V	280550			
Netzphasen		3			
Netzfrequenz	f∧ / Hz	50/60			
Netzfrequenztoleranz	± fN / Hz 2				
Tabelle 18: Eingangsspannungen und -frequenzen der 400 V-Geräte					

DC-Zwischenkreisspannung						
Zwischenkreis Bemessungsspannung @ UN = 400 V UN_dc / V 565						
Zwischenkreis Bemessungsspannung @ UN_UL = 480 V	Un_uL_dc / V	680				
Zwischenkreis Arbeitsspannungsbereich	Udc / V	390780				
Tabelle 19: DC-Zwischenkreisspannung für 400 V-Geräte						

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

Ausgangsspannungen und -frequenzen			
Ausgangsspannung bei AC-Versorgung	1)	Uout / V	0 <i>U</i> in
Ausgangsfrequenz	2)	fout / Hz	0599
Ausgangsphasen			3
Tabelle 20: DC-Zwischenkreisspannung für 400 V-Geräte			

¹⁾ Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren => "3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V".

3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel						
Netzdrossel <i>U</i> _k	4							
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und Motor-						
Antriebsstromrichter geregelt	8	drossel an einem weichen Netz:						
Motordrossel Uk	1	400 V-Netzspannung (100%) - 36V reduzierte Span- nung (11 %) = 356 V-Motorspannung						
Weiches Netz	2	many (11 70) coot motoroparmany						
Tabelle 21: Beispiel zur Berechnung der möglichen Motorspannung für 400 V								

3.3.3 Ein- und Ausgangsströme/ Überlast für 400V-Geräte

Gerätegröße			18	19	20	21	22
Eingangsbemessungsstrom @ UN = 400V	1)	lin / A	59	66	82	99	121
Eingangsbemessungsstrom @ UN_UL = 480V	1)	Iin_UL / A	48	57	71	85	106
Tabelle 22: Eingangsströme der 400 V-Geräte							

Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

Gerätegröße			18	19	20	21	22
Ausgangsbemessungsstrom @ UN = 400V		In / A	50	60	75	90	110
Ausgangsbemessungsstrom @ UN_UL = 480V		IN_UL / A	40	52	65	77	96
Ausgangsbemessungsüberlast (60 s)	1)	160s / %	150				
Überlaststrom	1)	IOL / %	=> "3.3.3.1 Überlastcharakteristik (OL) fü 400V-Geräte"				
Softwarestromgrenze	1) 2)		150				
Abschaltstrom	1)	loc / %	180				
Tabelle 23: Ausgangsströme 400 V-Geräte							

¹⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

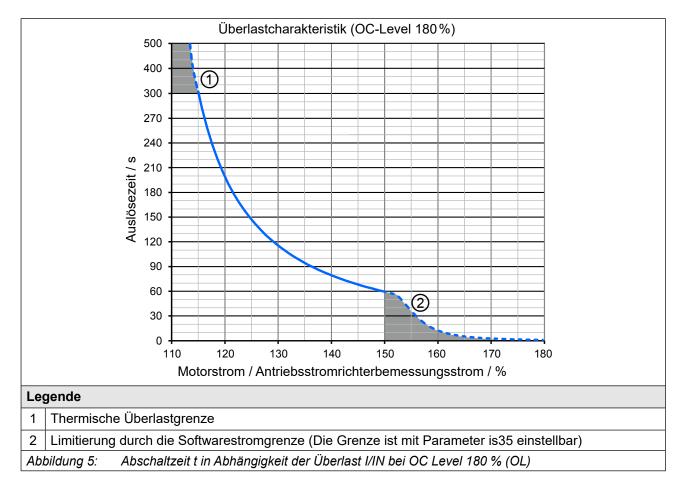
²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

²⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

GERÄTEDATEN DER 400V-GERÄTE

3.3.3.1 Überlastcharakteristik (OL) für 400V-Geräte

Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 150% für 60s betrieben werden.


Bei der OL-Überlastfunktin handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=> "Abbildung 5: Abschaltzeit t in Abhängigkeit der Überlast I/ IN bei OC Level 180 % (OL)") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

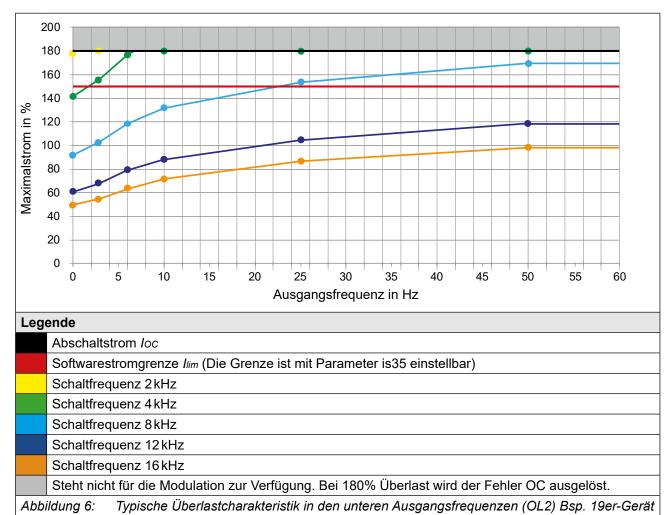
- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden => "3.3.3.2 Frequenzabhängiger Maximalstrom (OL2) 400V-Geräte".

- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- · Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

Nach Ablauf einer Abkühlzeit kann dieser nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast in diesem Bereich ① nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.


3.3.3.2 Frequenzabhängiger Maximalstrom (OL2) 400V-Geräte

Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gelten folgende Regeln:

- Für die Bemessungsschaltfrequenz gilt: bei 0 Hz Ausgangsfrequenz kann der Antriebsstromrichter mindestens den Ausgangsbemessungsstrom stellen.
- Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

Die folgenden Kennlinien geben den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0Hz, 3Hz, 6Hz, 10Hz 25Hz und 50Hz an. Es wird beispielhaft die Gerätegröße 19 dargestellt.

Der frequenzabhängie Maximalstrom I_{lim} bezieht sich prozentual auf den Ausgangsbemessungsstrom I_{N} .

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom

Gerätegröße					18						
Bemessungsschaltfrequenz					4 kHz						
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50			
		2kHz	180	180	180	180	180	180			
Fraguenzahhängiger Maximalatram @ fa	lout_max / %	4 kHz	162	180	180	180	180	180			
Frequenzabhängiger Maximalstrom @ fs	Iout_max / 70	8kHz	106	118	134	148	172	180			
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	56	64	72	78	94	104			
		1,75 kHz	180	180	180	180	180	180			
Fraguanzahhängigar Maximalatram @ fa	lout_max / %	3,5 kHz	175	180	180	180	180	180			
Frequenzabhängiger Maximalstrom @ fs		7kHz	120	134	151	166	180	180			
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	66	75	84	92	110	121			
		1,5 kHz	180	180	180	180	180	180			
Fraguanzahhängigar Maximalatram @ fa	1 1 0/-	3 kHz	180	180	180	180	180	180			
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 83,3 µs (Parameter is 22=2)	lout_max / %	6kHz	134	149	168	180	180	180			
Basic Time Feriou – 65,5 µs (Farameter 1822–2)		12 kHz	76	86	96	106	126	138			
		1,25 kHz	180	180	180	180	180	180			
Fraguenzahhängiger Meximaletrem @ f-	1 / 0/	2,5 kHz	180	180	180	180	180	180			
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	148	165	180	180	180	180			
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	91	102	115	127	149	163			
Tabelle 24: Frequenzabhängiger Maximalstron	n für Geräte	größe 18									

Gerätegröße	19							
Bemessungsschaltfrequenz					4k	Hz		
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50
		2kHz	176	180	180	180	180	180
Fraguanzahhängigar Maximalatram @ fa	1 1 0/-	4 kHz	135	150	168	180	180	180
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)	lout_max / % ·	8 kHz	88	98	111	123	143	156
Basic Time Feriou – 62,5 µs (Farameter 1822–0)		16 kHz	46	53	60	65	78	86
		1,75 kHz	176	180	180	180	180	180
Eraguanzahhängigar Mavimalatram @ fa	lout_max / % -	3,5 kHz	145	161	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs		7 kHz	100	111	125	138	160	175
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	55	62	70	76	91	100
		1,5 kHz	176	180	180	180	180	180
Eraguanzahhängigar Mavimalatram @ fa	1 . 10/	3 kHz	155	172	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 83,3 µs (Parameter is 22=2)	lout_max / %	6 kHz	111	124	140	153	176	180
basic Time Period – 65,5 µs (Parameter 1822–2)		12 kHz	63	72	80	88	105	115
		1,25 kHz	176	180	180	180	180	180
Francisco Marinalatram @ f	1	2,5 kHz	166	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5 kHz	123	137	154	168	180	180
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	75	85	95	105	124	135
Tabelle 25: Frequenzabhängiger Maximalstron	n für Geräte	größe 19						

GERÄTEDATEN DER 400V-GERÄTE

Gerätegröße	20							
Bemessungsschaltfrequenz			4 kHz					
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50
		2 kHz	141	156	174	180	180	180
	1	4 kHz	108	120	134	146	168	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / % -	8 kHz	70	78	89	98	114	125
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	37	42	48	52	62	69
		1,75 kHz	141	156	174	180	180	180
Francisco Mariana latrama (2)	lout_max / %	3,5 kHz	116	129	144	157	180	180
Frequenzabhängiger Maximalstrom @ fs		7 kHz	80	89	100	110	128	140
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	44	50	56	61	73	80
		1,5 kHz	141	156	174	180	180	180
	1	3 kHz	124	138	154	168	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	89	99	112	122	141	154
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	50	57	64	70	84	92
		1,25 kHz	141	156	174	180	180	180
For any or the Warding Marking Later on O. C.		2,5 kHz	133	147	164	179	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	98	109	123	134	154	169
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	60	68	76	84	99	108
Tabelle 26: Frequenzabhängiger Maximalstron	n für Geräte	größe 20	,			·		

Gerätegröße		21							
Bemessungsschaltfrequenz			2 kHz						
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50	
		2kHz	117	130	145	158	180	180	
Eroguanahhängigar Mayimalatram @ fa	1 . / 0/	4 kHz	90	100	112	122	140	153	
Frequenzabhängiger Maximalstrom @ fs	lout_max / % -	8 kHz	58	65	74	82	95	104	
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	31	35	40	43	52	57	
		1,75 kHz	117	130	145	158	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	96	107	120	131	150	163	
		7kHz	66	74	83	92	106	116	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	36	41	46	51	61	67	
		1,5 kHz	117	130	145	158	180	180	
	1 / 0/	3 kHz	103	115	128	140	160	173	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	74	82	93	102	117	128	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	42	47	53	58	70	76	
		1,25 kHz	117	130	145	158	180	180	
For any or the War sign of Marsian states are O. f.		2,5 kHz	110	122	137	149	170	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	82	91	102	112	128	141	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	50	56	63	70	82	90	
Tabelle 27: Frequenzabhängiger Maximalstron	n für Geräte	größe 21							

Gerätegröße	22								
Bemessungsschaltfrequenz			2 kHz						
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50	
		2kHz	111	123	136	146	165	180	
	1	4 kHz	82	92	104	112	127	138	
Frequenzabhängiger Maximalstrom @ fs	lout_max / % -	8kHz	51	59	66	71	84	93	
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	24	28	31	35	42	47	
		1,75 kHz	111	123	136	146	165	180	
For any order to the state of t	lout_max / %	3,5 kHz	90	100	112	112	127	138	
Frequenzabhängiger Maximalstrom @ fs		7kHz	59	67	75	71	84	93	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	29	34	38	35	42	47	
		1,5 kHz	111	123	136	146	165	180	
For any order to the state of t		3kHz	97	108	120	129	146	159	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	67	75	85	92	105	115	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	34	40	44	49	58	64	
		1,25 kHz	111	123	136	146	165	180	
		2,5 kHz	104	115	128	138	155	169	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	75	84	95	102	116	127	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	43	49	55	60	71	79	
Tabelle 28: Frequenzabhängiger Maximalstron	n für Geräte	größe 22	1						

3.3.4 Verlustleistung bei Bemessungsbetrieb 400 V-Geräte

Gerätegröße			18	19	20	21	22
Verlustleistung bei Bemessungsbetrieb	1)	Po / W	513	698	896	895	1082
Tabelle 29: Verlustleistung der 400V-Geräte							

¹⁾ Bemessungsbetrieb entspricht UN = 400 V; fsN; IN; fN = 50 Hz (typischer Wert)

3.3.5 Absicherung der Antriebsstromrichter 400 V-Geräte

			Max. Grö	ße der Sicher	ıng / A
Geräte-	<i>U</i> _N = 400V gG (IEC)		<i>U</i> _N = 480V Class "J"		<i>U</i> _N = 480V gR
größe	SCCR 30 kA	sc	CR	SCCR 30 kA	Tun
	SCCR SURA	5kA	10 kA	SCCR SUKA	Тур
					SIBA 20 189 20.50
18	80	60	_	50	COOPER BUSSMANN 170M1364
					LITTELFUSE L70QS050
19	80	70	70	80	SIBA 20 189 20.80
19	80	70	_	80	EATON 170M1366
20	100	90		100	SIBA 20 189 20.100
20	100	90	_	100	EATON 170M1367
21	105	110		105	SIBA 20 189 20.125
۷۱	125	110	_	125	EATON 170M1368
22	160		125	125	SIBA 20 189 20.125
22	100	-	125	125	EATON 170M1368
Tabelle 3	0: Absicherun	aen der 400 V	/ 480 V-Geräte	•	

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30 kA eff. geeignet.

3.4 Allgemeine elektrische Daten

3.4.1 Schaltfrequenz und Temperatur

Gerätegröße			18	19	20	21	22	
Bemessungsschaltfrequenz	1)	<i>f</i> s⊬ / kHz	4				2	
Max. Schaltfrequenz	1)	fs_max / kHz	16					
Min. Schaltfrequenz	1)	fs_min / kHz	Hz 1,25					
Max. Kühlkörpertemperatur		Ths / °C	95	90		95		
Temperatur zur Schaltfrequenzreduzierung		T _{DR} / °C			80			
Temperatur zur Schaltfrequenzerhöhung		Tur / °C			70			
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		Тем / °C	85					
Tabelle 31: Schaltfrequenz und Temperatur								

Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

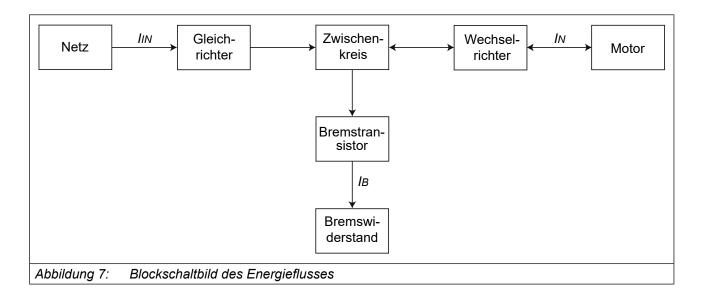
Die Antriebsstromrichterkühlung ist so ausgelegt, dass bei Bemessungsbedingungen die Kühlkörperübertemperaturschwelle nicht überschritten wird. Eine Schaltfrequenz größer der Bemessungsschaltfrequenz erzeugt auch höhere Verluste und damit eine höhere Kühlkörpererwärmung.

Erreicht die Kühlkörpertemperatur eine kritische Schwelle (*TDR*), kann die Schaltfrequenz automatisch schrittweise reduziert werden. Damit wird verhindert, dass der Antriebsstromrichter wegen Übertemperatur des Kühlkörpers abschaltet. Unterschreitet die Kühlkörpertemperatur *TUR* wird die Schaltfrequenz wieder auf den Sollwert angehoben. Bei der Temperatur *TEM* wird die Schaltfrequenz sofort auf Bemessungsschaltfrequenz reduziert. Damit diese Funktion greift, muss "Derating" aktiviert sein.

3.4.2 DC-Zwischenkreis / Bremstransistorfunktion

Aktivierung der Bremstransistorfunktion

Um den Bremstransistor verwenden zu können, muss die Funktion mit dem Parameter "is 30 braking transistor function" aktiviert werden.


Für weitere Informationen => F6 Programmierhandbuch.

ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters

▶ Der minimale Bremswiderstandswert darf nicht unterschritten werden!

ACHTUNG

Zerstörung des Antriebsstromrichter!

Tritt der Fehler "ERROR GTR7 always ON" auf, wird die Stromaufnahme über die Netzeingangsbrücke der AC-Versorgung intern weggeschaltet.

▶ Der Antriebsstromrichter muss innerhalb von 5 Minuten galvanisch vom Versorgungsnetz getrennt werden!

3.4.2.1 DC-Zwischenkreis / Bremstransistorfunktion der 230V-Geräte

Gerätegröße			18		
Zwischenkreis Bemessungsspannung		1100 1 1 1 1	325		
@ U _N = 230V		U _{N_dc} / V	323		
Zwischenkreis Bemessungsspannung		115	220		
@ U _{N_UL} = 240V		UN_dc_UL / V	339		
Zwischenkreis Arbeitsspannungsbereich		Uin_dc / V	240373		
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V	216		
DC-Abschaltpegel "Fehler! Überspannung"		Uop / V	400		
DC-Schaltpegel Bremstransistor	1)	U _B / V	380		
Max. Bremsstrom		I _{B_max} / A	105		
Bremstransistor	2)		Max. Spieldauer: 120s; ED: 50%		
Min. Bremswiderstandswert		RB_min / Ω	4		
Schutzfunktion für Bremstransistor			Kurzschlussüberwachung		
Schutzfunktion Bremswiderstand	3)		Feedbacksignalauswertung und		
(Error GTR7 always on)	٥,		Stromabschaltung		
Zwischenkreiskapazität		C/µF	6800		
Tabelle 32: DC-Zwischenkreis / Bremstransisto	orfu	ınktion der 230	V-Geräte		

¹⁾ Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt

³⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

ALLGEMEINE ELEKTRISCHE DATEN

3.4.2.2 DC-Zwischenkreis / Bremstransistorfunktion der 400V-Geräte

Gerätegröße			18	19	20	21	22	
Zwischenkreis Bemessungsspannung		11 / \/			EGE			
@ UN = 400V	UN_dc / V			565				
Zwischenkreis Bemessungsspannung		Haras III IV	690					
@ Un_ul = 480V		U _{N_dc_UL} / V			680			
Zwischenkreis Arbeitsspannungsbereich		Uin_dc / V			390780)		
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V	P / V 240					
DC-Abschaltpegel "Fehler! Überspannung"	chaltpegel "Fehler! Überspannung" Uop / V 840							
DC-Schaltpegel Bremstransistor	1) <i>UB</i> / V 780							
Max. Bremsstrom		I _{B_max} / A	93				105	
Bremstransistor	2)		Ma	x. Spield	auer: 120	s; ED: 5	0%	
Min. Bremswiderstandswert		RB_min / Ω			9		8	
Schutzfunktion Bremswiderstand	3)		Fe	edbacksi	gnalausv	vertung u	ınd	
(Error GTR7 always on)	3)			Stro	mabscha	Itung		
Schutzfunktion für Bremstransistor		Kurzschlussüberwachung						
Zwischenkreiskapazität		C/µF	2380	2380	2720	3400	4080	
Tabelle 33: DC-Zwischenkreis / Bremstransis	torfu	ınktion der 400	0V-Geräte	9				

Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

3.4.3 Lüfter

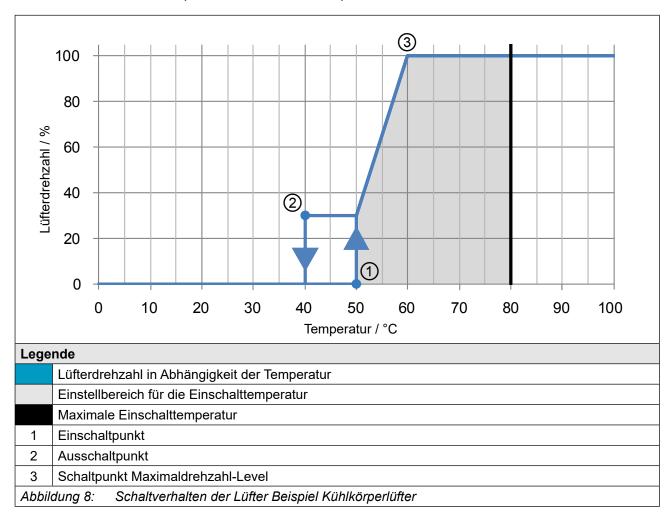
Gerätegröße		18	19	20	21	22				
Innonroumlüfter	nnenraumlüfter Anzahl Drehzahlvariabel		1							
Innemaumuter			Ja							
Vühlkärn orlüftor	Anzahl			2						
Kühlkörperlüfter	Drehzahlvariabel	Ja								
Tabelle 34: Lüfter										

Die Lüfter sind drehzahlvariabel. Sie werden automatisch, je nach Einstellung der Temperaturgrenzen in der Software, auf hohe oder niedrige Drehzahl gesteuert.

ACHTUNG

Zerstörung der Lüfter!

► Es dürfen keine Fremdkörper in die Lüfter eindringen!


²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt

Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

3.4.3.1 Schaltverhalten der Lüfter

Die Lüfter besitzen verschiedene Ein- und Ausschaltpunkte. Der Schaltpunkt für die Einschalttemperatur ① und das Maximaldrehzahl-Level ③ der Lüfter sind einstellbar. Der Schaltpunkt für die Ausschalttemperatur ② kann nicht verändert werden.

3.4.3.2 Schaltpunkte der Lüfter

Der Schaltpunkt für die Einschalttemperatur und das Maximaldrehzahl-Level der Lüfter sind einstellbar. In der folgenden Tabelle sind die Standardwerte angegeben.

Lüfter		Kühlkörper	Innenraum						
Einschalttemperatur	t/°C	50	45						
Maximaldrehzahl-Level t/°C 60 55									
Tabelle 35: Schaltpunkte	Tabelle 35: Schaltpunkte der Lüfter								

3.5 Gerätedaten der Lift-Geräte

3.5.1 Übersicht der Lift-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			19
Gehäuse			4
Ausgangsbemessungsscheinleistung		Sout / kVA	42
Max. Motorbemessungsleistung	1)	Pmot / kW	30
Eingangsbemessungsspannung		Un / V	400 (UL: 480)
Eingangsspannungsbereich		Uin / V	280550
Netzphasen			3
Netzfrequenz		f _N / Hz	50 / 60 ±2
Eingangsbemessungsstrom $@U_N = 400V$		lin / A	66
Eingangsbemessungsstrom $@U_N = 480V$		lin_UL / A	59
Isolationswiderstand @ Udc = 500V		Riso / MΩ	> 20
Ausgangsspannung		Uout / V	0 <i>Uin</i>
Ausgangsfrequenz	2)	fout / Hz	0599
Ausgangsphasen			3
Ausgangsbemessungsstrom @ $U_N = 400 \text{ V}$		In / A	60
Ausgangsbemessungsstrom @ U _N = 480 V		IN_UL / A	54
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %	200
Softwarestromgrenze	3)	Ilim / %	250
Abschaltstrom	3)	loc / %	270
Bemessungsschaltfrequenz		fsn / kHz	4
Max. Schaltfrequenz	5)	fs_max / kHz	16
Verlustleistung bei Bemessungsbetrieb	1)	P _D / W	698
Überlaststrom über Zeit	3)	IOL / %	=> "3.5.3.1 Überlastcharakteristik (OL) für Lift-Geräte"
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	205 / 270
Maximalstrom 0Hz/50Hz bei fs=4kHz		lout_max / %	152 / 253
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	95 / 172
Maximalstrom 0Hz/50Hz bei fs=16kHz		lout_max / %	45 / 87
			weiter auf nächster Seite

Gerätegröße		19
Gehäuse		4
Max. Bremsstrom	I _{B_max} / A	105
Min. Bremswiderstandswert	R _{B_min} / Ω	8
Bremstransistor	6)	Max. Spieldauer: 120s; ED: 50%
Schutzfunktion für Bremstransistor		Kurzschlussüberwachung
Schutzfunktion Bremswiderstand	7)	Feedbacksignalauswertung und
(Error GTR7 always on)	,	Stromabschaltung
Tabelle 36: Übersicht der Lift-Geräte	daten	

¹⁾ Bemessungsbetrieb entspricht $U_N = 400V$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

- 4) Einschränkungen beachten => "3.5.3.1 Überlastcharakteristik (OL) für Lift-Geräte".
- ⁵⁾ Eine genaue Beschreibung des Derating => "3.6.1 Schaltfrequenz und Temperatur der Lift-Geräte".
- ⁶⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.

3.5.2 Spannungs- und Frequenzangaben für 400 V-Geräte

Eingangsspannungen und -frequenzen							
Eingangsbemessungsspannung	U _N / V	400					
Nominal-Netzspannung (USA)	U _{N_UL} / V	480					
Eingangsspannungsbereich	Uin / V	280550					
Netzphasen		3					
Netzfrequenz	f _N / Hz	50/60					
Netzfrequenztoleranz ± f _N / Hz 2							
Tabelle 37: Eingangsspannungen und -frequenzen der 400 V-Geräte							

DC-Zwischenkreisspannung					
Zwischenkreis Bemessungsspannung @ UN = 400 V	Un_dc / V	565			
Zwischenkreis Bemessungsspannung @ UN_UL = 480 V	UN_UL_dc / V	680			
Zwischenkreis Arbeitsspannungsbereich Udc / V 390780					
Tabelle 38: DC-Zwischenkreisspannung für 400 V-Geräte	•				

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

GERÄTEDATEN DER LIFT-GERÄTE

Ausgangsspannungen und -frequenzen							
Ausgangsspannung bei AC-Versorgung	1)	Uout / V	0 <i>U</i> in				
Ausgangsfrequenz	2)	fout / Hz	0599				
Ausgangsphasen 3							
Tabelle 39: DC-Zwischenkreisspannung für 400 V-Geräte							

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren => "3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V".

3.5.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel				
Netzdrossel <i>U</i> _k	4					
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und Motor-				
Antriebsstromrichter geregelt	8	drossel an einem weichen Netz:				
Motordrossel <i>U</i> _k	1	400 V-Netzspannung (100%) - 36V reduzierte Span- nung (11 %) = 356 V-Motorspannung				
Weiches Netz	2	many (11 75) 333 t motoroparmany				
Tabelle 40: Beispiel zur Berechnung der möglichen Motorspannung für 400 V						

3.5.3 Ein- und Ausgangsströme/ Überlast für Lift-Geräte

Gerätegröße			19
Eingangsbemessungsstrom @ Un = 400V	1)	Iin / A	66
Eingangsbemessungsstrom @ UN_UL = 480V	1)	Iin_UL / A	59
Tabelle 41: Eingangsströme der Lift-Geräte			

Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

Gerätegröße			19
Ausgangsbemessungsstrom @ UN = 400V		In / A	60
Ausgangsbemessungsstrom @ UN_UL = 480V		IN_UL / A	54
Ausgangsbemessungsüberlast (60s)	1)	160s / %	200
Überlaststrom	1)	<i>I</i> ol / %	=> "3.5.3.1 Überlastcharakteristik (OL) für Lift-Geräte"
Softwarestromgrenze	1) 2)		250
Abschaltstrom	1)	loc / %	270
Tabelle 42: Ausgangsströme Lift-Geräte			

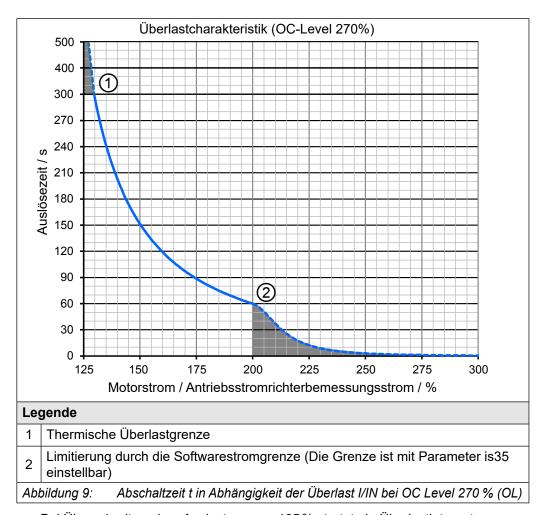
Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Geräte mit höherer maximaler Ausgangsfrequenz unterliegen Exportbeschränkungen und sind nur auf Anfrage erhältlich.

²⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

3.5.3.1 Überlastcharakteristik (OL) für Lift-Geräte

Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 200 % für 60 s betrieben werden.


Bei der OL-Überlastfunktin handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=> "Abbildung 10: Abschaltzeit t in Abhängigkeit der Überlast I/ IN bei OC Level 270 % (OL)") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden => "3.5.3.2 Frequenzabhängiger Maximalstrom (OL2) Lift-Geräte".

GERÄTEDATEN DER LIFT-GERÄTE

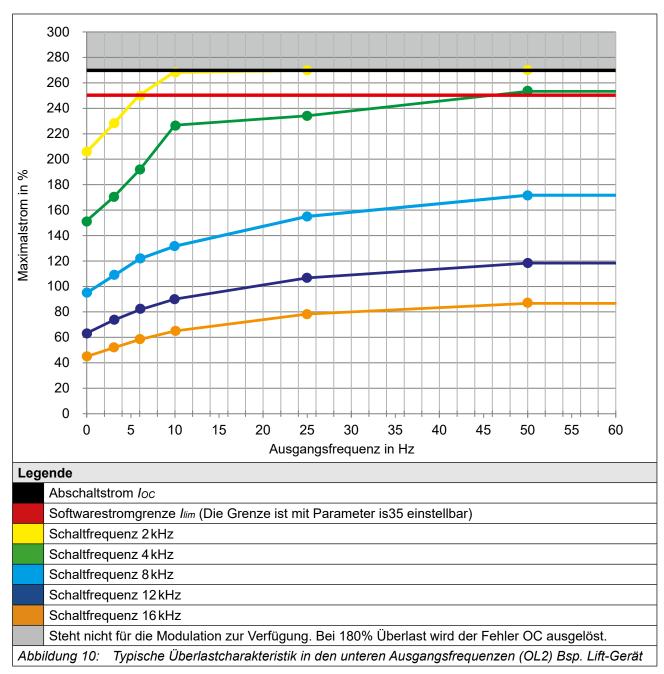
- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- · Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

Nach Ablauf einer Abkühlzeit kann dieser nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast in diesem Bereich ① nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.

3.5.3.2 Frequenzabhängiger Maximalstrom (OL2) Lift-Geräte


Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gelten folgende Regeln:

- Für die Bemessungsschaltfrequenz gilt: bei 0 Hz Ausgangsfrequenz kann der Antriebsstromrichter mindestens den Ausgangsbemessungsstrom stellen.
- Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

GERÄTEDATEN DER LIFT-GERÄTE

Die folgenden Kennlinien geben den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0 Hz, 3 Hz, 6 Hz, 10 Hz 25 Hz und 50 Hz an. Es wird beispielhaft die Gerätegröße 19 dargestellt.

Der frequenzabhängie Maximalstrom I_{lim} bezieht sich prozentual auf den Ausgangsbemessungsstrom I_{N} .

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom

Gerätegröße	19								
Bemessungsschaltfrequenz	4 kHz								
Ausgangsfrequenz		fout / Hz	0	3	6	10	25	50	
		2kHz	205	227	250	268	270	270	
Francisco Marinalatron & f	1 . /0/	4 kHz	152	170	192	207	233	253	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8 kHz	95	108	121	132	155	172	
Basic Time Period = 62,5 µs (Parameter is22=0)		16kHz	45	52	58	65	78	87	
		1,75 kHz	205	227	250	268	270	270	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 71,4 \(\mu \)s (Parameter is 22=1)	lout_max / %	3,5 kHz	165	184	206	222	250	270	
		7 kHz	109	124	139	150	174	192	
		14 kHz	54	63	70	78	93	103	
		1,5 kHz	205	227	250	268	270	270	
For any and the first of the Manifest Latino and & for	lout_max / %	3 kHz	178	198	221	238	268	270	
Frequenzabhängiger Maximalstrom @ fs		6 kHz	123	139	159	169	194	213	
Basic Time Period = 83,3 µs (Parameter is22=2)		12kHz	63	73	82	90	107	118	
		1,25 kHz	205	227	250	268	270	270	
	1	2,5 kHz	192	213	235	253	270	270	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5 kHz	138	155	174	188	214	233	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	79	91	102	111	131	145	
Tabelle 43: Frequenzabhängiger Maximalstrom für Gerätegröße 19 Lift									

3.5.4 Verlustleistung bei Bemessungsbetrieb Lift-Geräte

Gerätegröße			19
Verlustleistung bei Bemessungsbetrieb	1)	Po / W	698
Tabelle 44: Verlustleistung der Lift-Geräte			

¹⁾ Bemessungsbetrieb entspricht U_N = 400 V; f_{SN}; I_N; f_N = 50 Hz (typischer Wert)

GERÄTEDATEN DER LIFT-GERÄTE

3.5.5 Absicherung der Antriebsstromrichter Lift-Geräte

	Max. Größe der Sicherung / A								
Geräte-	U _N = gG (IEC)		<i>U</i> _N = 480V Class "J"		<i>U</i> _N = 480V gR				
größe	SCCR 30 kA	SC	CR	SCCR 30 kA	Tun				
	SCCR 30 KA	5kA	10 kA	SCCR 30KA	Тур				
					SIBA 20 189 20.80				
19	80	70	70	70	_	_	80	80	EATON 170M1366
					LITTELFUSE L70QS080				
Tabelle 4	Tabelle 45: Absicherungen der Lift-Geräte								

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30 kA eff. geeignet.

3.6 Allgemeine elektrische Daten

3.6.1 Schaltfrequenz und Temperatur der Lift-Geräte

Gerätegröße			19		
Bemessungsschaltfrequenz	1)	fsn / kHz	4		
Max. Schaltfrequenz	1)	fs_max / kHz	16		
Min. Schaltfrequenz	1)	fs_min / kHz	2		
Max. Kühlkörpertemperatur		Ths / °C	90		
Temperatur zur Schaltfrequenzreduzierung		T _{DR} / °C	80		
Temperatur zur Schaltfrequenzerhöhung		Tur / °C	70		
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		<i>Тем</i> / °C	85		
Tabelle 46: Schaltfrequenz und Temperatur für Lift-Geräte					

Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

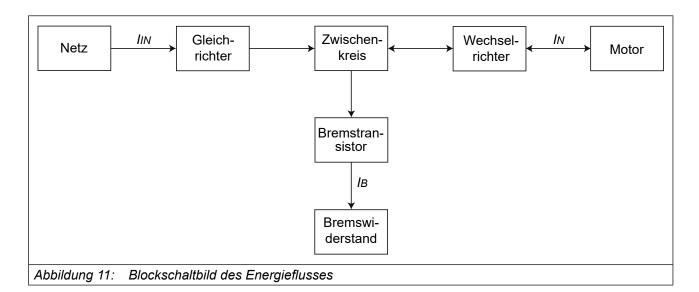
Die Antriebsstromrichterkühlung ist so ausgelegt, dass bei Bemessungsbedingungen die Kühlkörperübertemperaturschwelle nicht überschritten wird. Eine Schaltfrequenz größer der Bemessungsschaltfrequenz erzeugt auch höhere Verluste und damit eine höhere Kühlkörpererwärmung.

Erreicht die Kühlkörpertemperatur eine kritische Schwelle (*TDR*), kann die Schaltfrequenz automatisch schrittweise reduziert werden. Damit wird verhindert, dass der Antriebsstromrichter wegen Übertemperatur des Kühlkörpers abschaltet. Unterschreitet die Kühlkörpertemperatur *TUR* wird die Schaltfrequenz wieder auf den Sollwert angehoben. Bei der Temperatur *TEM* wird die Schaltfrequenz sofort auf Bemessungsschaltfrequenz reduziert. Damit diese Funktion greift, muss "Derating" aktiviert sein.

3.6.2 DC-Zwischenkreis / Bremstransistorfunktion

Aktivierung der Bremstransistorfunktion

Um den Bremstransistor verwenden zu können, muss die Funktion mit dem Parameter "is 30 braking transistor function" aktiviert werden.


Für weitere Informationen => F6 Programmierhandbuch.

ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters

▶ Der minimale Bremswiderstandswert darf nicht unterschritten werden!

ACHTUNG

Zerstörung des Antriebsstromrichter!

Tritt der Fehler "ERROR GTR7 always ON" auf, wird die Stromaufnahme über die Netzeingangsbrücke der AC-Versorgung intern weggeschaltet.

▶ Der Antriebsstromrichter muss innerhalb von 5 Minuten galvanisch vom Versorgungsnetz getrennt werden!

3.6.2.1 DC-Zwischenkreis / Bremstransistorfunktion der Lift-Geräte

Gerätegröße			19
Zwischenkreis Bemessungsspannung		110 1 111	EGE
@ U _N = 400V		UN_dc / V	565
Zwischenkreis Bemessungsspannung		11	690
@ U _{N_UL} = 480V		UN_dc_UL / V	680
Zwischenkreis Arbeitsspannungsbereich		Uin_dc / V	390780
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V	240
DC-Abschaltpegel "Fehler! Überspannung"		Uop / V	840
DC-Schaltpegel Bremstransistor	1)	U _B / V	780
Max. Bremsstrom		I _{B_max} / A	105
Bremstransistor	2)		Max. Spieldauer: 120s; ED: 50%
Min. Bremswiderstandswert		RB_min / Ω	8
Schutzfunktion Bremswiderstand	3)		Feedbacksignalauswertung und
(Error GTR7 always on)	0,		Stromabschaltung
Schutzfunktion für Bremstransistor			Kurzschlussüberwachung
Zwischenkreiskapazität		C/µF	2380
Tabelle 47: DC-Zwischenkreis / Bremstransisto	orfu	ınktion der Lift-	Geräte

¹⁾ Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

3.6.3 Lüfter

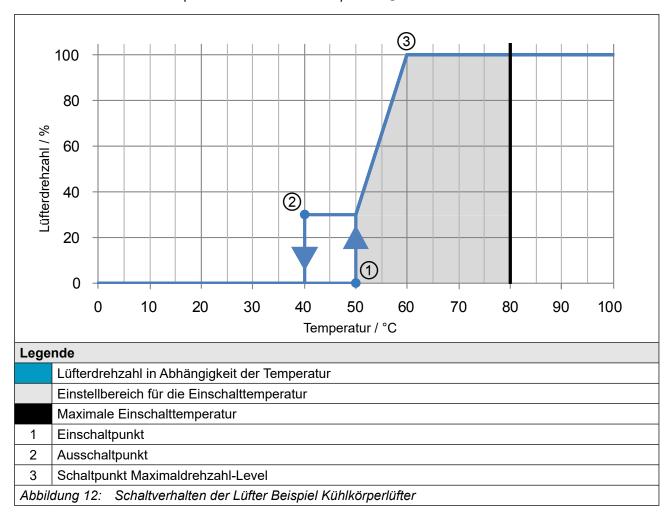
Gerätegröße		19
Innenraumlüfter	Anzahl	1
	Drehzahlvariabel	Ja
Kühlkörperlüfter	Anzahl	2
	Drehzahlvariabel	Ja
Tabelle 48: Lüfter		

Die Lüfter sind drehzahlvariabel. Sie werden automatisch, je nach Einstellung der Temperaturgrenzen in der Software, auf hohe oder niedrige Drehzahl gesteuert.

ACHTUNG

Zerstörung der Lüfter!

► Es dürfen keine Fremdkörper in die Lüfter eindringen!


²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt

³⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

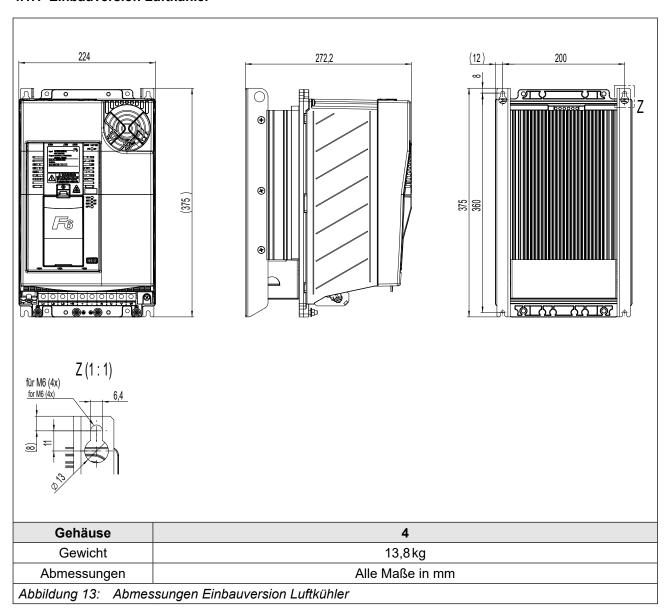
ALLGEMEINE ELEKTRISCHE DATEN

3.6.3.1 Schaltverhalten der Lüfter

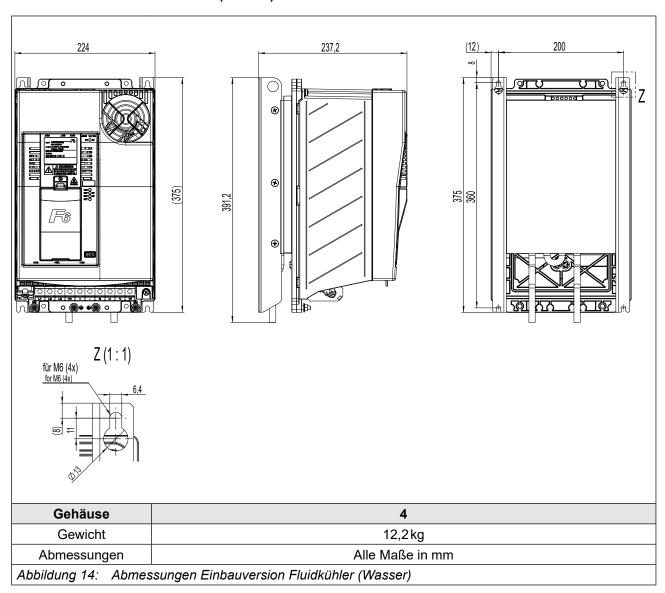
Die Lüfter besitzen verschiedene Ein- und Ausschaltpunkte. Der Schaltpunkt für die Einschalttemperatur ① und das Maximaldrehzahl-Level ③ der Lüfter sind einstellbar. Der Schaltpunkt für die Ausschalttemperatur ② kann nicht verändert werden.

3.6.3.2 Schaltpunkte der Lüfter

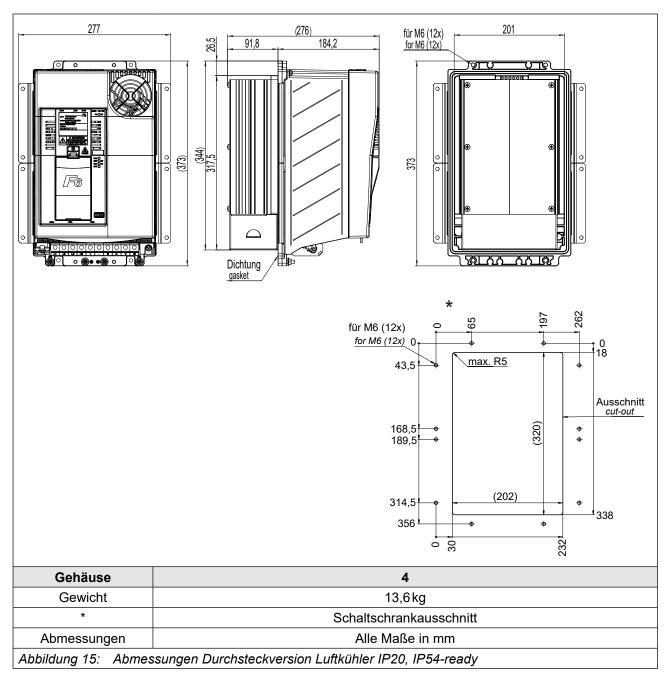
Der Schaltpunkt für die Einschalttemperatur und das Maximaldrehzahl-Level der Lüfter sind einstellbar. In der folgenden Tabelle sind die Standardwerte angegeben.


Lüfter		Kühlkörper	Innenraum		
Einschalttemperatur t/°C		50	45		
Maximaldrehzahl-Level t/°C		60	55		
Tabelle 49: Schaltpunkte der Lüfter					

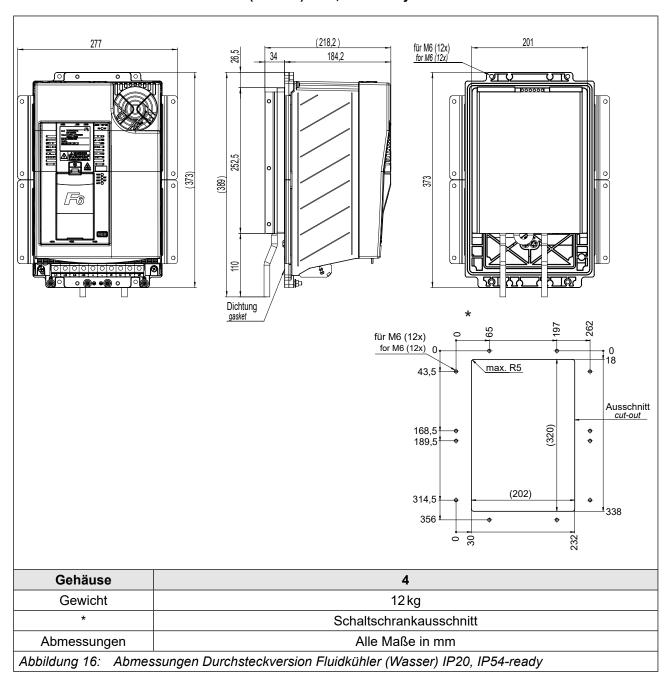
4 Einbau


4.1 Abmessungen und Gewichte

4.1.1 Einbauversion Luftkühler

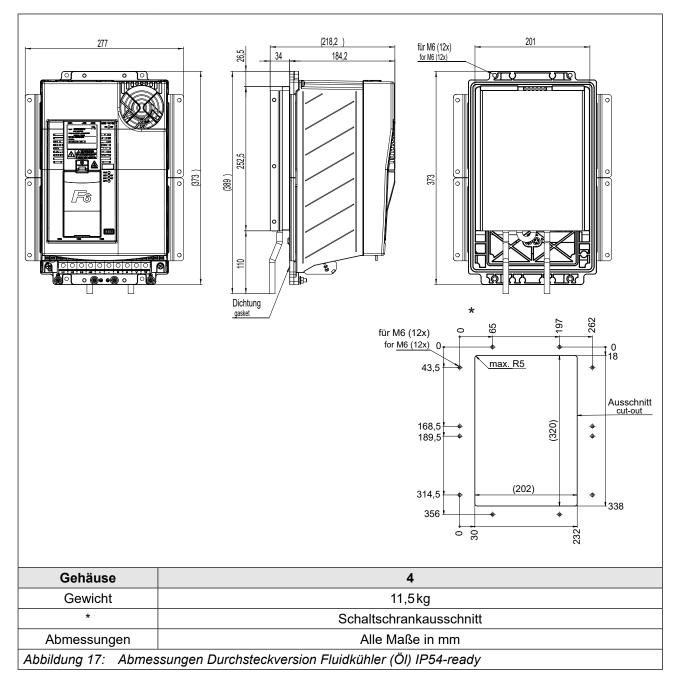

ABMESSUNGEN UND GEWICHTE

4.1.2 Einbauversion Fluidkühler (Wasser)



4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready

ABMESSUNGEN UND GEWICHTE


4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready

74

4.1.5 Durchsteckversion Fluidkühler (Öl) IP54-ready

4.2 Schaltschrankeinbau

4.2.1 Befestigungshinweise

Zur Montage der Antriebsstromrichter wurden folgende Befestigungsmaterialien mit der entsprechenden Güte von KEB getestet.

Benötigtes Material	Anzugsdrehmoment
Sachakantashrauha ISO 4017 MG 0.0	9Nm
Sechskantschraube ISO 4017 - M6 - 8.8	79lb inch
Flache Scheibe ISO 7090 - 6 - 200 HV	_
Tabelle 50: Befestigungshinweise für Einbauversion	

Benötigtes Material	Anzugsdrehmoment
Sashakantashrauha ISO 4017 MG 0.0	9 Nm
Sechskantschraube ISO 4017 - M6 - 8.8	79 lb inch
Flache Scheibe ISO 7090 - 6 - 200 HV	-
Tabelle 51: Befestigungshinweise für Durchsteckversion	

ACHTUNG

Verwendung von anderem Befestigungsmaterial

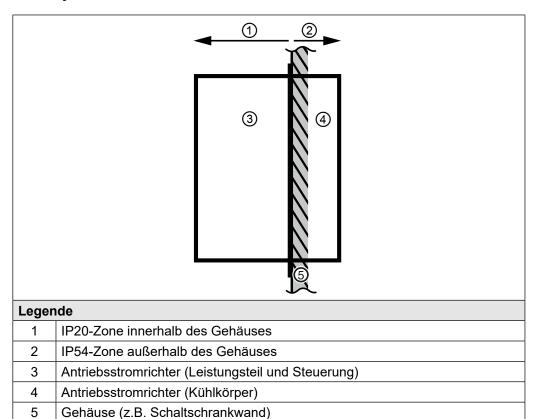
➤ Das alternativ gewählte Befestigungsmaterial muss die oben genannten Werkstoffkennwerte (Güte) und Anzugsdrehmomente einhalten!

Die Verwendung anderer Befestigungsmaterialien erfolgt außerhalb der Kontrollmöglichkeiten von KEB und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

4.2.2 Einbauabstände

Verlustleistung zur Schaltschrankauslegung => "3.3.4 Verlustleistung bei Bemessungsbetrieb 400 V-Geräte". Abhängig von der Betriebsart / Auslastung kann hier ein geringerer Wert angesetzt werden.

Montage des Antriebsstromrichters


Für einen betriebssicheren Betrieb muss der Antriebsstromrichter ohne Abstand auf einer glatten, geschlossenen, metallisch blanken Montageplatte montiert werden.

Maß	Abstand in mm	Abstand in inch
Α	150	6
В	100	4
С	30	1,2
D	0	0
Е	0	0
F 1)	50	2

Abstand zu vorgelagerten Bedienelementen in der Schaltschranktür.

Abbildung 18: Einbauabstände

4.2.3 Montage von IP54-ready Geräten

IP54-Zone: Kühlkörper außerhalb des Gehäuses

Abbildung 19: Montage von IP54-ready Geräten

Die Schutzart IP54 kann ausschließlich im ordnungsgemäß eingebauten Zustand erreicht werden.

Für eine ordnungsgemäße Montage muss eine geeignete IP54-Dichtung (=> "5.3.3 Dichtung IP54-ready Geräte") zwischen Kühlkörper und Gehäuse (z.B. Schaltschrankwand) verbaut werden.

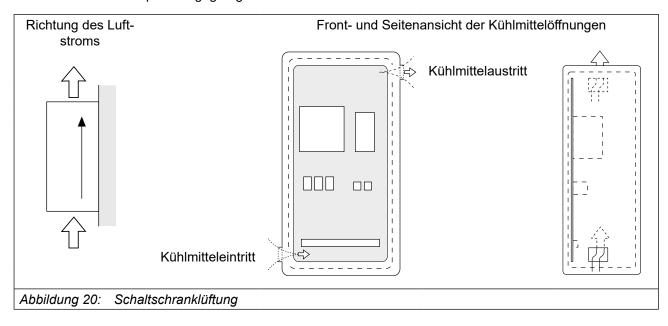
Nach dem Einbau muss die Dichtigkeit überprüft werden. Die Trennung zum Gehäuse entspricht bei ordnungsgemäßer Montage der Schutzart IP54.

Bei Lüftgekühlten Geräten müssen die Lüfter jedoch vor ungünstigen Umgebungseinflüssen geschützt werden.

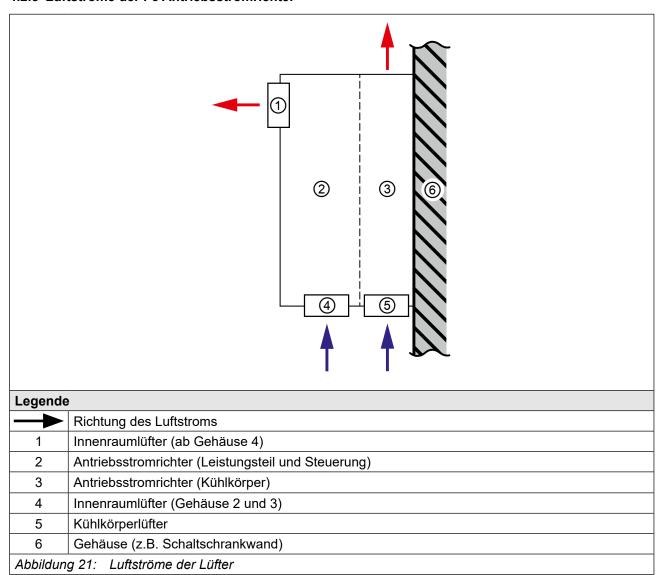
Dazu zählen brennbare, ölige oder gefährliche Dämpfe oder Gase, korrosive Chemikalien, grobe Fremdkörper und übermäßiger Staub. Dies betrifft besonders den Zugang des Kühlkörpers von oben (Luftaustritt). Eisbildung ist unzulässig.

UL: Gerätekühlkörper ist als NEMA Type 1 eingestuft.

IP20-Zone: Gerät innerhalb des Gehäuses

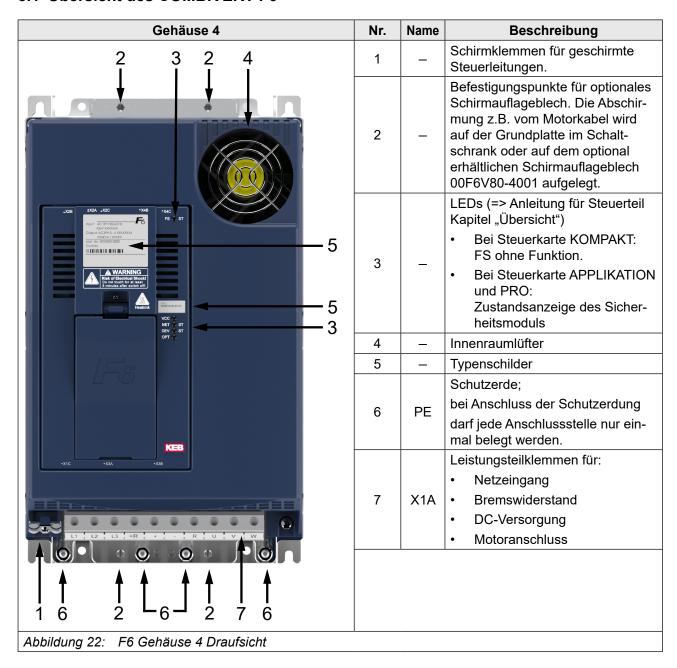

Dieser Teil ist zum Einbau in ein für die angestrebte Schutzart geeignetes Gehäuse (z.B. Schaltschrank) vorgesehen.

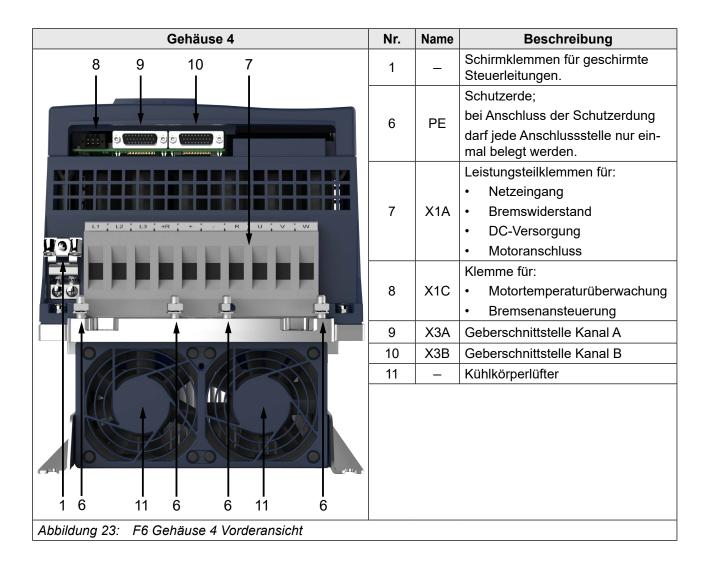
Die Leistungsanschlüsse sind ausgenommen => "3.1.1 Klimatische Umweltbedingungen".


4.2.4 Schaltschranklüftung

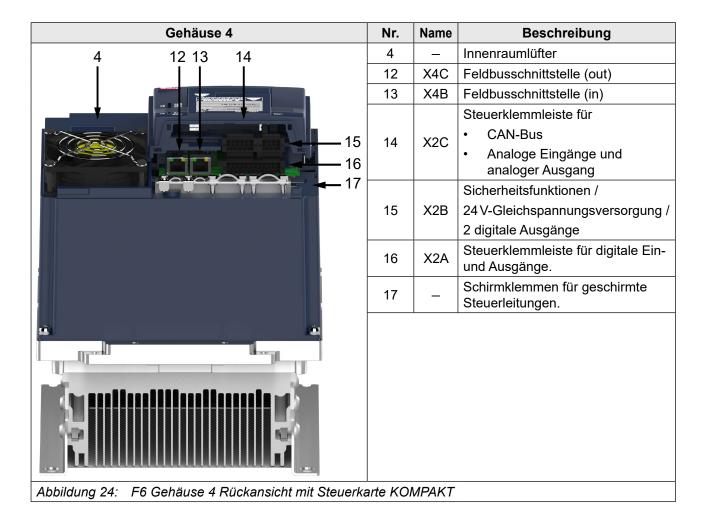
Wenn konstruktionsbedingt nicht auf eine Innenraumlüftung des Schaltschrankes verzichtet werden kann, muss durch entsprechende Filter der Ansaugung von Fremdkörpern entgegen gewirkt werden.

SCHALTSCHRANKEINBAU


4.2.5 Luftströme der F6 Antriebsstromrichter



5 Installation und Anschluss


5.1 Übersicht des COMBIVERT F6

ÜBERSICHT DES COMBIVERT F6

Weitere Informationen sind in der jeweiligen Steuerkartenanleitung zu finden.

Gebrauchsanleitung COMBIVERT F6 Steuerkarte KOMPAKT www.keb.de/fileadmin/media/Manuals/dr/ma dr f6-cu-k-inst-20144795 de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte APPLIKATION www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte PRO www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_de.pdf

5.2 Anschluss des Leistungsteils

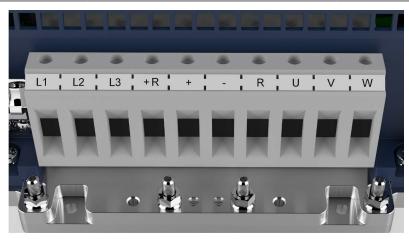
ACHTUNG

Zerstörung des Antriebsstromrichters!

▶ Niemals Netzeingang und Motorausgang vertauschen!

5.2.1 Anschluss der Spannungsversorgung

Der COMBIVERT F6 Gehäuse 4 kann vom Netz über die Klemmen L1, L2 und L3 gespeist werden.



Minimale Wartezeit zwischen zwei Einschaltvorgängen 5 Minuten!

Zyklisches Aus- und Einschalten des Gerätes führt zur temporären Hochohmigkeit des Kaltleiters (PTC) im Eingang. Nach Abkühlung des PTC ist eine erneute Inbetriebnahme ohne Einschränkung möglich.

5.2.1.1 Klemmleiste X1A

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
L1 L2 L3 +R + - R	Netzanschluss 3-phasig Anschluss für Bremswiderstand (zwischen +R und R) DC-Klemmen Anschluss für Bremswiderstand (zwischen +R und R) Motoranschluss	Flexible Leitung mit Aderendhülse 1,535 mm² (Ohne Aderendhülse bis max. 50 mm²) Bei 2 Leitern max. 16 mm² UL: Flexible Leitung ohne Aderendhülse AWG 161	3,23,7 Nm 2832 lb inch	Für IEC: 2 Für UL: 1
Abbildung	 g 26: Klemmleiste X1A			

5.2.2 Schutz- und Funktionserde

Schutz- und Funktionserde dürfen nicht an derselben Klemme angeschlossen werden.

5.2.2.1 Schutzerdung

Die Schutzerde (PE) dient der elektrischen Sicherheit insbesondere dem Personenschutz im Fehlerfall.

Elektrischer Schlag durch Falschdimensionierung!

► Erdungsquerschnitt ist entsprechend *DIN IEC 60364-5-54* zu wählen!

Name	Funktion	Anschlusstyp	Anzugsdrehmoment				
PE,	Anschluss für Schutzerde	M6-Gewindestift mit Mutter für 6,5 mm Kabelschuhe	6,112Nm 54106lb inch				
Abbildung 27: Anschluss für Schutzerde							

Fehlerhafte Montage des PE-Anschlusses

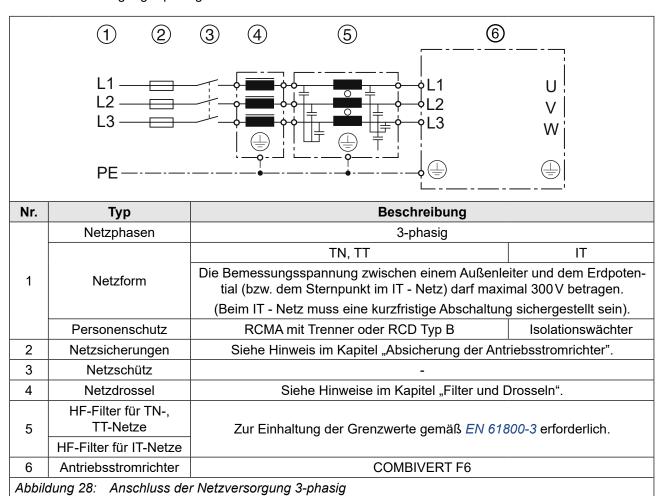
Als Anschluss für die Schutzerde dürfen nur die M6-Gewindestifte mit Mutter verwendet werden!

5.2.2.2 Funktionserdung

Eine Funktionserdung kann zusätzlich notwendig sein, wenn aus EMV-Gründen weitere Potentialausgleiche zwischen Geräten oder Teilen der Anlage zu schaffen sind.

Wird der Antriebsstromrichter EMV-technisch verdrahtet, ist eine zusätzliche Funktionserde (FE) nicht erforderlich.

Die Funktionserde darf nicht grün/gelb verdrahtet werden!


Gebrauchsanleitung EMV- und Sicherheitshinweise. www.keb.de/fileadmin/media/Manuals/dr/emv/0000ndb0000.pdf

5.2.3 AC-Netzanschluss

5.2.3.1 AC-Versorgung 3-phasig

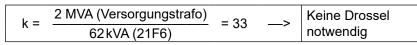
5.2.3.2 Netzzuleitung

Der Leiterquerschnitt der Netzzuleitung wird von folgenden Faktoren bestimmt:

- Eingangsstrom des Antriebsstromrichters
- Verwendeter Leitungstyp
- Verlegeart und Umgebungstemperaturen
- Den vor Ort gültigen Elektrovorschriften

Der Projektierer ist für die Auslegung verantwortlich.

ANSCHLUSS DES LEISTUNGSTEILS


5.2.3.3 Hinweis zu harten Netzen

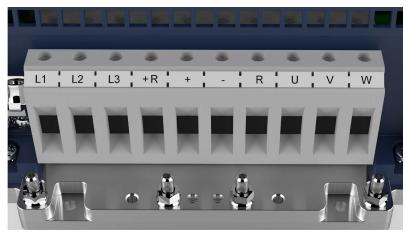
Bei Antriebsstromrichtern mit Spannungszwischenkreis hängt die Lebensdauer von der Höhe der DC-Spannung, der Umgebungstemperatur sowie von der Strombelastung der Elektrolytkondensatoren im Zwischenkreis ab. Durch den Einsatz von Netzdrosseln kann die Lebensdauer der Kondensatoren, speziell bei Dauerbelastung (S1-Betrieb) des Antriebes, bzw. beim Anschluss an "harte" Netze, wesentlich erhöht werden.

Der Begriff "hartes" Netz sagt aus, dass die Knotenpunktleistung (S_{Net}) des Netzes im Vergleich zur Ausgangsbemessungsscheinleistung des Antriebsstromrichters (S_{out}) sehr groß ist (>>200).

$$k = \frac{S_{Net}}{S_{out}} >> 200$$

z.B.

Eine Auflistung von Filtern und Drosseln => "5.3.1 Filter und Drosseln"


5.2.4 DC-AnschlussKlemmleiste X1A DC-Anschluss

ACHTUNG

DC-Betrieb

▶ Der DC-Betrieb ist nur nach Rücksprache mit KEB zulässig!

5.2.4.1 Klemmleiste X1A DC-Anschluss

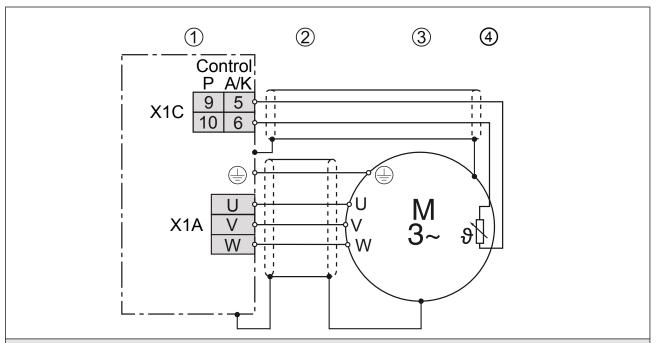
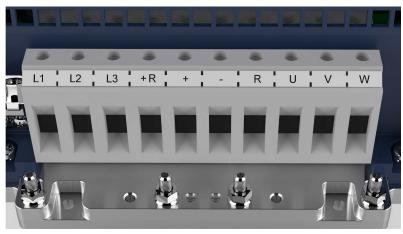

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
+	DC-Klemmen	Flexible Leitung mit Aderendhülse 1,535 mm² (Ohne Aderendhülse bis max. 50 mm²) Bei 2 Leitern max. 16 mm² UL: Flexible Leitung ohne Aderendhülse AWG 161	3,23,7 Nm 2832 lb inch	Für IEC: 2 Für UL: 1

Abbildung 29: Klemmleiste X1A DC-Anschluss

ANSCHLUSS DES LEISTUNGSTEILS

5.2.5 Anschluss des Motors

5.2.5.1 Verdrahtung des Motors


Legende

- 1 KEB COMBIVERT
- Motorleitung, Schirm beidseitig und großflächig auf den metallisch blanken Rahmen oder die Montageplatte auflegen (ggf. Lack entfernen)
- 3 Drehstrommotor
- 4 | Temperaturüberwachung (optional) => Gebrauchsanleitung "Steuerteil"

Abbildung 30: Verdrahtung des Motors

5.2.5.2 Klemmleiste X1A Motoranschluss

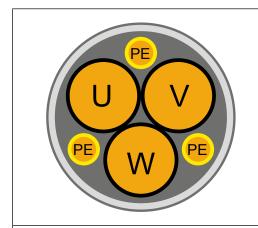

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
U		Flexible Leitung mit Aderendhülse 1,535 mm²		
V	V Motoranschluss	(Ohne Aderendhülse bis max. 50 mm²) Bei 2 Leitern max. 16 mm²	3,23,7 Nm 2832 lb inch	Für IEC: 2
W		UL: Flexible Leitung ohne Aderendhülse AWG 161		

Abbildung 31: Klemmleiste X1A Motoranschluss

5.2.5.4 Auswahl der Motorleitung

Bei kleinen Leistungen in Verbindung mit langen Motorleitungslängen spielt die richtige Verdrahtung sowie die Motorleitung selbst eine wichtige Rolle. Kapazitätsarme Leitungen (Phase/Phase < 65 pF/m, Phase/Schirm < 120 pF/m) am Antriebsstromrichterausgang haben folgende Auswirkungen:

- Ermöglichen größere Motorleitungslängen ("5.2.5.3 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung")
- Bessere EMV-Eigenschaften (Reduktion der Gleichtakt Ausgangsströme gegen Erde)

Bei großen Motorleistungen (ab 30 kW) müssen geschirmte Motorleitungen mit symmetrischem Aufbau verwendet werden. Bei diesen Leitungen ist der Schutzleiter gedrittelt und gleichmäßig zwischen den Phasenleitungen angeordnet. Sofern die örtlichen Bestimmungen dies zulassen, kann eine Leitung ohne Schutzleiter verwendet werden. Dieser muss dann extern verlegt werden. Bestimmte Leitungen lassen auch den Schirm zur Verwendung als Schutzleiter zu. Hierzu sind die Angaben des Leitungsherstellers zu beachten!

Abbildung 32: Symmetrische Motorleitung

5.2.5.3 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung

Die maximale Motorleitungslänge ist abhängig von der Kapazität der Motorleitung sowie von der einzuhaltenden Störaussendung. Hier sind externe Maßnahmen zu ergreifen (z.B. der Einsatz eines Netzfilters). Die folgenden Angaben gelten für den Betrieb unter Bemessungsbedingungen und der Verwendung der unter => "5.3.1 Filter und Drosseln" aufgeführten KEB Filter.

	Max. Motorleitungslänge geschirmt
	gemäß EN 61800-3
Geräte-	Kategorie C2
größe	Motorleitung (kapazitätsarm)
18	
19	
20	50 m
21	
22	
Tabelle 52	2: Maximale Motorleitungslänge

Durch den Einsatz von Motordrosseln oder Motorfiltern kann sich die Leitungslänge deutlich erhöhen. KEB empfiehlt den Einsatz ab einer Leitungslänge von 25 m.

5.2.5.5 Motorleitungslänge bei Parallelbetrieb von Motoren

Die resultierende Motorleitungslänge bei Parallelbetrieb von Motoren, bzw. bei Parallelverlegung durch Mehraderanschluss ergibt sich aus folgender Formel:

Resultierende Motorleitungslänge = ∑Einzelleitungslängen x √Anzahl der Motorleitungen

5.2.5.6 Motorleitungsquerschnitt

Der Motorleitungsquerschnitt ist abhängig

- von der Form des Ausgangsstroms (z.B. Oberwellengehalt).
- vom realen Effektivwert des Motorstroms.
- · von der Leitungslänge.
- vom Typ der verwendeten Leitung.
- von Umgebungsbedingungen wie Bündelung und Temperatur.

5.2.5.7 Verschaltung des Motors

ACHTUNG

Fehlerhaftes Verhalten des Motors!

▶ Generell sind immer die Anschlusshinweise des Motorenherstellers gültig!

ACHTUNG

Motor vor Spannungsspitzen schützen!

▶ Antriebsstromrichter schalten am Ausgang mit einem hohen du/dt. Insbesondere bei langen Motorleitungen (>15 m) können dadurch Spannungsspitzen am Motor auftreten, die dessen Isolationssystem gefährden. Zum Schutz des Motors kann eine Motordrossel, ein du/ dt-Filter oder ein Sinusfilter unter Berücksichtigung der Betriebsart eingesetzt werden.

ANSCHLUSS DES LEISTUNGSTEILS

5.2.5.8 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)

Im COMBIVERT ist eine umschaltbare Temperaturauswertung implementiert.

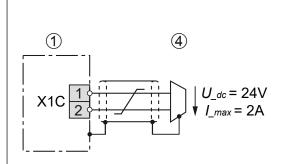
Es stehen verschiedene Betriebsarten der Auswertung zur Verfügung. Diese sind abhängig von der Steuerkarte (=> Gebrauchsanleitung "Steuerteil").

Die gewünschte Betriebsart ist per Software einstellbar (dr33). Wird die Auswertung nicht benötigt, muss sie per Software (mit Parameter pn33 = 7) deaktiviert werden => *Programmierhandbuch*.

X1C	PIN	Name	Beschreibung		
	1	BR+	Bremsenansteuerung / Ausgang +		
	2	BR-	Bremsenansteuerung / Ausgang -		
	3	reserviert	-		
2 4 6	4	reserviert	-		
	5	TA1	Temperaturerfassung / Ausgang +		
	6	TA2	Temperaturerfassung / Ausgang -		
1 3 5					
Abbildung 33: Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT					

Abbildung 33: Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT

X1C	PIN	Name	Beschreibung		
	1	BR+	Bremsenansteuerung / Ausgang +		
	2	BR-	Bremsenansteuerung / Ausgang -		
	3	0V	Zur Vergergung der Bückmeldegingenge		
	4	24Vout	Zur Versorgung der Rückmeldeeingänge		
2 4 6 8 10	5	DIBR1	Rückmeldeeingang 1 für Bremse oder Relais		
	6	DIBR2	Rückmeldeeingang 2 für Bremse oder Relais		
	7	reserviert	_		
	8	reserviert	_		
	9	TA1	Temperaturerfassung / Eingang +		
	10	TA2	Temperaturerfassung / Eingang -		
Abbildung 34: Klemmleiste X1C für Steuerkarte PRO					


ACHTUNG

Störungen durch falsche Leitungen oder Verlegung!

Fehlfunktionen der Steuerung durch kapazitive oder induktive Einkopplung.

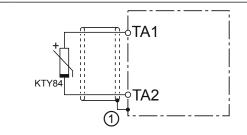
- ► Leitungen vom Motortemperatursensor (auch geschirmt) nicht zusammen mit Steuerleitungen verlegen.
- ► Leitungen vom Motortemperatursensor innerhalb der Motorleitungen nur mit doppelter Abschirmung zulässig!

Bei Steuerkarte APPLIKATION und KOMPAKT:

Die Spannung zur Ansteuerung einer Bremse ist von der internen Spannungsversorgung entkoppelt. Die Bremse funktioniert nur bei externer Versorgung.

Bei Steuerkarte PRO:

Die Bremse kann sowohl mit interner als auch externer Spannung versorgt werden. Spannungstoleranzen und Ausgangsströme unterscheiden sich bei interner oder externer Spannungsversorgung.


Spezifikation in der jeweiligen

=> Gebrauchsanleitung "Steuerteil" beachten.

COMBIVERT

4 Bremse

Abbildung 35: Anschluss der Bremsenansteuerung

KTY-Sensoren sind gepolte Halbleiter und müssen in Durchlassrichtung betrieben werden!

Die Anode an TA1 und die Kathode an TA2 anschließen! Nichtbeachtung führt zu Fehlmessungen im oberen Temperaturbereich. Ein Schutz der Motorwicklung ist dann nicht mehr gewährleistet.

1 Anschluss über Schirmauflageblech (falls nicht vorhanden, auf der Montageplatte auflegen).

Abbildung 36: Anschluss eines KTY-Sensors

ACHTUNG

Kein Schutz der Motorwicklung bei falschem Anschluss!

- ► KTY-Sensoren in Durchlassrichtung betreiben.
- ► KTY-Sensoren nicht mit anderen Erfassungen kombinieren.

Weitere Hinweise zur Verdrahtung der Temperaturüberwachung und der Bremsenansteuerung sind in der jeweiligen Steuerteilanleitung zu beachten...

5.2.6 Anschluss und Verwendung von Bremswiderständen

A VORSICHT

Brandgefahr beim Einsatz von Bremswiderständen!

▶ Die Brandgefahr kann durch den Einsatz von "eigensicheren Bremswiderständen" bzw. durch Nutzung geeigneter Überwachungsfunktionen / -schaltungen deutlich verringert werden.

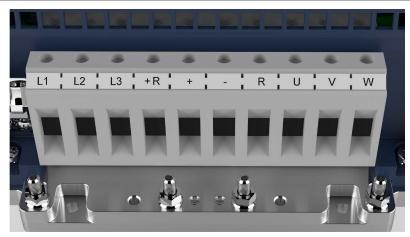
ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters!

► Der minimale Bremswiderstandswert darf nicht unterschritten werden => "3.2 Gerätedaten der 230V-Geräte"

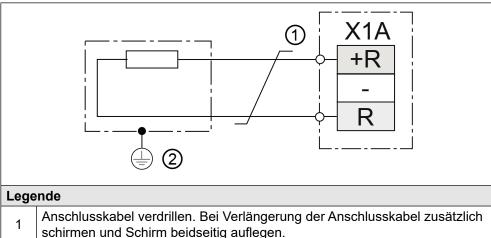
A VORSICHT


Heiße Oberflächen durch Belastung des Bremswiderstands!

Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Oberfläche vor Berührung prüfen.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.

5.2.6.1 Klemmleiste X1A Anschluss Bremswiderstand



Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
+R		Flexible Leitung mit Aderendhülse 1,535 mm²		
	Anschluss für	(Ohne Aderendhülse bis max. 50 mm²)	3,23,7 Nm	Für IEC: 2
-	Bremswiderstand (zwischen +R und R)	Bei 2 Leitern max. 16 mm²	2832 lb inch	Für UL: 1
R		UL: Flexible Leitung ohne Aderendhülse		
		AWG 161		

Abbildung 37: Klemmleiste X1A Anschluss Bremswiderstand

ANSCHLUSS DES LEISTUNGSTEILS

5.2.6.2 Verwenfung eigensicherer Bremswiderstände

- schirmen und Schirm beidseitig auflegen.
- 2 Die Schutzerdung erfolgt über das Gehäuse.

Abbildung 38: Verwendung eigensicherer Bremswiderstände

Eigensichere Bremswiderstände verhalten sich im Fehlerfall wie eine Schmelzsicherung. Sie unterbrechen sich ohne Brandgefahr.

Weitere Hinweise zu eigensicheren Bremswiderständen www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-brakingresistors-20106652_de.pdf

5.2.6.3 Verwendung eines nicht eigensicheren Bremswiderstands

WARNUNG

Verwendung nicht eigensicherer Bremswiderstände

Brand- oder Rauchentwicklung bei Überlastung oder Fehler!

- ▶ Nur Bremswiderstände mit Temperatursensor verwenden.
- Temperatursensor auswerten.
- Fehler am Antriebsstromrichter auslösen (z.B. externer Eingang).
- Eingangsspannung wegschalten (z.B. Eingangsschütz).
- Anschlussbeispiele für nicht eigensichere Bremswiderstände
- => Gebrauchsanleitung "Installation Bremswiderstände"

Gebrauchsanleitung "Installation Bremswiderstände" www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf

5.3 Zubehör

5.3.1 Filter und Drosseln

Spannungsklasse	Antriebsstromrichter- größe	HF-Filter	Netzdrossel 50 Hz / 4% Uk			
230 V	18	20E6T60-3000	18Z1B03-1000			
Tabelle 53: Filter und Drosseln für 230V-Geräte						

Spannungsklasse	Antriebsstromrichter- größe	HF-Filter	Netzdrossel 50 Hz / 4% Uk			
	19	20E6T60-3000	19Z1B04-1000			
400 V	20	20E6T60-3000	20Z1B04-1000			
	21	22E6T60-3000	21Z1B04-1000			
	22	22E6T60-3000	22Z1B04-1000			
Tabelle 54: Filter und Drosseln für 400V-Geräte						

Die angegebenen Filter und Drosseln sind für Bemessungsbetrieb ausgelegt.

5.3.2 Schirmauflageblech Anbausatz

Bezeichnung	Materialnummer
Schirmauflageblech Anbausatz	00F6V80-4001
Tabelle 55: Schirmauflageblech Anbausatz	·

5.3.3 Dichtung IP54-ready Geräte

Bezeichnung	Materialnummer		
Flachdichtung IP54	40F6T45-0004		
Tabelle 56: Dichtung für IP54-ready Geräte			

5.3.4 Kühlmittelanschlüsse

Bezeichnung	Materialnummer			
Funktionsmutter für 10mm Rohr	0000651-FM10			
Tabelle 57: Dichtung für IP54-ready Geräte				

ANSCHLUSS DES LEISTUNGSTEILS

5.3.5 Nebenbaubremswiderstände

Technische Daten und Auslegung zu eigensicheren Bremswiderständen

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_de.pdf

Technische Daten und Auslegung zu nichteigensicheren Bremswiderständen

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf

6 Betrieb von flüssigkeitsgekühlten Geräten

6.1 Wassergekühlte Geräte

Bei Applikationen in denen prozessbedingt Kühlflüssigkeit vorhanden ist, bietet sich die Anwendung von wassergekühlten COMBIVERT Antriebsstromrichtern an. Bei der Verwendung sind jedoch nachfolgende Hinweise unbedingt zu beachten.

6.1.1 Kühlkörper und Betriebsdruck

Bauart	Material	max. Betriebsdruck	Anschluss
Aluminium Kühlkörper mit Edelstahlrohren	Edelstahl 1.4404		=> "6.1.4 Anschluss des Wasserkühlsys- tems"

ACHTUNG

Vermeidung von Verformung des Kühlkörpers!

- ▶ Um eine Verformung des Kühlkörpers und die damit verbundenen Folgeschäden zu vermeiden, darf der jeweils angegebene maximale Betriebsdruck auch von Druckspitzen kurzzeitig nicht überschritten werden.
- ► Es ist die Druckgeräterichtlinie 2014/68/EU zu beachten!

6.1.2 Materialien im Kühlkreislauf

Für die Verschraubungen und auch im Kühlkreis befindliche metallische Gegenstände, die mit der Kühlflüssigkeit (Elektrolyt) in Kontakt stehen, ist ein Material zu wählen, welches eine geringe Spannungsdifferenz zum Kühlkörper bildet, damit keine Kontaktkorrosion und/ oder Lochfraß entsteht (elektrochemische Spannungsreihe, siehe folgende Tabelle). Der spezifische Einsatzfall ist in Abstimmung des gesamten Kühlkreislaufes vom Kunden selbst zu prüfen und hinsichtlich der Verwendbarkeit der eingesetzten Materialien entsprechend einzustufen. Bei Schläuchen und Dichtungen ist darauf zu achten, dass halogenfreie Materialien verwendet werden.

Eine Haftung für entstandene Schäden durch falsch eingesetzte Materialien und daraus resultierender Korrosion kann nicht übernommen werden!

Material	gebildetes lon	Normpotenzial	Material	gebildetes lon	Normpotenzial
Lithium	Li+	-3,04 V	Nickel	Ni2+	-0,25V
Kalium	K+	-2,93 V	Zinn	Sn2+	-0,14 V
Calcium	Ca2+	-2,87 V	Blei	Pb3+	-0,13 V
Natrium	Na+	-2,71 V	Eisen	Fe3+	-0,037 V
Magnesium	Mg2+	-2,38 V	Wasserstoff	2H+	0,00 V
Titan	Ti2+	-1,75V	Edelstahl 1.4404	diverse	0,20,4 V
Aluminium	Al3+	-1,67 V	Kupfer	Cu2+	0,34 V
Mangan	Mn2+	-1,05 V	Kohlenstoff	C2+	0,74 V
Zink	Zn2+	-0,76V	Silber	Ag+	0,80 V
				weiter	auf nächster Seite

101

WASSERGEKÜHLTE GERÄTE

Material	gebildetes Ion	Normpotenzial	Material	gebildetes Ion	Normpotenzial		
Chrom	Cr3+	-0,71 V	Platin	Pt2+	1,20 V		
Eisen	Fe2+	-0,44 V	Gold	Au3+	1,42 V		
Cadmium	Cd2+	-0,40 V	Gold	Au+	1,69 V		
Cobald Co2+ -0,28 V							
Tabelle 58: Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff							

6.1.3 Anforderungen an das Kühlmittel

Die Anforderungen an das Kühlmittel hängen von den Umgebungsbedingungen, sowie vom verwendeten Kühlsystem ab.

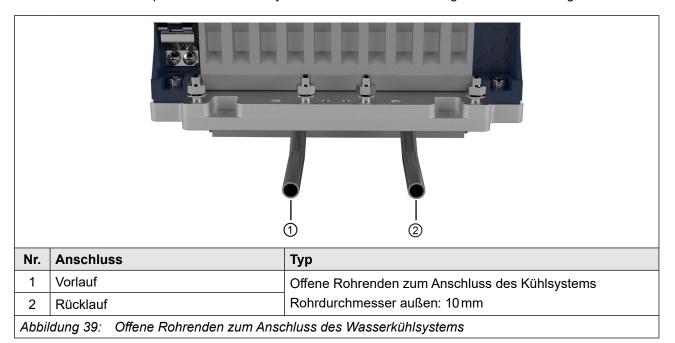
Generelle Anforderungen an das Kühlmittel:

Anforderung	Beschreibung
Normen	Korrosionsschutz nach <i>DIN EN 12502-15</i> , Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen nach <i>VGB R 455 P</i>
VGB Kühlwasserrichtlinie	Die VGB Kühlwasserrichtlinie (<i>VGB R 455 P</i>) enthält Hinweise über gebräuchliche Verfahrenstechniken der Kühlung. Inbesondere werden die Wechselwirkungen zwischen dem Kühlwasser und den Komponenten des Kühlsystems beschrieben.
Abrasivstoffe	Abrasivstoffe, wie sie in Scheuermitteln (Quarzsand) verwendet werden, setzen den Kühlkreislauf zu.
Hartes Wasser	Kühlwasser darf keine Wassersteinablagerungen oder lockere Ausscheidungen verursachen. Die Gesamthärte sollte zwischen 720 °dH liegen, die Karbonhärte bei 310 °dH.
Weiches Wasser	Weiches Wasser (<7°dH) greift die Werkstoffe an.
Frostschutz	Bei Applikationen, bei denen der Kühlkörper oder die Kühlflüssigkeit Temperaturen unter 0°C ausgesetzt ist, muss ein entsprechendes Frostschutzmittel eingesetzt werden. Zur besseren Verträglichkeit mit anderen Additiven am Besten Produkte von einem Hersteller verwenden.
	KEB empfiehlt das Frostschutzmittel Antifrogen N von der Firma Clariant mit einem maximalen Volumenanteil von 52 %.
Korrosionsschutz	Als Korrosionsschutz können Additive eingesetzt werden. In Verbindung mit Frostschutz muss der Frostschutz eine Konzentration von 2025 Vol% haben, um eine Veränderung der Additive zu verhindern.
	Alternativ kann ein Frostschutz / Glykol mit einer Konzentration von 20% max. Vol 52% eingesetzt werden. Wird ein Frostschutz verwendet muss das Wasser nicht zusätzlich mit Additiven versehen werden.
Tabelle 59: Anforderu	ingen an das Kühlmittel

Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Anforderung	Beschreibung			
Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Wasserfilter entgegen gewirkt werden.			
Salzkonzentration	Bei halboffenen Systemen kann durch Verdunstung der Salzgehalt ansteigen. Dadurch wird das Wasser korrosiver. Zufügen von Frischwasser und Entnahme von Nutzwasser wirkt dem entgegen.			
Algen und Schleimbak- terien	Durch die erhöhte Wassertemperatur und der Kontakt mit Luftsauerstoff können sich Algen und Schleimbakterien bilden. Diese setzten die Filter zu und behindern somit den Wasserfluss. Biozid-haltige Additive können dies verhindern. Insbesondere bei längerem Stillstand des Kühlkreislaufs ist hier vorzubeugen.			
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.			
Tabelle 60: Besondere Anforderungen bei offenen und halboffenen Kühlsystemen				

Schäden am Gerät, die durch verstopfte, korrodierte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Gewährleistungsansprüche.


6.1.4 Anschluss des Wasserkühlsystems

Die Anbindung an das Kühlsystem kann als geschlossener oder offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung der Kühlflüssigkeit sehr gering ist. Vorzugsweise sollte auch eine Überwachung des pH-Wertes der Kühlflüssigkeit installiert werden.

Beim erforderlichen Potenzialausgleich ist auf einen entsprechenden Leiterquerschnitt zu achten, um elektrochemische Vorgänge möglichst gering zu halten

=> "6.1.2 Materialien im Kühlkreislauf".

Weitere Elemente im Kühlkreislauf wie Pumpe, Absperrventile, Entlüftung usw. sind entsprechend dem Kühlsystem sowie den örtlichen Gegebenheiten zuzufügen.

Zum Anschluss des Kühlsystems empfiehlt KEB dein Einsatz von Funktionsmuttern. Geeignete Funktionsmuttern sind im folgendem Kapitel aufgeführt => "5.3.4 Kühlmittelanschlüsse".

Um den Volumenstrom im Kühlsystem zu überwachen empfiehlt KEB den Einsatz eines Volumenstromwächters.

6.1.5 Kühlmitteltemperatur und Betauung

Die Vorlauftemperatur sollte in Abhängigkeit vom Volumenstrom so gewählt werden, dass bei Bemessungsbetrieb die Kühlkörpertemperatur immer 10 K unter dem Übertemperaturpegel (OH) liegt. Dadurch wird ein sporadisches Abschalten vermieden.

Die maximale Kühlkörpertemperatur ist dem Kapitel => "3.4.1 Schaltfrequenz und Temperatur"

6.1.5.1 Betauung

Eine Temperaturdifferenz zwischen Antriebsstromrichter und Umgebungstemperatur kann bei hoher Luftfeuchtigkeit zu Betauung führen.

Betauung stellt eine Gefahr für den Antriebsstromrichter dar. Durch entstehende Kurzschlüsse kann der Antriebsstromrichter zerstört werden.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

▶ Der Anwender muss sicherstellen, dass jegliche Betauung vermieden wird!

6.1.5.2 Zuführung temperierter Kühlflüssigkeit

- Die Zuführung temperierter Kühlflüssigkeit ist möglich durch die Verwendung von Heizungen im Kühlkreislauf zur Steuerung der Kühlflüssigkeitstemperatur.
- Die folgende Taupunkttabelle zeigt die Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

Luftfeuchtigkeit / %	10	20	30	40	50	60	70	80	90	100
Umgebungs-										
temperatur / °C										
-25	-45	-40	-36	-34	-32	-30	-29	-27	-26	-25
-20	-42	-36	-32	-29	-27	-25	-24	-22	-21	-20
-15	-37	-31	-27	-24	-22	-20	-18	-16	-15	-15
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11	-10
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6	-5
0	-26	-19	-14	-11	-8	-6	-4	-3	-2	0
5	-23	-15	-11	-7	-5	-2	0	2	3	5
10	-19	-11	-7	-3	0	1	4	6	8	9
15	-18	-7	-3	1	4	7	9	11	13	15
20	-12	-4	1	5	9	12	14	16	18	20
25	-8	0	5	10	13	16	19	21	23	25
30	-6	3	10	14	18	21	24	26	28	30
35	-2	8	14	18	22	25	28	31	33	35
40	1	11	18	22	27	31	33	36	38	40
45	4	15	22	27	32	36	38	41	43	45
50	8	19	28	32	36	40	43	45	48	50
	Kühlmitteleintrittstemperatur / °C									

rapelle 61: iaupunkttabelle

Informationen zum Kühlflüssigkeitsmanagement sind im folgenden Dokument aufgeführt

www.keb.de/fileadmin/media/Techinfo/dr/an/ti_dr_an-liquid-cooling-00004_de.pdf

ACHTUNG

Zerstörung des Kühlkörpers bei Lagerung/ Transport von wassergekühlten Geräten!

Folgende Punkte bei Lagerung von wassergekühlten Geräten beachten:

- ► Kühlkreislauf vollständig entleeren
- ► Kühlkreislauf mit Druckluft ausblasen

ACHTUNG

Zerstörung des Antriebsstromrichters durch Betauung!

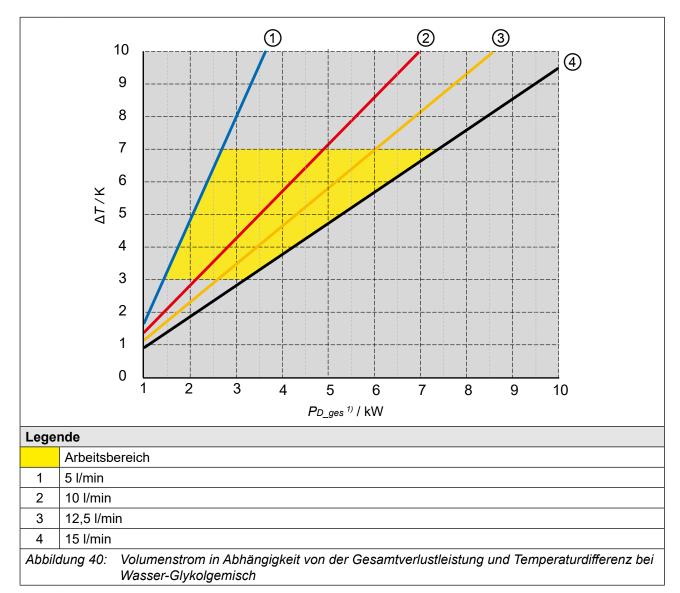
► Nur NC-Ventile verwenden!

6.1.6 Zulässiger Volumenstrom bei Wasserkühlung

Es muss der Volumenstrom der folgenden Tabelle eingehalten werden.

Zulässiger Volumenstrom					
Min. Volumenstrom	Q_min / I/min	5			
Max. Volumenstrom	Q_ _{max} / I/min	15			
Tabelle 62: Zulässiger Volumenstrom bei Wasserkühlung					

ACHTUNG


Zerstörung des Kühlkörpers durch Erosion!

Der maximal zulässige Volumenstrom darf nicht überschritten werden.

6.1.7 Kühlmittelerwärmung

Volumenstrom in Abhängigkeit von der Gesamtverlustleistung und Temperaturdifferenz zwischen Vorlauf und Rücklauf.

¹⁾ P_{D_ges} kann durch Überlast, höhere Schaltfrequenz oder Unterbaubremswiderstände höher als die Verlustleistung P_D bei Bemessungsbetrieb ausfallen.

Der minimale Volumenstrom ist abhängig von der Verlustleistung.

WASSERGEKÜHLTE GERÄTE

6.1.8 Typischer Druckverlust des Kühlkörpers

- Der unten dargestellte Kurvenverlauf gilt für 25°C Vorlauftemperatur und einem Glykolanteil von 52 %.
- Werden höhere Vorlauftemperaturen gefahren sinkt der Druckverlust im System.
- Dies gilt auch für Kühlmedien wie Wasser oder ein anderes Glykolgemisch
- Empfohlen wird ein Glykolgemisch von Clariant in einem Verhältnis von 52 % oder 33 %.

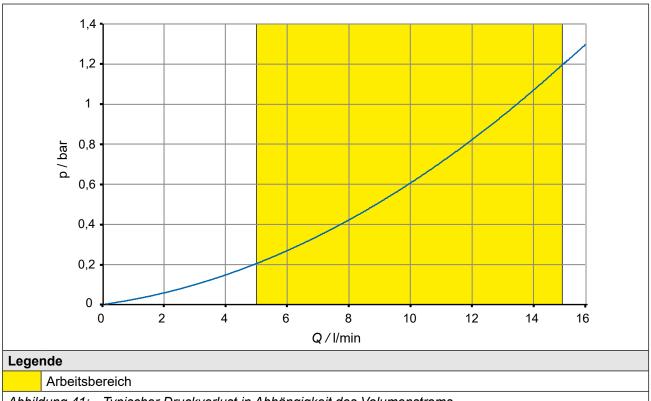


Abbildung 41: Typischer Druckverlust in Abhängigkeit des Volumenstroms

6.2 Ölgekühlte Geräte

Bei der Verwendung sind nachfolgende Hinweise unbedingt zu beachten.

6.2.1 Kühlkörper und Betriebsdruck für ölgekühlte Geräte

Bauart	Material	max. Betriebsdruck	Anschluss		
Aluminium Kühlkörper	Aluminium 3.3206	10 bar	=> "6.2.3 Anschluss des Ölkühlsystems"		

ACHTUNG

Verformung des Kühlkörpers!

- ▶ Um eine Verformung des Kühlkörpers und die damit verbundenen Folgeschäden zu vermeiden, darf der jeweils angegebene maximale Betriebsdruck auch von Druckspitzen kurzzeitig nicht überschritten werden.
- ► Es ist die Druckgeräterichtlinie 2014/68/EU zu beachten!

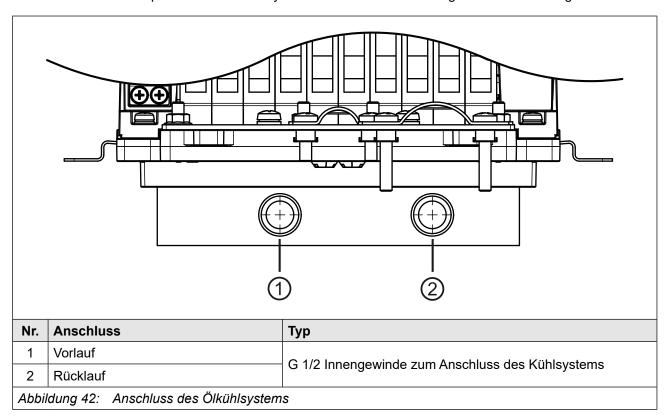
6.2.2 Anforderungen an das Öl

Generelle Anforderungen an das Öl:

Anforderung	Beschreibung	
Eigenschaft des Öl	Hydrauliköl HLP 46 (ISO VG 46)	
Öle mit entsprechenden Eigenschaften	 Mobil DTE 25 Shell Tellus Oil 46 Castrol Hyspin ZZ 46 Oder vergleichbare Öle	
Tabelle 63: Anforderungen an das Öl		

Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Anforderung	Beschreibung	
Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Filter entgegen gewirkt werden.	
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.	
Tabelle 64: Besondere Anforderungen bei offenen und halboffenen Kühlsystemen beim Ölkühler		



Schäden am Gerät, die durch verstopfte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Gewährleistungsansprüche.

6.2.3 Anschluss des Ölkühlsystems

Die Anbindung an das Ölkühlsystem kann als geschlossener oder offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung des Öls sehr gering ist.

Weitere Elemente im Kühlkreislauf wie Pumpe, Absperrventile, Entlüftung usw. sind entsprechend dem Kühlsystem sowie den örtlichen Gegebenheiten zuzufügen.

Um den Volumenstrom im Kühlsystem zu überwachen empfiehlt KEB den Einsatz eines Durchflusswächters.

6.2.4 Zulässiger Volumenstrom bei Öl

Es muss der Volumenstrom der folgenden Tabelle eingehalten werden.

Zulässiger Volumenstrom					
Min. Volumenstrom	Q_min / I/min	15			
Max. Volumenstrom	Q_ _{max} / I/min	25			
Tabelle 65: Zulässiger Volumenstrom beim Ölkühler					

6.2.5 Kühlmitteltemperatur und Betauung bei Öl

Die Vorlauftemperatur sollte in Abhängigkeit vom Volumenstrom so gewählt werden, dass bei Bemessungsbetrieb die Kühlkörpertemperatur immer 10 K unter dem Übertemperaturpegel (OH) liegt. Dadurch wird ein sporadisches Abschalten vermieden.

Die maximale Kühlkörpertemperatur ist dem Kapitel => "3.4.1 Schaltfrequenz und Temperatur" zu entnehmen.

6.2.5.1 Betauung

Eine Temperaturdifferenz zwischen Antriebsstromrichter und Umgebungstemperatur kann bei hoher Luftfeuchtigkeit zu Betauung führen.

Betauung stellt eine Gefahr für den Antriebsstromrichter dar. Durch entstehende Kurzschlüsse kann der Antriebsstromrichter zerstört werden.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

▶ Der Anwender muss sicherstellen, dass jegliche Betauung vermieden wird!

ÖLGEKÜHLTE GERÄTE

6.2.5.2 Zuführung temperiertes Öl

Dies ist möglich durch die Verwendung von Heizungen im Kühlkreislauf zur Steuerung der Kühlflüssigkeitstemperatur. Hierzu steht folgende Taupunkttabelle zur Verfügung:

Die folgende Tabelle zeigt die Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

Luftfeuchtigkeit / %	10	20	30	40	50	60	70	80	90	100
Umgebungs-										
temperatur / °C										
-25	-45	-40	-36	-34	-32	-30	-29	-27	-26	-25
-20	-42	-36	-32	-29	-27	-25	-24	-22	-21	-20
-15	-37	-31	-27	-24	-22	-20	-18	-16	-15	-15
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11	-10
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6	-5
0	-26	-19	-14	-11	-8	-6	-4	-3	-2	0
5	-23	-15	-11	-7	-5	-2	0	2	3	5
10	-19	-11	-7	-3	0	1	4	6	8	9
15	-18	-7	-3	1	4	7	9	11	13	15
20	-12	-4	1	5	9	12	14	16	18	20
25	-8	0	5	10	13	16	19	21	23	25
30	-6	3	10	14	18	21	24	26	28	30
35	-2	8	14	18	22	25	28	31	33	35
40	1	11	18	22	27	31	33	36	38	40
45	4	15	22	27	32	36	38	41	43	45
50	8	19	28	32	36	40	43	45	48	50
	Kühlmitteleintrittstemperatur / C°									
Tabelle 66: Taupunkttabelle										

7 Zertifizierung

7.1 CE-Kennzeichnung

CE gekennzeichnete Antriebsstromrichter sind in Übereinstimmung mit den Vorschriften der Niederspannungsrichtlinie und EMV-Richtlinie entwickelt und hergestellt worden. Die harmonisierten Normen der Reihe *UL 61800-5-1* und *EN 61800-3* werden angewendet.

Für weitere Informationen zu den CE-Konformitätserklärungen.

=> "7.3 Weitere Informationen und Dokumentation"

7.2 UL-Zertifizierung

Eine Abnahme gemäß UL ist bei KEB Antriebsstromrichtern auf dem Typenschild durch nebenstehendes Logo gekennzeichnet.

Zur Konformität gemäß UL für einen Einsatz auf dem nordamerikanischen und kanadischen Markt sind folgende zusätzliche Hinweise unbedingt zu beachten (englischer Originaltext):

- All models: Maximum Surrounding Air Temperature: 45°C
- Use 75°C Copper Conductors Only
 This marking is only applicable for all power field wiring terminals.
- Models 19F6 and 20F6: Suitable For Use On A Circuit Capable Of Delivering Not More Than 5000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details.

Models 21F6 and 22F6: Suitable For Use On A Circuit Capable Of Delivering Not More Than 10000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details.

All Models: Suitable For Use On A Circuit Capable Of Delivering Not More Than 30000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Semiconductor Fuses by SIBA, Type 20 189 20, or by EATON, Type 170M1368, see instruction manual for Branch Circuit Protection details.

CSA: For Canada, this marking shall be provided on the device or on a separate label shipped with the device.

Details of the prescribed Branch Circuit Protection as specified in the below section 'Branch Circuit Protection' of this Report need to be marked in the instruction manual

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.

CSA: For Canada: Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I"

- For installations according to Canadian National Standard C22.2 No. 274-13:
 For use in Pollution Degree 2 and Overvoltage Category III environments only.
- · Control Circuit Overcurrent Protection Required or equivalent.
- WARNING The opening of the branch circuit protective device may be an
 indication that a fault current has been interrupted. To reduce the risk of fire or
 electrical shock, current-carrying parts and other components of the controller
 should be examined and replaced if damaged. If burnout of the current element of
 an overload relay occurs, the complete overload relay must be replaced.
- Internal Overload Protection Operates prior to reaching the 130% of the Motor Full Load Current, see manual for adjustment instructions or equivalent wording.

7.3 Weitere Informationen und Dokumentation

Ergänzende Anleitungen und Hinweise zum Download finden Sie unter www.keb.de/de/service/downloads

Allgemeine Anleitungen

- EMV- und Sicherheitshinweise
- Anleitungen für weitere Steuerkarten, Sicherheitsmodule, Feldbusmodule, etc.

Anleitungen für Konstruktion und Entwicklung

- · Eingangssicherungen gemäß UL
- · Programmierhandbuch für Steuer- und Leistungsteil
- Motorkonfigurator, zur Auswahl des richtigen Antriebsstromrichters, sowie zur Erstellung von Downloads zur Parametrierung des Antriebsstromrichters

Zulassungen und Approbationen

- CE-Konformitätserklärung
- TÜV-Bescheinigung
- FS-Zertifizierung

Sonstiges

- COMBIVIS, die Software zur komfortablen Parametrierung der Antriebsstromrichter über einen PC (per Download erhältlich)
- EPLAN-Zeichnungen

8 Änderungshistorie

Version	Datum	Beschreibung
00	2016-09	Vorserie
01	2017-02	Vorserie, Aufnahme der 22er Gerätegröße, neues CI
02	2017-07	Serie, Aufnahme der UL-Zertifizierung, Wasserkühlung
0.2	02 2040 00	Korrekturen der technischen Daten.
03 2018-09	Abbildungen der Überlastcharakteristiken angepasst.	
04	2019-12	Redaktionelle Änderungen, Aufnahme der 230V-Geräte
05	2020-10	Aufnahme der ölgekühlten Geräte
06	2022-01	Aufnahme der Lift-Geräte

Benelux | KEB Automation KG

Dreef 4 - box 4 1703 Dilbeek Belgien

Tel: +32 2 447 8580

Brasilien | KEB SOUTH AMERICA - Regional Manager

Rua Dr. Omar Pacheco Souza Riberio, 70

CEP 13569-430 Portal do Sol, São Carlos Brasilien

Tel: +55 16 31161294 E-Mail: roberto.arias@keb.de

China | KEB Power Transmission Technology (Shanghai) Co. Ltd.

No. 435 QianPu Road Chedun Town Songjiang District

201611 Shanghai P. R. China

Tel: +86 21 37746688 Fax: +86 21 37746600

Deutschland | Getriebemotorenwerk

KEB Antriebstechnik GmbH

Wildbacher Straße 5 08289 Schneeberg Deutschland

Telefon +49 3772 67-0 Telefax +49 3772 67-281

Frankreich | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel

94510 La Queue en Brie Frankreich

Tel: +33 149620101 Fax: +33 145767495

Großbritannien | KEB (UK) Ltd.

5 Morris Close Park Farm Indusrial Estate

Wellingborough, Northants, NN8 6 XF Großbritannien

Tel: +44 1933 402220 Fax: +44 1933 400724

Italien | KEB Italia S.r.l. Unipersonale

Via Newton, 2 20019 Settimo Milanese (Milano) Italien

Tel: +39 02 3353531 Fax: +39 02 33500790

Japan | KEB Japan Ltd.

15 - 16, 2 - Chome, Takanawa Minato-ku Tokyo 108 - 0074 Japan

Tel: +81 33 445-8515 Fax: +81 33 445-8215

Österreich | KEB Automation GmbH

Ritzstraße 8 4614 Marchtrenk Österreich

Tel: +43 7243 53586-0 Fax: +43 7243 53586-21

Polen | KEB Automation KG

Tel: +48 60407727

Russische Föderation | KEB RUS Ltd.

Lesnaya str, house 30 Dzerzhinsky MO

140091 Moscow region Russische Föderation

Tel: +7 495 6320217 Fax: +7 495 6320217

Schweiz | KEB Automation AG

Witzbergstraße 24 8330 Pfäffikon/ZH Schweiz

Tel: +41 43 2886060 Fax: +41 43 2886088

Spanien | KEB Automation KG

c / Mitjer, Nave 8 - Pol. Ind. LA MASIA

08798 Sant Cugat Sesgarrigues (Barcelona) Spanien

Tel: +34 93 8970268 Fax: +34 93 8992035

E-Mail: vb.espana@keb.de

Südkorea | KEB Automation KG

Deoksan-Besttel 1132 ho Sangnam-ro 37

Seongsan-gu Changwon-si Gyeongsangnam-do Republik Korea

Tel: +82 55 601 5505 Fax: +82 55 601 5506

Tschechien | KEB Automation GmbH

Videnska 188/119d 61900 Brno Tschechien

Tel: +420 544 212 008

USA | KEB America, Inc

5100 Valley Industrial Blvd. South Shakopee, MN 55379 USA

Tel: +1 952 2241400 Fax: +1 952 2241499

WEITERE KEB PARTNER WELTWEIT:

... www.keb.de/de/kontakt/kontakt-weltweit

Automation mit Drive

www.keb.de

KEB Automation KG Südstraße 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de