

COMBIVERT F6

GEBRAUCHSANLEITUNG | INSTALLATION F6 GEHÄUSE 8

Originalanleitung Dokument 20120983 DE 05

Vorwort

Die beschriebene Hard- und / oder Software sind Produkte der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

A GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

A WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

Weitere Symbole

- Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Hinweis auf weiterführende Dokumentation.

www.keb.de/nc/de/suche

Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit der EU-Konformitätserklärung und dem CE-Zeichen auf dem Gerätetypenschild, dass es den grundlegenden Sicherheitsanforderungen entspricht.

Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden.

Gewährleistung und Haftung

Die Gewährleistung und Haftung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den allgemeinen Verkaufsbedingungen zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen. www.keb.de/de/agb

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über den bestimmungsgemäßen Gebrauch. Sie gelten jedoch nur als unverbindliche Hinweise und Änderungen sind insbesondere aufgrund von technischen Änderungen ausdrücklich vorbehalten. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter. Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der bestimmungsgemäßen Endverwendung des Produktes (Applikation) vom Kunden erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Dieses KEB-Produkt oder Teile davon können fremde Software, inkl. Freier und/oder Open Source Software enthalten. Sofern einschlägig, sind die Lizenzbestimmungen dieser Software in den Gebrauchsanleitungen enthalten. Die Gebrauchsanleitungen liegen Ihnen bereits vor, sind auf der Website von KEB zum Download frei verfügbar oder können bei dem jeweiligen KEB-Ansprechpartner gerne angefragt werden.

Andere Wort- und/oder Bildmarken sind Marken (™) oder eingetragene Marken (®) der jeweiligen Inhaber.

Inhaltsverzeichnis

	vorwort	
	Signalwörter und Auszeichnungen	3
	Weitere Symbole	
	Gesetze und Richtlinien	4
	Gewährleistung und Haftung	4
	Unterstützung	4
	Urheberrecht	4
	Inhaltsverzeichnis	
	Abbildungsverzeichnis	
	Tabellenverzeichnis	
	Glossar	
	Normen für Antriebsstromrichter	
	Produktnormen, die direkt für den Antriebsstromrichter gelten:	
	Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:	
	Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:	13
1	Grundlegende Sicherheitshinweise	14
•	1.1 Zielgruppe	
	1.1 Zielgruppe	
	1.3 Einbau und Aufstellung	
	1.4 Elektrischer Anschluss	
	1.4.1 EMV-gerechte Installation	
	1.4.2 Spannungsprüfung	
	1.4.3 Isolationsmessung.	
	1.5 Inbetriebnahme und Betrieb	
	1.6 Wartung	
	1.7 Instandhaltung	
	1.8 Entsorgung	
_	B 1141 1 "	-
2	•	. 22
	2.1 Bestimmungsgemäßer Gebrauch	
	2.1.1 Restgefahren	
	2.2 Nicht bestimmungsgemäßer Gebrauch	
	2.3 Produktmerkmale	
	2.4 Typenschlüssel	
	2.5 Typenschild	
	2.5.1 Konfigurierbare Optionen	27
3	Technische Daten	. 28
	3.1 Betriebsbedingungen	28
	3.1.1 Klimatische Umweltbedingungen	
	3.1.2 Mechanische Umweltbedingungen	

INHALTSVERZEICHNIS

	3.1.3 Chemisch/Mechanisch aktive Stoffe	29
	3.1.4 Elektrische Betriebsbedingungen	30
	3.1.4.1 Geräteeinstufung	
	3.1.4.2 Elektromagnetische Verträglichkeit	30
	3.2 Gerätedaten der 400 V-Geräte	31
	3.2.1 Übersicht der 400 V-Geräte	31
	3.2.2 Spannungs- und Frequenzangaben für 400 V-Geräte	32
	3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V	33
	3.2.3 Ein- und Ausgangsströme / Überlast	33
	3.2.3.1 Überlastcharakteristik (OL)	34
	3.2.3.2 Frequenzabhängiger Maximalstrom (OL2)	36
	3.2.4 Verlustleistung bei Bemessungsbetrieb	42
	3.2.5 Absicherung für 400V-Geräte	
	3.3 Allgemeine elektrische Daten	44
	3.3.1 Schaltfrequenz und Temperatur	44
	3.3.1.1 Schaltfrequenzen und Temperaturen für Luftkühler	44
	3.3.1.2 Schaltfrequenzen und Temperaturen für Fluidkühler (Wasser)	45
	3.3.2 DC-Zwischenkreis / Bremstransistorfunktion	
	3.3.3 Unterbaubremswiderstände	47
	3.3.4 Lüfter	48
	3.3.4.1 Schaltverhalten der Lüfter	
	3.3.4.2 Schaltpunkte der Lüfter	49
4	Einbau	50
	4.1 Abmessungen und Gewichte	50
	4.1.1 Einbauversion Luftkühler	ΕO
	4.4.0 Fight annuaging Fluidhöhlag (Massac)	50
	4.1.2 Einbauversion Fluidkühler (Wasser)	
	4.1.2 Einbauversion Fluidkunier (wasser)	51
	,	51 52
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready	51 52 53
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben	51 52 53 54
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel	51 52 54 54
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel 4.2.3 Befestigungshinweise	515253545455
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel 4.2.3 Befestigungshinweise 4.2.4 Einbauabstände	51 52 54 54 54
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel 4.2.3 Befestigungshinweise 4.2.4 Einbauabstände 4.2.5 Montage von IP54-ready Geräten	51 52 54 54 55 55
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel 4.2.3 Befestigungshinweise 4.2.4 Einbauabstände 4.2.5 Montage von IP54-ready Geräten 4.2.6 Schaltschrankbelüftung	51525454555656
	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel 4.2.3 Befestigungshinweise 4.2.4 Einbauabstände 4.2.5 Montage von IP54-ready Geräten	51525454555656
5	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel 4.2.3 Befestigungshinweise 4.2.4 Einbauabstände 4.2.5 Montage von IP54-ready Geräten 4.2.6 Schaltschrankbelüftung	51 52 54 54 55 56 58
5	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel 4.2.3 Befestigungshinweise 4.2.4 Einbauabstände 4.2.5 Montage von IP54-ready Geräten 4.2.6 Schaltschrankbelüftung 4.2.7 Luftströme der F6 Antriebsstromrichter	5152545455565659
5	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel 4.2.3 Befestigungshinweise 4.2.4 Einbauabstände 4.2.5 Montage von IP54-ready Geräten 4.2.6 Schaltschrankbelüftung 4.2.7 Luftströme der F6 Antriebsstromrichter	5152545455565661
5	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready. 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready. 4.2 Schaltschrankeinbau	515254545656566161
5	4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready 4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready 4.2 Schaltschrankeinbau 4.2.1 Transport mit Ringschrauben 4.2.2 Durchsteckgeräte mit Transportwinkel 4.2.3 Befestigungshinweise 4.2.4 Einbauabstände 4.2.5 Montage von IP54-ready Geräten 4.2.6 Schaltschrankbelüftung 4.2.7 Luftströme der F6 Antriebsstromrichter Installation und Anschluss 5.1 Übersicht des COMBIVERT F6 5.2 Anschluss des Leistungsteils	5152545455565658596161

8	Anderungshistorie	93
	**	
	7.2 UL-Zertifizierung 7.3 Weitere Informationen und Dokumentation	
	7.1 CE-Kennzeichnung	
7	Zertifizierung	
	6.1.8 Typischer Druckverlust des Kühlkörpers	
	6.1.7 Kühlmittelerwärmung.	
	6.1.6 Zulässiger Volumenstrom bei Wasserkühlung	
	6.1.5.2 Zuführung temperierter Kühlflüssigkeit	
	6.1.5.1 Betauung	
	6.1.5 Kühlmitteltemperatur und Betauung	
	6.1.4 Anschluss des Kühlsystems	
	6.1.3 Anforderungen an das Kühlmittel	82
	6.1.2 Materialien im Kühlkreislauf	81
	6.1.1 Kühlkörper und Betriebsdruck	81
	6.1 Wassergekühlte Geräte	81
6	Betrieb von flüssigkeitsgekühlten Geräten	81
	5.3.3 Nebenbaubremswiderstände	80
	5.3.2 Dichtung für IP54-ready Geräte	80
	5.3.1 Filter und Drosseln	80
	5.3 Zubehör	
	5.2.7 Externe Kühlkörperlüfterversorgung (FAN)	
	5.2.6.2 Verwendung nicht eigensicherer Bremswiderstände	
	5.2.6.1 Klemmleiste X1A Anschluss Bremswiderstand	
	5.2.6 Anschluss und Verwendung von Bremswiderständen	
	5.2.5.8 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)	
	5.2.5.7 Verschaltung des Motors	
	5.2.5.6 Motorleitungsquerschnitt	
	5.2.5.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung 5.2.5.5 Motorleitungslänge bei Parallelbetrieb von Motoren	
	5.2.5.3 Auswahl der Motorleitung	
	5.2.5.2 Klemmleiste X1A Motoranschluss	
	5.2.5.1 Verdrahtung des Motors	
	5.2.5 Anschluss des Motors	
	5.2.4.1 Klemmleiste X1A DC-Anschluss	
	5.2.4 DC-Anschluss	
	5.2.3.2 Netzzuleitung	
	5.2.3.1 AC-Versorgung 3-phasig	67
	5.2.3 AC-Netzanschluss	67
	5.2.2.2 Funktionserdung	66
	5.2.2.1 Schutzerdung	66

ABBILDUNGSVERZEICHNIS

Abbildungsverzeichnis

Abbildung 1:	Typenschild	26
Abbildung 2:	Konfigurierbare Optionen	27
Abbildung 3:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC-Level 150 %	34
Abbildung 4:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC-Level 180 %	35
Abbildung 5:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 29er-Gerät	36
Abbildung 6:	Blockschaltbild des Energieflusses	46
Abbildung 7:	Lüfter	48
Abbildung 8:	Beispielhaftes Schaltverhalten der Kühlkörperlüfter	48
Abbildung 9:	Abmessungen Einbauversion Luftkühler	50
Abbildung 10:	Abmessungen Einbauversion Fluidkühler (Wasser)	51
Abbildung 11:	Abmessungen Durchsteckversion Luftkühler IP20, IP54-ready	52
Abbildung 12:	Abmessungen Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready	
Abbildung 13:	Beispiel eines F6 im Gehäuse 8 mit M10-Ringschrauben	54
Abbildung 14:	Beispiel eines F6 Gehäuse 7 mit Transportwinkeln	54
Abbildung 15:	Einbauabstände	56
Abbildung 16:	Montage von IP54-ready Geräten	58
Abbildung 17:	Schaltschranklüftung	59
Abbildung 18:	Luftströme der Lüfter	60
Abbildung 19:	F6 Gehäuse 8 Draufsicht	61
Abbildung 20:	F6 Gehäuse 8 Vorderansicht	62
Abbildung 21:	F6 Gehäuse 8 Rückansicht mit Steuerkarte APPLIKATION	63
Abbildung 22:	Eingangsbeschaltung	64
Abbildung 23:	Klemmleiste X1A für 400 V-Geräte	65
Abbildung 24:	Anschluss für Schutzerde	66
Abbildung 25:	Anschluss der Netzversorgung 3-phasig	67
Abbildung 26:	Klemmleiste X1A DC-Anschluss	68
Abbildung 27:	Verdrahtung des Motors	69
Abbildung 28:	Klemmleiste X1A Motoranschluss	70
Abbildung 29:	Symmetrische Motorleitung	71
Abbildung 30:	Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT	74
Abbildung 31:	Klemmleiste X1C für Steuerkarte PRO	74
Abbildung 32:	Anschluss der Bremsenansteuerung	75
Abbildung 33:	Anschluss eines KTY-Sensors	75
Abbildung 34:	Klemmleiste X1A Anschluss Bremswiderstand	77
Abbildung 35:	Externe Kühlkörperlüfterversorgung	79
Abbildung 36:	Offene Rohrenden zum Anschluss des Kühlsystems	84
Abbildung 37:	Volumenstrom in Abhängigkeit von der Gesamtverlustleistung P _{D_ges} und Temperaturdifferenz bei Wasser-Glykolgemisch	
Abbildung 38:	Typischer Druckverlust in Abhängigkeit des Volumenstroms	88

Tabellenverzeichnis

Tabelle 1:	Typenschlüssel	25
Tabelle 2:	Klimatische Umweltbedingungen	28
Tabelle 3:	Mechanische Umweltbedingungen	29
Tabelle 4:	Chemisch/Mechanisch aktive Stoffe	29
Tabelle 5:	Geräteeinstufung	30
Tabelle 6:	Elektromagnetische Verträglichkeit	30
Tabelle 7:	Übersicht der 400 V-Geräte	32
Tabelle 8:	Eingangsspannungen und -frequenzen der 400 V-Geräte	32
Tabelle 9:	DC-Zwischenkreisspannung für 400 V-Geräte	32
Tabelle 10:	Ausgangsspannungen und -frequenzen der 400 V-Geräte	33
Tabelle 11:	Beispiel zur Berechnung der möglichen Motorspannung für 400 V	33
Tabelle 12:	Eingangsströme der 400 V-Geräte	33
Tabelle 13:	Ausgangsströme und Überlast der 400 V-Geräte	33
Tabelle 14:	Frequenzabhängiger Maximalstrom für Gerätegröße 27	37
Tabelle 15:	Frequenzabhängiger Maximalstrom für Gerätegröße 28	37
Tabelle 16:	Frequenzabhängiger Maximalstrom für Gerätegröße 29	38
Tabelle 17:	Frequenzabhängiger Maximalstrom für Gerätegröße 30 (OC-Level: 150%)	38
Tabelle 18:	Frequenzabhängiger Maximalstrom für Gerätegröße 30 (OC-Level: 180%)	39
Tabelle 19:	Frequenzabhängiger Maximalstrom für Gerätegröße 27	40
Tabelle 20:	Frequenzabhängiger Maximalstrom für Gerätegröße 28	40
Tabelle 21:	Frequenzabhängiger Maximalstrom für Gerätegröße 29	41
Tabelle 22:	Frequenzabhängiger Maximalstrom für Gerätegröße 30 (OC-Level: 150%)	41
Tabelle 23:	Frequenzabhängiger Maximalstrom für Gerätegröße 30 (OC-Level: 180%)	42
Tabelle 24:	Verlustleistung der 400 V-Geräte	42
Tabelle 25:	Absicherungen für 400 V / 480 V-Geräte	43
Tabelle 26:	Schaltfrequenzen und Temperaturen für Luftkühler	44
Tabelle 27:	Schaltfrequenz und Temperatur für Fluidkühler (Wasser)	45
Tabelle 28:	DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte	47
Tabelle 29:	Unterbaubremswiderstände	47
Tabelle 30:	Schaltpunkte der Lüfter	49
Tabelle 31:	Befestigungshinweise für Einbauversion	55
Tabelle 32:	Befestigungshinweise für Durchsteckversion	55
Tabelle 33:	Maximale Motorleitungslänge Filter 28E6T60-1150	71
Tabelle 34:	Maximale Motorleitungslänge Filter 28E4T60-1001 / 28U5A0W-3000	72
Tabelle 35:	Maximale Motorleitungslänge Filter 30E6T60-1150	72
Tabelle 36:	Maximale Motorleitungslänge Filter 30E4T60-1001 / 30U5A0W-3000	72
Tabelle 37:	Filter und Drosseln	80
Tabelle 38:	Dichtung für IP54-ready Geräte	80
Tabelle 39:	Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff	82
Tabelle 40:	Anforderungen an das Kühlmittel	82
Tabelle 41:	Besondere Anforderungen bei offenen und halboffenen Kühlsystemen	83
Tabelle 42:	Taupunkttabelle	85
Tabelle 43:	Zulässiger Volumenstrom bei Wasserkühlung	86

Glossar

0V	Erdpotenzialfreier Massepunkt	FU	Antriebsstromrichter
1ph	1-phasiges Netz	Gebernachbil-	Softwaregenerierter Geberausgang
3ph	3-phasiges Netz	dung	
AC	Wechselstrom oder -spannung	GND	Bezugspotenzial, Masse
AFE	Ab 07/2019 ersetzt AIC die bisherige	GTR7	Bremstransistor
	Bezeichnung AFE	Hersteller	Der Hersteller ist KEB, sofern nicht
AFE-Filter	Ab 07/2019 ersetzt AIC-Filter die bisherige Bezeichnung AFE-Filter		anders bezeichnet (z.B. als Maschinen-, Motoren-, Fahrzeug- oder
AIC	Active Infeed Converter		Klebstoffhersteller)
AIC-Filter	Filter für Active Infeed Converter	HF-Filter	Hochfrequenzfilter zum Netz
Applikation	Die Applikation ist die bestimmungsgemäße Verwendung des KEB-	Hiperface	Bidirektionale Geberschnittstelle der Fa. Sick-Stegmann
	Produktes	НМІ	Visuelle Benutzerschnittstelle
ASCL	Geberlose Regelung von Asynchron-		(Touchscreen)
7.002	motoren	HSP5	Schnelles, serielles Protokoll
Auto motor	Automatische Motoridentifikation;	HTL	Inkrementelles Signal mit einer Aus-
ident.	Einmessen von Widerstand und		gangsspannung (bis 30V) -> TTL
	Induktivität	IEC	Internationale Norm
AWG	Amerikanische Kodierung für Lei-	IP xx	Schutzart (xx für Level)
	tungsquerschnitte	KEB-Produkt	Das KEB-Produkt ist das Produkt
B2B	Business-to-business		welches Gegenstand dieser Anlei-
BiSS	Open-Source-Echtzeitschnittstelle		tung ist
	für Sensoren und Aktoren (DIN	KTY	Silizium Temperatursensor (gepolt)
	5008)	Kunde	Der Kunde hat ein KEB-Produkt von
CAN	Feldbussystem		KEB erworben und integriert das
CDM	Vollständiges Antriebsmodul inkl.		KEB-Produkt in sein Produkt (Kun-
	Hilfsausrüstung (Schaltschrank)		den-Produkt) oder veräußert das
COMBIVERT	KEB Antriebsstromrichter	14014	KEB-Produkt weiter (Händler)
COMBIVIS	KEB Inbetriebnahme- und Paramet- riersoftware	MCM	Amerikanische Maßeinheit für große Leitungsquerschnitte
DC	Gleichstrom oder -spannung	Modulation	Bedeutet in der Antriebstechnik,
DI	Demineralisiertes Wasser, auch als		dass die Leistungshalbleiter ange-
	deionisiertes (DI) Wasser bezeichnet		steuert werden
DIN	Deutsches Institut für Normung	MTTF	Mittlere Lebensdauer bis zum Ausfall
DS 402	CiA DS 402 - CAN-Geräteprofil für	NN	Normalnull
	Antriebe	Not-Aus	Abschalten der Spannungsversor-
ED	Einschaltdauer		gung im Notfall
EMS	Energy Management System	Not-Halt	Stillsetzen eines Antriebs im Notfall
EMV	Elektromagnetische Verträglichkeit	00	(nicht spannungslos)
EN	Europäische Norm	OC	Überstrom (Overcurrent)
EnDat	Bidirektionale Geberschnittstelle der	OH	Überhitzung
	Fa. Heidenhain	OL	Überlast
Endkunde	Der Endkunde ist der Verwender des Kunden-Produkts	OSSD	Ausgangsschaltelement; Ausgangssignal, dass in regelmäßigen Ab-
EtherCAT	Echtzeit-Ethernet-Bussystem der Fa.		stände auf seine Abschaltbarkeit hin
	Beckhoff	DD0	geprüft wird. (Sicherheitstechnik)
Ethernet	Echtzeit-Bussystem - definiert Proto-	PDS	Leistungsantriebssystem inkl. Motor
	kolle, Stecker, Kabeltypen	DE	und Meßfühler
FE	Funktionserde	PE	Schutzerde
FSoE	Funktionale Sicherheit über Ethernet	PELV	Sichere Schutzkleinspannung, ge- erdet

PFD Begriff aus der Sicherheitstechnik (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit PFH Begriff aus der Sicherheitstechnik (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit pro Stunde Pt100 Temperatursensor mit R0=100Ω Pt1000 Temperatursensor mit R0=1000Ω PTC Kaltleiter zur Temperaturerfassung **PWM** Pulsweitenmodulation (auch Pulsbreitenmodulation) Modulare Steckverbindung mit 8 RJ45 Leitungen Geberlose Regelung von Synchron-SCL motoren **SELV** Sichere Schutzkleinspannung, ungeerdet (<60V) SIL Der Sicherheitsintegritätslevel ist eine Maßeinheit zur Quantifizierung der Risikoreduzierung. Begriff aus der Sicherheitstechnik (EN 61508 -1...7) SPS Speicherprogrammierbare Steuerung SS1 Sicherheitsfunktion "Sicherer Halt 1" gemäß IEC 61800-5-2 SSI Synchron-serielle Schnittstelle für Geber STO Sicherheitsfunktion "sicher abgeschaltetes Drehmoment" gemäß IEC 61800-5-2 Inkrementelles Signal mit einer Aus-TTL gangsspannung bis 5 V **USB** Universell serieller Bus VARAN Echtzeit-Ethernet-Bussystem

Normen für Antriebsstromrichter

Produktnormen, die direkt für den Antriebsstromrichter gelten:

EN61800-2 Drehzahlveränderbare elektrische Antriebe Teil 2: Allgemeine Anforderungen - Festlegungen für die Bemessung von Niederspannungs-Wechselstrom-Antriebssystemen mit einstellbarer Frequenz (VDE 0160-102, IEC 61800-2) Drehzahlveränderbare elektrische Antriebe. Teil 3: EMV-Anforderungen EN61800-3 einschließlich spezieller Prüfverfahren (VDE 0160-103, IEC 61800-3) EN 61800-5-1 Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-1: Anforderungen an die Sicherheit - Elektrische, thermische und energetische Anforderungen (VDE 0160-105-1, IEC 61800-5-1) Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-2: EN61800-5-2 Anforderungen an die Sicherheit – Funktionale Sicherheit (VDE 0160-105-2, UL61800-5-2, IEC 22G/264/CD) UL61800-5-1 Amerikanische Version der EN 61800-5-1 mit "National Deviations"

Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:

EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen - Grenzwerte und Messverfahren (IEC/CISPR 11)
EN 55021	Störung von Mobilfunkübertragungen in Gegenwart von Impulsstörgrößen - Verfahren zur Beurteilung der Beeinträchtigung und Maßnahmen zur Verbesserung der Übertragungsqualität (IEC/CISPR/D/230/FDIS)
EN 60529	Schutzarten durch Gehäuse (IP-Code) (VDE 0470, IEC 60529)
EN 60664-1	Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen Teil 1: Grundsätze, Anforderungen und Prüfungen (IEC 60664-1)
EN 60721-3-1	Klassifizierung von Umgebungsbedingungen - Teil 3-1: Klassifizierung von Einflussgrößen in Gruppen und deren Grenzwerte - Hauptabschnitt 1: Langzeitlagerung (IEC 60721-3-1)
EN 60721-3-2	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 2: Transport (IEC 60721-3-2)
EN 60721-3-3	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 3: Ortsfester Einsatz, wetterge- schützt (IEC 60721-3-3)
EN 61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems
EN 61000-2-4	Elektromagnetische Verträglichkeit (EMV) - Teil 2-4: Umgebungsbedingungen; Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in Industrieanlagen (IEC 61000-2-4)
EN 61000-4-2	Elektromagnetische Verträglichkeit (EMV) - Teil 4-2: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität (IEC 61000-4-2)
EN 61000-4-3	Elektromagnetische Verträglichkeit (EMV) - Teil 4-3: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder (IEC 61000-4-3)
EN 61000-4-4	Elektromagnetische Verträglichkeit (EMV) - Teil 4-4: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst (IEC 61000-4-4)
EN 61000-4-5	Elektromagnetische Verträglichkeit (EMV) - Teil 4-5: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen Stoßspannungen (IEC 61000-4-5)

DGUV Vorschrift 3

EN 61000-4-6	Elektromagnetische Verträglichkeit (EMV) - Teil 4-6: Prüf- und Messverfahren - Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder (IEC 61000-4-6)
EN 61000-4-34	Elektromagnetische Verträglichkeit (EMV) - Teil 4-34: Prüf- und Messver- fahren - Prüfungen der Störfestigkeit von Geräten und Einrichtungen mit einem Netzstrom > 16 A je Leiter gegen Spannungseinbrüche, Kurzzeitunterbre- chungen und Spannungsschwankungen (IEC 61000-4-34)
EN 61508-17	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme Teil 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme (VDE 0113-50, IEC 62061)
ENISO 13849-1	Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze (ISO 13849-1)

Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:

Elektrische Anlagen und Betriebsmittel

DOOV VOISOITHEO	Liekthoone 7 thagen and bethebornite
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
DIN EN 12502-15	Korrosionsschutz metallischer Werkstoffe - Teil 15
DINIEC 60364-5-54	Errichten von Niederspannungsanlagen - Teil 5-54: Auswahl und Errichtung elektrischer Betriebsmittel - Erdungsanlagen, Schutzleiter und Schutzpotential-ausgleichsleiter (IEC 364/1610/CD)
DIN VDE 0100-729	Errichten von Niederspannungsanlagen - Teil 7-729: Anforderungen für Betriebsstätten, Räume und Anlagen besonderer Art - Bedienungsgänge und Wartungsgänge (IEC 60364-7-729); Deutsche Übernahme HD 60364-7-729
EN 1037	Sicherheit von Maschinen - Vermeidung von unerwartetem Anlauf; Deutsche Fassung EN 1037
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Typgeprüfte und partiell typgeprüfte Kombinationen (IEC 60439-1)
EN 60947-7-1	Niederspannungsschaltgeräte - Teil 7-1: Hilfseinrichtungen - Reihenklemmen für Kupferleiter (IEC 60947-7-1:2009)
EN 60947-8	Niederspannungsschaltgeräte - Teil 8: Auslösegeräte für den eingebauten thermischen Schutz (PTC) von rotierenden elektrischen Maschinen (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken (IEC 61373)
EN 61439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Allgemeine Festlegungen (IEC 121B/40/CDV:2016); Deutsche Fassung FprEN 61439-1:2016
VGB R 455 P	Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen
DIN EN 60939-1	Passive Filter für die Unterdrückung von elektromagnetischen Störungen - Teil 1: Fachgrundspezifikation (IEC 60939-1:2005 + Corrigendum: 2005)

1 Grundlegende Sicherheitshinweise

Die Produkte sind nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Die Nichtbeachtung der Sicherheitshinweise durch den Kunden, Anwender oder sonstigen Dritten führt zum Verlust aller dadurch verursachten Ansprüche gegen den Hersteller.

ACHTUNG

Gefahren und Risiken durch Unkenntnis.

- ▶ Lesen Sie die Gebrauchsanleitung!
- ▶ Beachten Sie die Sicherheits- und Warnhinweise!
- ► Fragen Sie bei Unklarheiten nach!

1.1 Zielgruppe

Diese Gebrauchsanleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- Kenntnis und Verständnis der Sicherheitshinweise.
- Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über DIN IEC 60364-5-54.
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).

1.2 Transport, Lagerung und sachgemäße Handhabung

Der Transport ist durch entsprechend unterwiesene Personen unter Beachtung der in dieser Anleitung angegebenen Umweltbedingungen durchzuführen. Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen.

Transport von Antriebsstromrichtern mit einer Kantenlänge >75 cm

Der Transport per Gabelstapler ohne geeignete Hilfsmittel kann zu einer Durchbiegung des Kühlkörpers führen. Dies führt zur vorzeitigen Alterung bzw. Zerstörung interner Bauteile.

- ► Antriebsstromrichter auf geeigneten Paletten transportieren.
- ► Antriebsstromrichter nicht stapeln oder mit anderen schweren Gegenständen belasten.

ACHTUNG

Beschädigung der Kühlmittelanschlüsse

Abknicken der Rohre!

▶ Das Gerät niemals auf die Kühlmittelanschlüsse abstellen!

Produkt enthält elektrostatisch gefährdete Bauelemente.

- Berührung vermeiden.
- ► ESD-Schutzkleidung tragen.

Lagern Sie das Produkt nicht

- in der Umgebung von aggressiven und/oder leitfähigen Flüssigkeiten oder Gasen.
- in Bereichen mit direkter Sonneneinstrahlung.
- außerhalb der angegebenen Umweltbedingungen.

1.3 Einbau und Aufstellung

▲ GEFAHR

Nicht in explosionsgefährdeter Umgebung betreiben!

▶ Das Produkt ist nicht für den Einsatz in explosionsgefährdeter Umgebung vorgesehen.

A VORSICHT

Bauartbedingte Kanten und hohes Gewicht!

Quetschungen und Prellungen!

- ▶ Nie unter schwebende Lasten treten.
- Sicherheitsschuhe tragen.
- ▶ Produkt beim Einsatz von Hebewerkzeugen entsprechend sichern.

Um Schäden am und im Produkt vorzubeugen:

- Darauf achten, dass keine Bauelemente verbogen und/oder Isolationsabstände verändert werden.
- Bei mechanischen Defekten darf das Produkt nicht in Betrieb genommen werden. Die Einhaltung angewandter Normen ist nicht mehr gewährleistet.
- Es darf keine Feuchtigkeit oder Nebel in das Produkt eindringen.
- Das Eindringen von Staub ist zu vermeiden. Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- Einbaulage und Mindestabstände zu umliegenden Elementen beachten. Lüftungsöffnungen nicht verdecken.
- Produkt entsprechend der angegebenen Schutzart montieren.
- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile (Bohrspäne, Schrauben usw.) in das Produkt fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Geräteanschlüsse auf festen Sitz prüfen, um Übergangswiderstände und Funkenbildung zu vermeiden.
- · Produkt nicht begehen.
- Die Sicherheitshinweise sind aufzubewahren!

1.4 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät!

Lebensgefahr durch Stromschlag!

- ▶ Niemals am offenen Gerät arbeiten oder offen liegende Teile berühren.
- ▶ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten, gegen Wiedereinschalten sichern und Spannungsfreiheit an den Eingangsklemmen durch Messung feststellen.
- ► Warten bis alle Antriebe zum Stillstand gekommen sind, damit keine generatorische Energie erzeugt werden kann.
- ► Kondensatorentladezeit (5 Minuten) abwarten. Spannungsfreiheit an den DC-Klemmen durch Messung feststellen.
- ➤ Sofern Personenschutz gefordert ist, für Antriebsstromrichter geeignete Schutzvorrichtungen einbauen.
- ▶ Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken.
- ▶ Schutzleiter immer an Antriebsstromrichter und Motor anschließen.
- ➤ Zum Betrieb alle erforderlichen Abdeckungen und Schutzvorrichtungen anbringen.
- Schaltschrank im Betrieb geschlossen halten.
- ▶ Fehlerstrom: Dieses Produkt kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produktes nur ein RCD oder RCM vom Typ B zulässig.
- ► Antriebsstromrichter mit einem Ableitstrom > 3,5 mA Wechselstrom (10 mA Gleichstrom) sind für einen ortsfesten Anschluss bestimmt. Schutzleiter sind gemäß den örtlichen Bestimmungen für Ausrüstungen mit hohen Ableitströmen nach EN 61800-5-1, EN 60204-1 oder DIN IEC 60364-5-54 auszulegen.

Wenn beim Errichten von Anlagen Personenschutz gefordert ist, müssen für Antriebsstromrichter geeignete Schutzvorrichtungen benutzt werden.

www.keb.de/fileadmin/media/Techinfo/dr/tn/ti_dr_tn-rcd-00008_de.pdf

Anlagen, in die Antriebsstromrichter eingebaut sind, müssen ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen gemäß den jeweils gültigen Sicherheitsbestimmungen, z.B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw. ausgerüstet werden. Diese Hinweise sind auch bei CE gekennzeichneten Antriebsstromrichtern stets zu beachten.

Für einen störungsfreien und sicheren Betrieb sind folgende Hinweise zu beachten:

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der angegebenen Minimal-/ Maximalwerte für die Anwendung durch den Anwender zu dimensionieren.
- Die Verdrahtung ist mit flexibler Kupferleitung für eine Temperatur > 75°C auszuführen.
- Der Anschluss der Antriebsstromrichter ist nur an symmetrische Netze mit einer Spannung Phase (L1, L2, L3) gegen Nulleiter/Erde (N/PE) von maximal 300 V zulässig, USA UL: 480 / 277 V.. Bei Versorgungsnetzen mit höheren Spannungen muss ein entsprechender Trenntransformator vorgeschaltet werden. Bei Nichtbeachtung gilt die Steuerung nicht mehr als PELV-Stromkreis.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit PELV die Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß EN 61800-5-1) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.

1.4.1 EMV-gerechte Installation

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Kunden.

Hinweise zur EMV-gerechten Installation sind hier zu finden.

1.4.2 Spannungsprüfung

Eine Prüfung mit AC-Spannung (gemäß *EN 60204-1* Kapitel 18.4) darf nicht durchgeführt werden, da eine Gefährdung für die Leistungshalbleiter im Antriebsstromrichter besteht.

Aufgrund der Funkentstörkondensatoren wird sich der Prüfgenerator sofort mit Stromfehler abschalten.

Nach *EN 60204-1* ist es zulässig, bereits getestete Komponenten abzuklemmen. Antriebsstromrichter der KEB Automation KG werden gemäß Produktnorm zu 100% spannungsgeprüft ab Werk geliefert.

1.4.3 Isolationsmessung

Eine Isolationsmessung (gemäß *EN 60204-1* Kapitel 18.3) mit DC 500 V ist zulässig, wenn alle Anschlüsse im Leistungsteil (netzgebundenes Potenzial) und alle Steueranschlüsse mit PE gebrückt sind. Der Isolationswiderstand des jeweiligen Produkts ist in den technischen Daten zu finden.

1.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

A WARNUNG

Softwareschutz und Programmierung!

Gefährdung durch ungewolltes Verhalten des Antriebes!

- ► Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichters prüfen, ob Parametrierung zur Applikation passt.
- ▶ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- ► Motoren gegen selbsttätigen Anlauf sichern.

A VORSICHT

Hohe Temperaturen an Kühlkörper und Kühlflüssigkeit!

Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.
- ▶ Oberfläche und Kühlflüssigkeitsleitungen vor Berührung prüfen.
- ► Vor jeglichen Arbeiten Gerät abkühlen lassen.
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.
- Nur für das Gerät zugelassenes Zubehör verwenden.
- Anschlusskontakte, Stromschienen oder Kabelenden nie berühren.

Sofern ein Antriebsstromrichter mit Elektrolytkondensatoren im Gleichspannungszwischenkreis länger als ein Jahr nicht in Betrieb war, beachten Sie folgende Hinweise.

A VORSICHT

Hoher Schalldruckpegel während des Betriebs!

Hörschäden möglich!

▶ Gehörschutz tragen!

ACHTUNG

Dauerbetrieb (S1) mit Auslastung > 60 % oder Motorbemessungsleistung ab 55 kW!

Vorzeitige Alterung der Elektrolytkondensatoren!

▶ Netzdrossel mit U_k = 4% einsetzen.

Schalten am Ausgang

Bei Einzelantrieben ist das Schalten zwischen Motor und Antriebsstromrichter während des Betriebes zu vermeiden, da es zum Ansprechen der Schutzeinrichtungen führen kann. Ist das Schalten nicht zu vermeiden, muss die Funktion "Drehzahlsuche" aktiviert sein. Diese darf erst nach dem Schließen des Motorschützes eingeleitet werden (z.B. durch Schalten der Reglerfreigabe).

Bei Mehrmotorenantrieben ist das Zu- und Abschalten zulässig, wenn mindestens ein Motor während des Schaltvorganges zugeschaltet ist. Der Antriebsstromrichter ist auf die auftretenden Anlaufströme zu dimensionieren.

Wenn der Motor bei einem Neustart (Netz ein) des Antriebsstromrichters noch läuft (z.B. durch große Schwungmassen), muss die Funktion "Drehzahlsuche" aktiviert sein.

Schalten am Eingang

Bei Applikationen, die zyklisches Aus- und Einschalten des Antriebsstromrichters erfordern, muss nach dem letzten Einschalten eine Zeit von mindestens 5 min vergangen sein. Werden kürzere Taktzeiten benötigt, setzen Sie sich bitte mit der KEB Automation KG in Verbindung.

Kurzschlussfestigkeit

Die Antriebsstromrichter sind bedingt kurzschlussfest. Nach dem Zurücksetzen der internen Schutzeinrichtungen ist die bestimmungsgemäße Funktion gewährleistet.

Ausnahmen:

- Treten am Ausgang wiederholt Erd- oder Kurzschlüsse auf, kann dies zu einem Defekt am Gerät führen.
- Tritt ein Kurzschluss während des generatorischen Betriebes (zweiter bzw. vierter Quadrant, Rückspeisung in den Zwischenkreis) auf, kann dies zu einem Defekt am Gerät führen.

1.6 Wartung

Die folgenden Wartungsarbeiten sind nach Bedarf, mindestens jedoch einmal pro Jahr, durch autorisiertes und eingewiesenes Personal durchzuführen.

- ▶ Anlage auf lose Schrauben und Stecker überprüfen und ggf. festziehen.
- ► Antriebsstromrichter von Schmutz und Staubablagerungen befreien. Dabei besonders auf Kühlrippen und Schutzgitter von Ventilatoren achten.
- ▶ Ab- und Zuluftfilter vom Schaltschrank überprüfen bzw. reinigen.
- ► Funktion der Ventilatoren des Antriebsstromrichters überprüfen. Bei hörbaren Vibrationen oder Quietschen sind die Ventilatoren zu ersetzen.
- ▶ Bei flüssigkeitsgekühlten Antriebsstromrichtern ist eine Sichtprüfung des Kühlkreislaufs auf Dichtigkeit und Korrosion durchzuführen. Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

1.7 Instandhaltung

Bei Betriebsstörungen, ungewöhnlichen Geräuschen oder Gerüchen informieren Sie eine dafür zuständige Person!

▲ GEFAHR

Unbefugter Austausch, Reparatur und Modifikationen!

Unvorhersehbare Fehlfunktionen!

- ▶ Die Funktion des Antriebsstromrichters ist von seiner Parametrierung abhängig. Niemals ohne Kenntnis der Applikation austauschen.
- ► Modifikation oder Instandsetzung ist nur durch von der KEB Automation KG autorisiertem Personal zulässig.
- ► Nur originale Herstellerteile verwenden.
- ► Zuwiderhandlung hebt die Haftung für daraus entstehende Folgen auf.

Im Fehlerfall wenden Sie sich an den Maschinenhersteller. Nur dieser kennt die Parametrierung des eingesetzten Antriebsstromrichters und kann ein entsprechendes Ersatzgerät liefern oder die Instandhaltung veranlassen.

1.8 Entsorgung

Elektronische Geräte der KEB Automation KG sind für die professionelle, gewerbliche Weiterverarbeitung bestimmt (sog. B2B-Geräte).

Hersteller von B2B-Geräten sind verpflichtet, Geräte, die nach dem 14.08.2018 hergestellt wurden, zurückzunehmen und zu verwerten. Diese Geräte dürfen grundsätzlich nicht an kommunalen Sammelstellen abgegeben werden.

Sofern keine abweichende Vereinbarung zwischen Kunde und KEB getroffen wurde oder keine abweichende zwingende gesetzliche Regelung besteht, können so gekennzeichnete KEB-Produkte zurückgegeben werden. Firma und Stichwort zur Rückgabestelle sind u.a. Liste zu entnehmen. Versandkosten gehen zu Lasten des Kunden. Die Geräte werden daraufhin fachgerecht verwertet und entsorgt.

In der folgenden Tabelle sind die Eintragsnummern länderspezifisch aufgeführt. KEB Adressen finden Sie auf unserer Webseite.

Rücknahme durch	WEEE-Registrierungsnr.		Stichwort:
Deutschland			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Frankreich			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Italien			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Österreich			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
Spanien			
KEB Automation KG	RII-AEE:	7427	Palabra clave "Retirada RAEE"
Tschechische Republik			
KEB Automation KG	RETELA:	09281/20-ECZ	Klíčové slovo "Zpětný odběr OEEZ"
Slowakei			
KEB Automation KG	ASEKOL:	RV22EEZ0000421	Klíčové slovo: "Spätný odber OEEZ"

Die Verpackung ist dem Papier- und Kartonage-Recycling zuzuführen.

2 Produktbeschreibung

Bei der Gerätereihe COMBIVERT F6 handelt es sich um Antriebsstromrichter, die für den Betrieb an synchronen und asynchronen Motoren optimiert sind. Der COMBIVERT kann mit einem Sicherheitsmodul für den Einsatz in sicherheitsgerichteten Anwendungen erweitert werden. Durch ein Feldbusmodul kann er an unterschiedlichen Feldbussystemen betrieben werden. Die Steuerkarte verfügt über ein systemübergreifendes Bedienkonzept.

Der COMBIVERT erfüllt die Anforderungen der Niederspannungsrichtlinie. Die harmonisierten Normen der Reihe *EN 61800-5-1* für Antriebsstromrichter werden angewendet.

Der COMBIVERT ist ein Produkt mit eingeschränkter Erhältlichkeit nach *EN 61800-3*. Dieses Produkt kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann es für den Betreiber erforderlich sein, entsprechende Maßnahmen durchzuführen.

Abhängig von der Ausführung sind die Maschinenrichtlinie, EMV-Richtlinie, Niederspannungsrichtline sowie weitere Richtlinien und Verordnungen zu beachten.

2.1 Bestimmungsgemäßer Gebrauch

Der COMBIVERT dient ausschließlich zur Steuerung und Regelung von Drehstrommotoren. Er ist zum Einbau in elektrische Anlagen oder Maschinen bestimmt.

Die technischen Daten sowie die Angaben zu Anschlussbedingungen sind dem Typenschild und der Gebrauchsanleitung zu entnehmen und unbedingt einzuhalten.

Die bei der KEB Automation KG eingesetzten Halbleiter und Bauteile sind für den Einsatz in industriellen Produkten entwickelt und ausgelegt.

Einschränkung

Wenn das Produkt in Maschinen eingesetzt wird, die unter Ausnahmebedingungen arbeiten, lebenswichtige Funktionen, lebenserhaltende Maßnahmen oder eine außergewöhnliche Sicherheitsstufe erfüllen, ist die erforderliche Zuverlässigkeit und Sicherheit durch den Maschinenbauer sicherzustellen und zu gewährleisten.

2.1.1 Restgefahren

Trotz bestimmungsgemäßen Gebrauch kann der Antriebsstromrichter im Fehlerfall, bei falscher Parametrierung, durch fehlerhaften Anschluss oder nicht fachmännische Eingriffe und Reparaturen unvorhersehbare Betriebszustände annehmen. Dies können sein:

- Falsche Drehrichtung
- Zu hohe Motordrehzahl
- Motor läuft in die Begrenzung
- Motor kann auch im Stillstand unter Spannung stehen
- Automatischer Anlauf

2.2 Nicht bestimmungsgemäßer Gebrauch

Der Betrieb anderer elektrischer Verbraucher ist untersagt und kann zur Zerstörung der Geräte führen. Der Betrieb unserer Produkte außerhalb der in den technischen Daten angegebenen Grenzwerte führt zum Verlust jeglicher Schadensersatzansprüche.

2.3 Produktmerkmale

Diese Gebrauchsanleitung beschreibt die Leistungsteile folgender Geräte:

Gerätetyp: Antriebsstromrichter
Serie: COMBIVERT F6
Leistungsbereich: 160...315 kW / 400 V

Gehäuse 8

Der COMBIVERT F6 zeichnet sich durch die folgenden Merkmale aus:

- Betrieb von Drehstromasynchronmotoren und Drehstromsynchronmotoren, jeweils in den Betriebsarten gesteuert oder geregelt mit und ohne Drehzahlrückführung
- Folgende Feldbussysteme werden unterstützt:
 EtherCAT, VARAN, PROFINET, POWERLINK oder CAN
- · Systemübergreifendes Bedienkonzept
- · Großer Betriebstemperaturbereich
- · Geringe Schaltverluste durch IGBT-Leistungsteil
- Geringe Geräuschentwicklung durch hohe Schaltfrequenzen
- · Verschiedene Kühlkörperkonzepte
- Temperaturgesteuerte Lüfter, leicht austauschbar
- · Zum Schutz von Getrieben sind Momentengrenzen sowie S-Kurven einstellbar
- Generelle Schutzfunktionen der COMBIVERT Serie gegen Überstrom, Überspannung, Erdschluss und Übertemperatur
- Analoge Ein- und Ausgänge, digitale Ein- und Ausgänge, Relaisausgang (potentialfrei), Bremsenansteuerung und -versorgung, Motorschutz durch I²t, KTY- oder PTC-Eingang, zwei Geberschnittstellen, Diagnoseschnittstelle, Feldbusschnittstelle (abhängig von der Steuerkarte)
- Integrierte Sicherheitsfunktion nach EN 61800-5-2

2.4 Typenschlüssel

xxF6xxx-xxx			
		1:	Luftkühle
		2:	Fluidkühl
		3:	Luftkühle
		4:	Fluidkühl
		5:	Luftkühle
		6:	Fluidkühl
		0.	Unterbau
		7:	Fluidkühl
		8:	Fluidkühl
		0.	Unterbau
		9:	Fluidkühl
		Э.	Unterbau
	Kühlkörperausführung	A:	Fluidkühl
		۸.	mance, L
			THE SHARK I

- er, Einbauversion
- ler (Wasser), Einbauversion
- er, Durchsteckversion IP54-ready
- ler (Wasser), Durchsteckversion IP54-ready
- er, Durchsteckversion IP20
- ler (Wasser), Durchsteckversion IP54-ready, ubremswiderstände
- ler (ÖI), Durchsteckversion IP54-ready
- ler (ÖI), Durchsteckversion IP54-ready, ubremswiderstände
- ler (Wasser), Einbauversion,
- ubremswiderstände ller (Wasser), Einbauversion, High-Perfor-Unterbaubremswiderstände
- B: Fluidkühler (Wasser), Durchsteckversion IP54-ready, High-Performance, Unterbaubremswiderstände
- C: Luftkühler, Einbauversion, Version 2
- D: Luftkühler, Einbauversion, High-Performance
- E: Fluidkühler (Wasser), Einbauversion, High-Performance
- F: Luftkühler, Durchsteckversion IP54-ready, High-Performance
- G. Fluidkühler (Wasser), Durchsteckversion IP54-ready, High-Performance
- H: Luftkühler, Konvektion, Durchsteckversion IP54-ready

APPLIKATION

- Multi Encoder Interface, CAN® 2), Real-Time Ethernetbusmodul 3)
- Multi Encoder Interface, CAN® 2), Real-Time Ethernet-B: busmodul ³⁾, Alternative Klemme

KOMPAKT

- 1: Multi Encoder Interface, CAN® 2), STO, EtherCAT® 1)
- 2: Multi Encoder Interface, CAN® 2), STO, VARAN

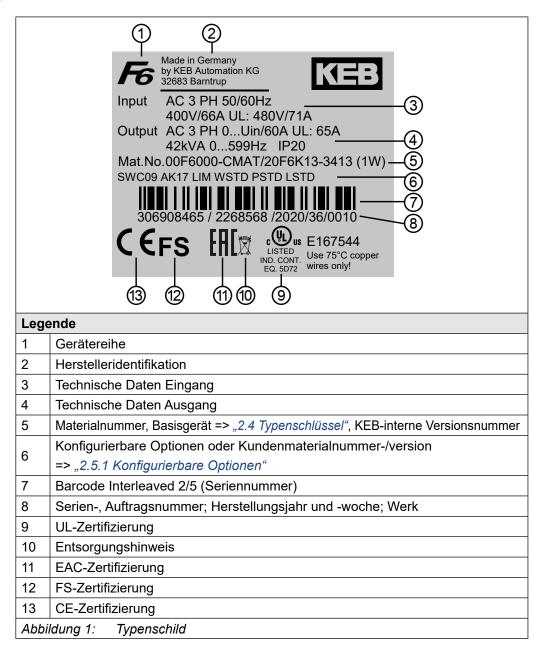
- 0: Kein Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3)
- Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3)
- 3: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), RS485-potentialfrei
- Kein Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3), Sicheres Relais
- Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), Sicheres Relais
- Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), Alternative Klemme

weiter auf nächster Seite

Steuerkartenvariante

XXF6XXX-XXX				
	Schaltfrequenz, Softwarestromgrenze, Abschaltstrom	0: 2kHz/125%/150% 8: 2kHz/180%/216% 1: 4kHz/125%/150% 9: 4kHz/180%/216% 2: 8kHz/125%/150% A: 8kHz/180%/216% 3: 16kHz/125%/150% B: 8kHz/18D 4: 2kHz/150%/180% C: 6kHz/HSD 5: 4kHz/150%/180% D: Lift 6: 8kHz/150%/180% E: Peak Power 7: 16kHz/150%/180%		
	Spannung/ Anschlussart	1: 3ph 230 V AC/DC mit Bremstransistor 2: 3ph 230 V AC/DC ohne Bremstransistor 3: 3ph 400 V AC/DC mit Bremstransistor 4: 3ph 400 V AC/DC ohne Bremstransistor A: 3ph 400 V AC/DC inkl. GTR7 / max. Gleichrichter / max. Vorladung B: 3ph 400 V AC/DC ohne GTR7 / max. Gleichrichter / max. Vorladung C: 3ph 400 V AC/DC GTR7-Variante 2 D: 3ph 400 V AC/DC GTR7-Variante 2 / max. Gleichrichter / max. Vorladung		
	Gehäuse	29		
	Ausstattung	1: Sicherheitsmodul Typ 1/STO bei Steuerungstyp K 3: Sicherheitsmodul Typ 3 4: Sicherheitsmodul Typ 4 5: Sicherheitsmodul Typ 5		
	Steuerungstyp	A: APPLIKATION K: KOMPAKT P: PRO		
	Baureihe	COMBIVERT F6		
	Gerätegröße	1033		
Tabelle 1: Typen	schlüssel			

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH. Deutschland


CANopen® ist eine eingetragene Marke der CAN in AUTOMATION - International Users and Manufacturers Group e.V.

3) Das Real-Time Ethernetbusmodul / die Real-Time Ethernetschnittstelle enthält diverse Feldbussteuerungen welche sich per Software (Parameter fb68) einstellen lassen.

Der Typenschlüssel dient nicht als Bestellcode, sondern ausschließlich zur Identifikation!

2.5 Typenschild

2.5.1 Konfigurierbare Optionen

Merkmale	Merkmalswerte	Beschreibung		
Software	SWxxx 1)	Softwarestand des Antriebsstromrichters		
Zubehör	Axxx 1)	Gewähltes Zubehör		
Zubenor	NAK	Kein Zubehör		
Ausgangsfrequenz-	LIM	Begrenzung auf 599 Hz		
freischaltung	ULO	> 599 Hz freigeschaltet		
	WSTD	Gewährleistung - Standard		
Gewährleistung	Wxxx 1)	Gewährleistungsverlängerung		
Darametriarung	PSTD	Parametrierung - Standard		
Parametrierung	Pxxx 1)	Parametrierung - Kundespezifisch		
LSTD		Logo - Standard		
Typenschildlogo	Lxxx 1)	Logo - Kundespezifisch		
Abbildung 2: Konfigurierbare Optionen				

[&]quot;,x" steht für einen variablen Wert.

3 Technische Daten

Sofern nicht anders gekennzeichnet, beziehen sich alle elektrischen Daten im folgenden Kapitel auf ein 3-phasiges Wechselspannungsnetz.

3.1 Betriebsbedingungen

3.1.1 Klimatische Umweltbedingungen

Lagerung		Norm	Klasse	Bemerkungen
Umgebungstempera	gebungstemperatur EN 60721-3-1		1K4	-2555°C
Relative Luftfeuchte	,	EN 60721-3-1	1K3	595% (ohne Kondensation)
Lagerungshöhe		_	-	Max. 3000 m über NN
Transport		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-2	2K3	-2570°C
Relative Luftfeuchte	,	EN 60721-3-2	2K3	95% bei 40°C (ohne Kondensation)
Betrieb		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-3	3K3	540 °C (erweitert auf -1045 °C)
Kühlmitteleintritts-	Luft	_	_	540 °C (erweitert auf -1045 °C)
temperatur	Wasser 1)	_	_	540°C
Relative Luftfeuchte		EN 60721-3-3	3K3	585% (ohne Kondensation)
Bau- und Schutzart		EN 60529	IP20	Schutz gegen Fremdkörper > ø12,5 mm Kein Schutz gegen Wasser Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist. Antriebsstromrichter generell, ausgenommen Leistungsanschlüsse und Lüftereinheit (IPxxA)
Aufstellhöhe –		_	-	 Max. 2000 m über NN Ab 1000 m ist eine Leistungsreduzierung von 1% pro 100 m zu berücksichtigen. Ab 2000 m hat die Steuerkarte zum Netz nur noch Basisisolation. Es sind zusätzliche Maßnahmen bei der Verdrahtung der Steuerung vorzunehmen.
Tabelle 2: Klimatische Umweltbedingungen				

¹⁾ Hinweise zum Kühlmittel beachten => "6.1.3 Anforderungen an das Kühlmittel".

3.1.2 Mechanische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen
Cobuingungagranzwarta	EN 60724 2 4	1110	Schwingungsamplitude 1,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-1	1M2	Beschleunigungsamplitude 5 m/s² (9200 Hz)
Schockgrenzwerte	EN 60721-3-1	1M2	40 m/s²; 22 ms
Transport	Norm	Klasse	Bemerkungen
			Schwingungsamplitude 3,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-2	N 60721-3-2 2M1	Beschleunigungsamplitude 10 m/s² (9200 Hz)
			(Beschleunigungsamplitude 15 m/s² (200500 Hz)) 1)
Schockgrenzwerte	EN 60721-3-2	2M1	100 m/s²; 11 ms
Betrieb	Norm	Klasse	Bemerkungen
		20.4.4	
	EN 60721 2 2	2014	Schwingungsamplitude 3,0 mm (29 Hz)
Schwingungagranzwarta	EN 60721-3-3	3M4	Schwingungsamplitude 3,0 mm (29 Hz) Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte		3M4	
Schwingungsgrenzwerte	EN 60721-3-3 EN 61800-5-1	3M4 _	Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte Schockgrenzwerte		3M4 - 3M4	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz)
Schockgrenzwerte	EN 61800-5-1	_	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz) Beschleunigungsamplitude 10 m/s² (57150 Hz)
	EN 61800-5-1	_	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz) Beschleunigungsamplitude 10 m/s² (57150 Hz) 100 m/s²; 11 ms

¹⁾ Nicht getestet

3.1.3 Chemisch/Mechanisch aktive Stoffe

Lagerung		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-1	1C2	_
Kontamination	Feststoffe	EN 00721-3-1	1S2	_
Transport		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-2	2C2	_
Kontamination	Feststoffe	EN 00721-3-2	2S2	_
Betrieb		Norm	Klasse	Bemerkungen
Ventemination	Gase	EN 60721-3-3	3C2	-
Kontamination	Feststoffe	EN 00/21-3-3	3S2	-
Tabelle 4: Chemisch/Mechanisch aktive Stoffe				

3.1.4 Elektrische Betriebsbedingungen

3.1.4.1 Geräteeinstufung

Anforderung	Norm	Klasse	Bemerkungen
Überspannungskategorie	EN 61800-5-1	III	-
Verschmutzungsgrad	EN 60664-1	2	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist
Tabelle 5: Geräteeinstufung			

3.1.4.2 Elektromagnetische Verträglichkeit

Die angegebenen Werte gelten nur für Geräte mit externem Filter.

EMV-Störaussendung	Norm	Klasse	Bemerkungen		
Leitungsgeführte Störaussendung	EN 61800-3	C2 / C3	=> "5.2.5.4 Motorleitungslänge und Leitungs- gebundene Störgrößen bei AC-Versorgung"		
Abgestrahlte Störaussendung	EN 61800-3	C2	_		
Störfestigkeit	Norm	Pegel	Bemerkungen		
Stations - Futladus	EN 61000-4-2	8kV	AD (Luftentladung)		
Statische Entladungen	EN 61000-4-2	4 kV	CD (Kontaktentladung)		
Burst - Anschlüsse für pro- zessnahe Mess- und Regel- funktionen und Signalschnitt- stellen	EN 61000-4-4	2kV	_		
Burst - AC - Leistungsschnitt- stellen	EN 61000-4-4	4 kV	-		
Surge Leistungeschnittstellen	EN 61000-4-5	1kV	Phase-Phase		
Surge - Leistungsschnittstellen	EN 61000-4-5	2kV	Phase-Erde		
Leitungsgeführte Störfestig- keit, induziert durch hochfre- quente Felder	EN 61000-4-6	10 V	0,1580 MHz		
		10 V/m	80 MHz1 GHz		
Elektromagnetische Felder	EN 61000-4-3	3 V/m	1,42 GHz		
		1 V/m	22,7 GHz		
Spannungsschwankungen/	EN 61000-2-1		-15 %+10 %		
-einbrüche	EN 61000-4-34	_	Klasse 3		
Frequenzänderungen	EN 61000-2-4	_	≤ 2 %		
Spannungsabweichungen	EN 61000-2-4	_	±10%		
Spannungsunsymmetrien	EN 61000-2-4	_	≤ 3 %		
Tabelle 6: Elektromagnetische Verträglichkeit					

3.2 Gerätedaten der 400 V-Geräte

3.2.1 Übersicht der 400 V-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			27	28	29	3	0
Gehäuse					8		
Ausgangsbemessungscheinleistung		Sout / kVA	208	256	319	39	95
Max. Motorbemessungsleistung	1)	Pmot / kW	160	200	250	3′	15
Eingangsbemessungsspannung		Un / V		4	00 (UL: 480	0)	
Eingangsspannungsbereich		Uin / V			280550		
Netzphasen					3		
Netzfrequenz		f _N / Hz			50 / 60 ±2		
Eingangsbemessungsstrom @ $U_N = 400V$		lin / A	315	390	485	60	00
Eingangsbemessungsstrom @ $U_N = 480V$		Iin_UL / A	269	337	414	5	13
Isolationswiderstand @ Udc = 500V		R iso / $M\Omega$			> 15		
Ausgangsspannung		Uout / V			0 <i>Uin</i>		
Ausgangsfrequenz	2)	fout / Hz			0599		
Ausgangsphasen					3		
Ausgangsbemessungsstrom		In / A	300	370	460	5-	70
@ Un = 400V		INTA	300	370	400	3	70
Ausgangsbemessungsstrom @ $U_N = 480V$		IN_UL / A	260	325	400	49	95
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %		12	25	,	150
Softwarestromgrenze	3)	Ilim / %		12	25		150
Abschaltstrom	3)	loc / %		15	50		180
Bemessungsschaltfrequenz		fsn / kHz	4	4	2	2	2
Max. Schaltfrequenz	5)	fs_max / kHz	8	8	8	8	8
Verlustleistung bei Bemessungsbetrieb	1)	Po / kW	3	3,8	3,88	tbd	5,27
Überlaststrom über Zeit	3)	IOL / %	=>	3.2.3.1 Üb	erlastchara	akteristik (C	DL)
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	150/150	122/150	98/150	tbd	72/172
Maximalstrom 0Hz/50Hz bei fs=4kHz		lout_max / %	91/150	74/150	59/122	tbd	40/110
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	36/87	29/71	24/57	tbd	17/54
					weit	ter auf näcl	nster Seite

31

GERÄTEDATEN DER 400 V-GERÄTE

Gerätegröße		27	28	29	30
Gehäuse				8	
Max. Bremsstrom	I _{B_max} / A			380	
Min. Bremswiderstandswert	R_{B_min} / Ω			2,2	
Bremstransistor	6)	Ma	x. Spielda	uer: 120s; N	Max. ED: 50 %
Schutzfunktion für Bremstransistor			Kurzsc	hlussüberw	achung
Schutzfunktion Bremswiderstand	7)	Foodbo	okojan olova	wortungun	d Ctromobooboltung
(Error GTR7 always on)	Feedbacksignalauswertung und Stromab		a Stromabschallung		
Tabelle 7: Übersicht der 400 V-Gerä	te				

Bemessungsbetrieb entspricht $U_N = 400 \, \text{V}$, Bemessungsschaltfrequenz, Ausgangsfrequenz = $50 \, \text{Hz}$ (4-poliger Standardasynchronmotor).

- ³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.
- 4) Einschränkungen beachten => => 3.2.3.1 Überlastcharakteristik (OL)
- ⁵⁾ Eine genaue Beschreibung des Derating => 3.3.1 Schaltfrequenz und Temperatur.
- ⁶⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.

3.2.2 Spannungs- und Frequenzangaben für 400 V-Geräte

Eingangsspannungen und -frequenzen			
Eingangsbemessungsspannung	Un / V	400	
Nominal-Netzspannung (USA)	UN_UL / V	480	
Eingangsspannungsbereich	UIN / V	280550	
Netzphasen		3	
Netzfrequenz	f∧ / Hz	50/60	
Netzfrequenztoleranz f _{Nt} / Hz ± 2			
Tabelle 8: Eingangsspannungen und -frequenzen der 400 V-Geräte			

DC-Zwischenkreisspannung			
Zwischenkreis Bemessungsspannung @ $U_N = 400 \text{V}$ U_{N_dc} / V 565			
Zwischenkreis Bemessungsspannung @ UN_UL = 480 V	UN_UL_dc / V	680	
Zwischenkreis Arbeitsspannungsbereich	U _{dc} / V	390780	
Tabelle 9: DC-Zwischenkreisspannung für 400 V-Geräte			

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.
Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

Ausgangsspannungen und -frequenzen				
Ausgangsspannung bei AC-Versorgung	1) Uout / V	0 <i>U</i> in		
Ausgangsfrequenz	2) fout / Hz	0599		
Ausgangsphasen 3				
Tabelle 10: Ausgangsspannungen und -frequenzen der 400 V-Geräte				

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren => "3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V".

3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel			
Netzdrossel <i>U</i> _k	4				
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und Motor-			
Antriebsstromrichter geregelt	8	drossel an einem weichen Netz:			
Motordrossel <i>U</i> _k	1	400 V-Netzspannung (100%) - 44V reduzierte Span- nung (11 %) = 356 V-Motorspannung			
Weiches Netz	2	mang (11 70) ccc i meteropalmang			
Tabelle 11: Beispiel zur Berechnung der möglichen Motorspannung für 400 V					

3.2.3 Ein- und Ausgangsströme / Überlast

Gerätegröße			27	28	29	30
Eingangsbemessungsstrom @ UN = 400V	1)	Iin / A	315	390	485	600
Eingangsbemessungsstrom @ Un_uL = 480V	1)	Iin_UL / A	269	337	414	513
Tabelle 12: Eingangsströme der 400 V-Geräte						

Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

Gerätegröße			27	28	29	3	0		
Ausgangsbemessungsstrom @ UN = 400V		In / A	300	370	460	570			
Ausgangsbemessungsstrom @ UN_UL = 480V		IN_UL / A	260	325	400	495			
Ausgangsbemessungsüberlast (60 s)	1)	160s / %	125						
Überlaststrom	1)	IOL / %	=> 3.2.3.1 Überlastcharakteristik (OL)						
Softwarestromgrenze	1) 2)		125				150		
Abschaltstrom	1)	loc / %		180					
Tabelle 13: Ausgangsströme und Überlast der 400 V-Geräte									

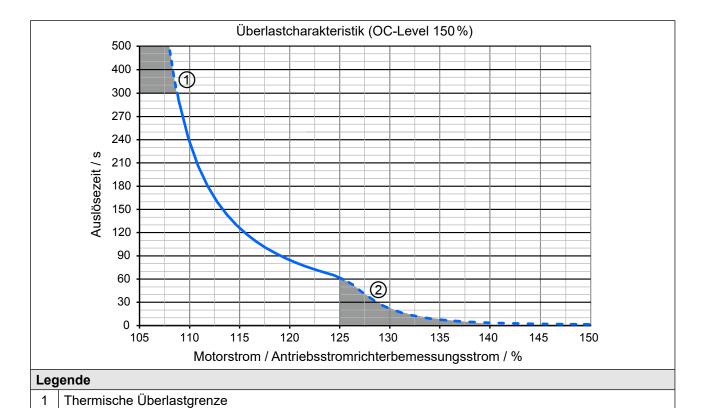
Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.
Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

²⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

GERÄTEDATEN DER 400V-GERÄTE

3.2.3.1 Überlastcharakteristik (OL)

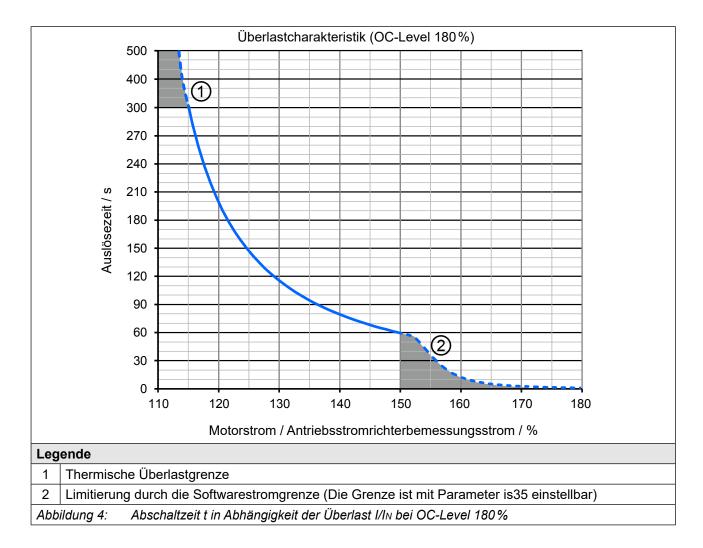

Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 125 % für 60 s betrieben werden.

Bei der OL-Überlastfunktion handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=> "Abbildung 3: Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC-Level 150%") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden
 3.2.3.2 Frequenzabhängiger Maximalstrom (OL2).



Limitierung durch die Softwarestromgrenze (Die Grenze ist mit Parameter is35 einstellbar)

Abschaltzeit t in Abhängigkeit der Überlast I/In bei OC-Level 150%

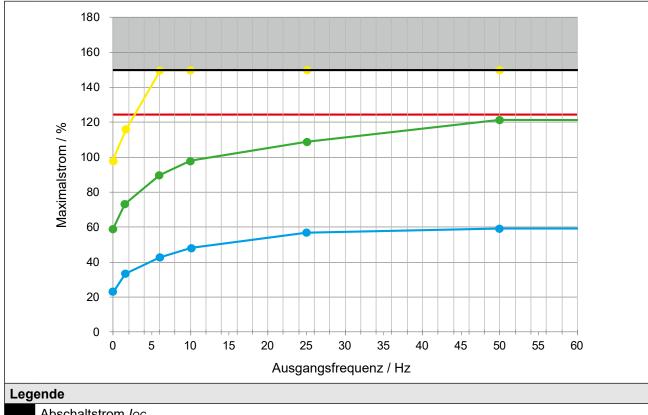
Abbildung 3:

- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

Nach Ablauf einer Abkühlzeit kann dieser nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast im Bereich ① nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.


3.2.3.2 Frequenzabhängiger Maximalstrom (OL2)

Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gilt für das Gehäuse 8 folgende Regel:

Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

Die folgenden Kennlinien geben den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0 Hz, 1,5 Hz, 6 Hz, 10 Hz, 25 Hz und 50 Hz an. Es wird beispielhaft die Gerätegröße 29 (OC-Level: 150%) dargestellt.

Abschaltstrom loc

Softwarestromgrenze *lim* (Die Grenze ist mit Parameter is35 einstellbar)

Schaltfrequenz 2kHz

Schaltfrequenz 4kHz

Schaltfrequenz 8kHz

Steht nicht für die Modulation zur Verfügung. Bei 150% Überlast wird der Fehler OC ausgelöst.

Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 29er-Gerät Abbildung 5:

Der frequenzabhängie Maximalstrom lout_max bezieht sich prozentual auf den Ausgangsbemessungsstrom IN.

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom (Luftkühler)

Gerätegröße		27							
Bemessungsschaltfrequenz			4 kHz						
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50	
		2kHz	150	150	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	91	112	136	147	150	150	
Basic Time Period = 62,5 µs (Parameter is22=0)		8kHz	36	52	66	72	82	87	
		1,75 kHz	150	150	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	106	129	150	150	150	150	
Basic Time Period = 71,4 µs (Parameter is22=1)		7kHz	50	67	84	91	103	112	
	'	1,5 kHz	150	150	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3kHz	120	145	150	150	150	150	
Basic Time Period = 83,3 µs (Parameter is22=2)		6kHz	63	82	101	109	123	137	
		1,25 kHz	150	150	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	136	150	150	150	150	150	
Basic Time Period = 100 µs (Parameter is22=3)		5kHz	77	97	118	128	144	150	
Tabelle 14: Frequenzabhängiger Maximalstrom für Gerätegröße 27									

Gerätegröße			28						
Bemessungsschaltfrequenz			4 kHz						
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50	
		2kHz	122	144	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	74	91	110	119	134	150	
Basic Time Period = 62,5 µs (Parameter is22=0)		8kHz	29	42	54	58	66	71	
		1,75 kHz	122	144	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	86	104	129	145	150	150	
Basic Time Period = 71,4 µs (Parameter is22=1)		7kHz	40	54	68	73	83	91	
		1,5 kHz	122	144	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3kHz	98	117	148	150	150	150	
Basic Time Period = 83,3 µs (Parameter is22=2)		6kHz	51	67	82	89	100	111	
		1,25 kHz	122	144	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	110	131	150	150	150	150	
Basic Time Period = 100 µs (Parameter is22=3)		5kHz	63	79	96	104	117	132	
Tabelle 15: Frequenzabhängiger Maximalstrom für Gerätegröße 28									

GERÄTEDATEN DER 400 V-GERÄTE

Gerätegröße	29								
Bemessungsschaltfrequenz			2 kHz						
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50	
		2kHz	98	116	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	59	73	89	96	108	122	
Basic Time Period = 62,5 µs (Parameter is22=0)		8 kHz	24	34	43	47	53	57	
		1,75 kHz	98	116	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	69	84	104	117	126	137	
Basic Time Period = 71,4 µs (Parameter is22=1)		7 kHz	33	44	55	59	67	73	
		1,5 kHz	98	116	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3 kHz	79	94	119	138	144	150	
Basic Time Period = 83,3 µs (Parameter is22=2)		6 kHz	41	54	66	71	80	90	
		1,25 kHz	98	116	150	150	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	88	105	134	150	150	150	
Basic Time Period = 100 µs (Parameter is22=3)		5 kHz	50	64	77	84	94	106	
Tabelle 16: Frequenzabhängiger Maximalstron	Tabelle 16: Frequenzabhängiger Maximalstrom für Gerätegröße 29								

Gerätegröße			30 (OC-Level: 150%)						
Bemessungsschaltfrequenz		2 kHz							
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50	
		2kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Basic Time Period = 62,5 µs (Parameter is22=0)		8 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
		1,75 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Basic Time Period = 71,4 µs (Parameter is22=1)		7 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
		1,5 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Basic Time Period = 83,3 µs (Parameter is22=2)		6 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
		1,25 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Basic Time Period = 100 µs (Parameter is22=3)		5 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Tabelle 17: Frequenzabhängiger Maximalstrom für Gerätegröße 30 (OC-Level: 150%)								*	

Gerätegröße			30 (OC-Level: 180%)							
Bemessungsschaltfrequenz			2 kHz							
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50		
		2kHz	72	95	127	139	158	172		
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	40	56	77	86	100	110		
Basic Time Period = 62,5 µs (Parameter is22=0)		8 kHz	17	27	37	42	49	54		
		1,75 kHz	72	95	126	139	158	172		
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	48	86	89	99	114	126		
Basic Time Period = 71,4 µs (Parameter is22=1)		7 kHz	23	35	47	53	61	68		
		1,5 kHz	72	95	127	139	158	172		
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3kHz	56	76	102	113	129	141		
Basic Time Period = 83,3 µs (Parameter is22=2)		6 kHz	29	42	57	64	74	82		
		1,25 kHz	72	95	127	139	158	172		
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	64	85	114	126	144	156		
Basic Time Period = 100 µs (Parameter is22=3)		5 kHz	35	49	667	75	87	96		
Tabelle 18: Frequenzabhängiger Maximalstrom für Gerätegröße 30 (OC-Level: 180%)										

GERÄTEDATEN DER 400 V-GERÄTE

Frequenzabhängiger Maximalstrom (Fluidkühler Wasser)

Gerätegröße	Gerätegröße						27						
Bemessungsschaltfrequenz	4 kHz												
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50					
		2kHz	150	150	150	150	150	150					
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	91	112	136	147	150	150					
Basic Time Period = 62,5 µs (Parameter is22=0)		8 kHz	36	52	66	72	82	87					
		1,75 kHz	150	150	150	150	150	150					
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	106	129	150	150	150	150					
Basic Time Period = 71,4 µs (Parameter is22=1)		7 kHz	50	67	84	91	103	112					
		1,5 kHz	150	150	150	150	150	150					
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3 kHz	120	145	150	150	150	150					
Basic Time Period = 83,3 µs (Parameter is22=2)		6 kHz	63	82	101	109	123	137					
		1,25 kHz	150	150	150	150	150	150					
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	136	150	150	150	150	150					
Basic Time Period = 100 µs (Parameter is22=3)		5kHz	77	97	118	128	144	150					
Tabelle 19: Frequenzabhängiger Maximalstron	n für Geräte	größe 27											

Gerätegröße			28											
Bemessungsschaltfrequenz	Bemessungsschaltfrequenz						4 kHz							
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50						
		2kHz	122	144	150	150	150	150						
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	74	91	110	119	134	150						
Basic Time Period = 62,5 µs (Parameter is22=0)		8 kHz	29	42	54	58	66	71						
		1,75 kHz	122	144	150	150	150	150						
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	86	104	129	145	150	150						
Basic Time Period = 71,4 µs (Parameter is22=1)		7 kHz	40	54	68	73	83	91						
	,	1,5 kHz	122	144	150	150	150	150						
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3kHz	98	117	148	150	150	150						
Basic Time Period = 83,3 µs (Parameter is22=2)		6 kHz	51	67	82	89	100	111						
		1,25 kHz	122	144	150	150	150	150						
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	110	131	150	150	150	150						
Basic Time Period = 100 µs (Parameter is22=3)		5kHz	63	79	96	104	117	132						
Tabelle 20: Frequenzabhängiger Maximalstrom für Gerätegröße 28														

Gerätegröße	Gerätegröße						29						
Bemessungsschaltfrequenz			2 kHz										
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50					
		2kHz	98	116	150	150	150	150					
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	59	73	89	96	108	122					
Basic Time Period = 62,5 µs (Parameter is22=0)		8kHz	24	34	43	47	53	57					
		1,75 kHz	98	116	150	150	150	150					
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	69	84	104	117	126	137					
Basic Time Period = 71,4 µs (Parameter is22=1)		7kHz	33	44	55	59	67	73					
		1,5 kHz	98	116	150	150	150	150					
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3kHz	79	94	119	138	144	150					
Basic Time Period = 83,3 µs (Parameter is22=2)		6kHz	41	54	66	71	80	90					
	,	1,25 kHz	98	116	150	150	150	150					
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	88	105	134	150	150	150					
Basic Time Period = 100 µs (Parameter is22=3)		5kHz	50	64	77	84	94	106					
Tabelle 21: Frequenzabhängiger Maximalstrom für Gerätegröße 29													

Gerätegröße			30 (OC-Level: 150%)						
Bemessungsschaltfrequenz			2 kHz						
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50	
		2 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Basic Time Period = 62,5 µs (Parameter is22=0)		8 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
		1,75 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Basic Time Period = 71,4 µs (Parameter is22=1)		7 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
		1,5 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Basic Time Period = 83,3 µs (Parameter is22=2)		6 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
		1,25 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Basic Time Period = 100 µs (Parameter is22=3)		5 kHz	tbd	tbd	tbd	tbd	tbd	tbd	
Tabelle 22: Frequenzabhängiger Maximalstrom für Gerätegröße 30 (OC-Level: 150%)									

GERÄTEDATEN DER 400 V-GERÄTE

Gerätegröße	Gerätegröße						30 (OC-Level: 180%)							
Bemessungsschaltfrequenz			2 kHz											
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	50						
		2 kHz	72	95	127	139	158	172						
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	4 kHz	40	56	77	86	100	110						
Basic Time Period = 62,5 µs (Parameter is22=0)		8 kHz	17	27	37	42	49	54						
		1,75 kHz	72	95	126	139	158	172						
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	48	86	89	99	114	126						
Basic Time Period = 71,4 µs (Parameter is22=1)		7 kHz	23	35	47	53	61	68						
		1,5 kHz	72	95	127	139	158	172						
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3 kHz	56	76	102	113	129	141						
Basic Time Period = 83,3 µs (Parameter is22=2)		6 kHz	29	42	57	64	74	82						
		1,25 kHz	72	95	127	139	158	172						
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	2,5 kHz	64	85	114	126	144	156						
Basic Time Period = 100 µs (Parameter is22=3)		5 kHz	35	49	667	75	87	96						
Tabelle 23: Frequenzabhängiger Maximalstrom für Gerätegröße 30 (OC-Level: 180%)														

3.2.4 Verlustleistung bei Bemessungsbetrieb

Gerätegröße			27	28	29	3	0
Abschaltstrom		loc / %	150	150	150	150	180
Verlustleistung bei Bemessungsbetrieb	1)	Po / kW	3	3,8	3,88	tbd	5,27
Tabelle 24: Verlustleistung der 400 V-Geräte							

¹⁾ Bemessungsbetrieb entspricht Un = 400 V; fsn; In; fn =50 Hz (typischer Wert)

3.2.5 Absicherung für 400V-Geräte

	Max. Größe der Sicherung / A									
Geräte- größe	<i>U</i> _N = 400V gG (IEC)	<i>U</i> _N = 480V class "J"		<i>U</i> _N = 480V aR						
	SCCR 100 kA	SCCR 18kA	SCCR 100 kA	Typ ¹)						
				COOPER BUSSMANN 170M3xx9						
				COOPER BUSSMANN 170M3069						
27	500	400	400	COOPER BUSSMANN 170M3119						
21	300	400	400	COOPER BUSSMANN 170M3269						
				LITTELFUSE L70QS400.X						
				SIBA 206xy32.400						
				COOPER BUSSMANN 170M3021						
				COOPER BUSSMANN 170M3121						
28	500	500	500	COOPER BUSSMANN 170M3171						
20	300	300	300	COOPER BUSSMANN 170M3271						
				LITTELFUSE L70QS500.X						
				SIBA 206xy32.500						
				COOPER BUSSMANN 170M3022						
				COOPER BUSSMANN 170M3122						
29	630	600	550	COOPER BUSSMANN 170M3172						
29	030	000		COOPER BUSSMANN 170M3272						
				SIBA 206xy32.550						
			600	LITTELFUSE L70QS600.X						
				COOPER BUSSMANN 170M3023						
				COOPER BUSSMANN 170M3123						
30	630	600	630	COOPER BUSSMANN 170M3173						
30	030	000		COOPER BUSSMANN 170M3273						
				SIBA 206xy32.630						
			600	LITTELFUSE L70QS600.X						
Tabelle 2	5: Absicherunger	n für 400 V / 480 V-	Geräte							

¹⁾ "x" steht für verschiedene Indikatoren. "y" steht für verschiedene Verbindungsvarianten.

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 100 kA eff. geeignet.

3.3 Allgemeine elektrische Daten

3.3.1 Schaltfrequenz und Temperatur

Die Antriebsstromrichterkühlung ist so ausgelegt, dass bei Bemessungsbedingungen die Kühlkörperübertemperaturschwelle nicht überschritten wird. Eine Schaltfrequenz größer der Bemessungsschaltfrequenz erzeugt auch höhere Verluste und damit eine höhere Kühlkörpererwärmung.

Erreicht die Kühlkörpertemperatur eine kritische Schwelle (*TDR*), kann die Schaltfrequenz automatisch schrittweise reduziert werden. Damit wird verhindert, dass der Antriebsstromrichter wegen Übertemperatur des Kühlkörpers abschaltet. Unterschreitet die Kühlkörpertemperatur die Schwelle *TUR* wird die Schaltfrequenz wieder auf den Sollwert angehoben. Bei der Temperatur *TEM* wird die Schaltfrequenz sofort auf Bemessungsschaltfrequenz reduziert. Damit diese Funktion greift, muss "Derating" aktiviert sein.

3.3.1.1 Schaltfrequenzen und Temperaturen für Luftkühler

Gerätegröße			27	28	29	3	0
Abschaltstrom		loc / %	150	150	150	150	180
Bemessungsschaltfrequenz	1)	<i>f</i> s⊬ / kHz	4	4	2	2	2
Max. Schaltfrequenz	1)	fs_max / kHz	8	8	8	8	8
Min. Schaltfrequenz	1)	fs_min / kHz	1,25	1,25	1,25	1,25	1,25
Max. Kühlkörpertemperatur 1		Ths1 / °C	tbd	85	85	tbd	97
Max. Kühlkörpertemperatur 2		THS2 / °C	tbd	95	95	tbd	95
Max. Kühlkörpertemperatur 3		THS3 / °C	tbd	82	82	tbd	89
Max. Innenraumtemperatur Leistungsteil 1		TID_PU1 / °C	tbd	55	55	tbd	55
Max. Innenraumtemperatur Leistungsteil 2		TID_PU2 / °C	tbd	75	75	tbd	80
Max. Innenraumtemperatur Leistungsteil 3		TID_PU3 / °C	tbd	90	90	tbd	90
Temperatur zur Schaltfrequenzreduzierung		TDR / °C	tbd	75	75	tbd	85
Temperatur zur Schaltfrequenzerhöhung		Tur / °C	tbd	65	65	tbd	75
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		Тем / °C	tbd	80	80	tbd	90
Tabelle 26: Schaltfrequenzen und Temperaturen für Luftkühler							

Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

Luftgekühlte Antriebsstromrichter der Gerätegröße 30 mit einem Abschaltstrom von 180 %.

 Bei erweiterter Kühlmitteleintrittstemperatur Luft des Kühlkörperlüfters von 45°C: Max. Einschaltdauer von 80% bei einer max. Periodendauer von 120s beachten.

3.3.1.2 Schaltfrequenzen und Temperaturen für Fluidkühler (Wasser)

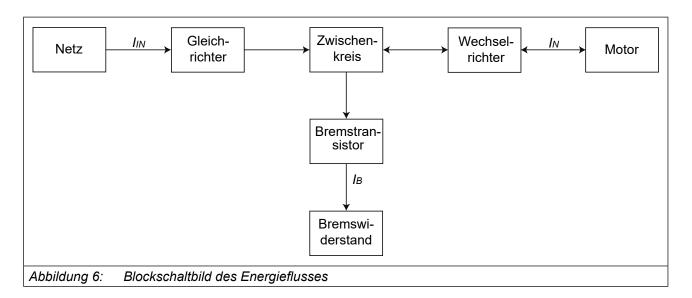
Gerätegröße			27	28	29	3	0
Abschaltstrom		loc / %	150	150	150	150	180
Bemessungsschaltfrequenz	1)	fsn / kHz	4	4	2	2	2
Max. Schaltfrequenz	1)	fs_max / kHz	tbd	8	8	8	8
Min. Schaltfrequenz	1)	fs_min / kHz	1,25	1,25	1,25	1,25	1,25
Max. Kühlkörpertemperatur 1		THS1 / °C	tbd	70	70	tbd	78
Max. Kühlkörpertemperatur 2		THS2 / °C	tbd	73	73	tbd	73
Max. Kühlkörpertemperatur 3		THS3 / °C	tbd	69	69	tbd	73
Max. Innenraumtemperatur Leistungsteil 1		TID_PU1 / °C	tbd	55	55	tbd	55
Max. Innenraumtemperatur Leistungsteil 2		TID_PU2 / °C	tbd	75	75	tbd	80
Max. Innenraumtemperatur Leistungsteil 3		TID_PU3 / °C	tbd	90	90	tbd	90
Temperatur zur Schaltfrequenzreduzierung		TDR / °C	tbd	60	60	tbd	68
Temperatur zur Schaltfrequenzerhöhung		Tur / °C	tbd	50	50	tbd	58
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		Тем / °C	tbd	65	65	tbd	73
Tabelle 27: Schaltfrequenz und Temperatur für F	Tabelle 27: Schaltfrequenz und Temperatur für Fluidkühler (Wasser)						

¹⁾ Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

3.3.2 DC-Zwischenkreis / Bremstransistorfunktion

Aktivierung der Bremstransistorfunktion.

Um den Bremstransistor verwenden zu können, muss die Funktion mit dem Parameter "is 30 braking transistor function" aktiviert werden.


Für weitere Informationen => F6 Programmierhandbuch.

ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters

▶ Der minimale Bremswiderstandswert darf nicht unterschritten werden!

ACHTUNG

Zerstörung des Antriebsstromrichters!

Tritt der Fehler "ERROR GTR7 always ON" auf, wird die Stromaufnahme über die Netzeingangsbrücke der AC-Versorgung intern weggeschaltet.

▶ Der Antriebsstromrichter muss innerhalb von 5 Minuten galvanisch vom Versorgungsnetz getrennt werden!

Gerätegröße			27	28	29	30
Zwischenkreis Bemessungsspannung @ UN = 400V		U _{N_dc} / V	565			
Zwischenkreis Bemessungsspannung @ UN_UL = 480V		UN_dc_UL / V	680			
Zwischenkreis Arbeitsspannungsbereich		UIN_dc / V	390780			
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V	240			
DC-Abschaltpegel "Fehler! Überspannung"		Uop / V	840			
DC-Schaltpegel Bremstransistor	1)	U _B / V	780			
Max. Bremsstrom		IB_max / A	380			
Min. Bremswiderstandswert		RB_min / Ω	2,2			
Bremstransistor	3)		Max. Spieldauer: 120s; Max. ED: 50%		0s;	
Schutzfunktion für Bremstransistor			Kurzschlussüberwachung		nung	
Schutzfunktion Bremswiderstand	2)		Feedbacksignalauswertung un		ng und	
(Error GTR7 always on)	-,		Stromabschaltung			
Zwischenkreiskapazität		C / µF	9900 11700 15600 18600		18600	
Tabelle 28: DC-Zwischenkreis / Bremstransistorfunktion	n de	r 400 V-Geräte	;			

¹⁾ Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

3.3.3 Unterbaubremswiderstände

Technische Daten der Unterbaubremswiderstände						
Bremswiderstandswert	R/Ω	2,25				
Bemessungsleistung	<i>P</i> _D / W	2120				
Einschaltdauer bezogen auf 120s @ U_{N_dc} = 780V	ED/s	0,62				
Tabelle 29: Unterbaubremswiderstände						

ACHTUNG

Verlustleistung der Unterbaubremswiderstände beachten.

Im Bremsbetrieb mit Unterbaubremswiderständen erhöht sich die abzuführende Leistung des Kühlkörpers.

Verlustleistung der Bremswiderstände bei der Auslegung des Kühlsystems beachten.

²⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

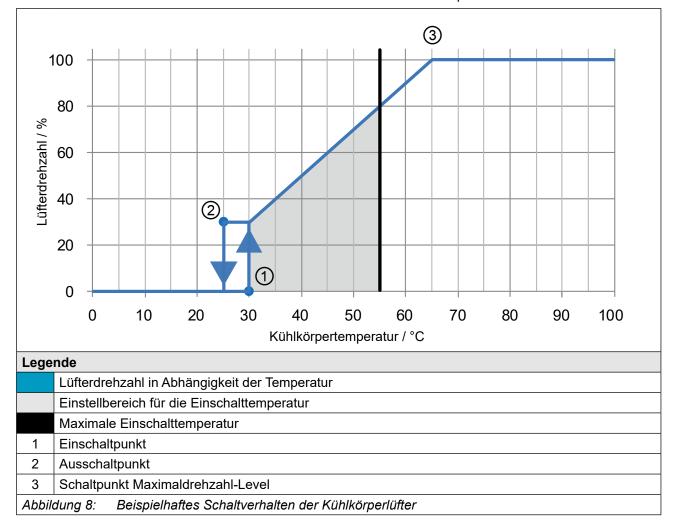
³⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.

ALLGEMEINE ELEKTRISCHE DATEN

3.3.4 Lüfter

Gerätegröße		27 28 29 30				
Innonroumlüfter	Anzahl	2				
Innenraumlüfter	Drehzahlvariabel	ja				
IZOLILER aIOC	Anzahl	2				
Kühlkörperlüfter	Drehzahlvariabel	ja				
Abbildung 7: Lüft						

Die Lüfter sind drehzahlvariabel. Sie werden automatisch, je nach Einstellung der Temperaturgrenzen in der Software, auf hohe oder niedrige Drehzahl gesteuert.


ACHTUNG

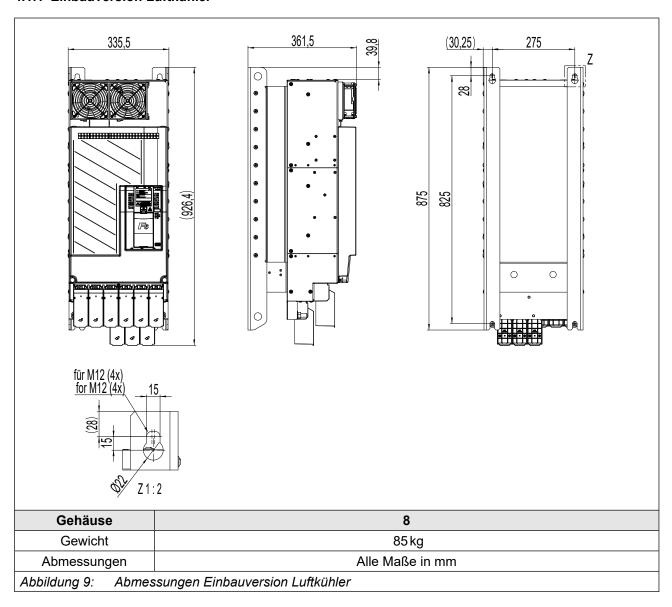
Zerstörung der Lüfter!

► Es dürfen keine Fremdkörper in die Lüfter eindringen!

3.3.4.1 Schaltverhalten der Lüfter

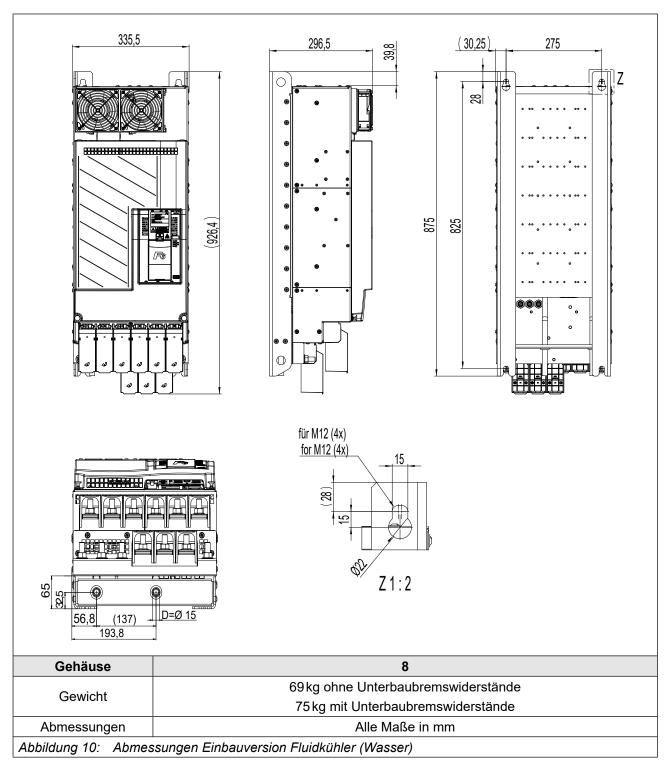
Die Lüfter besitzen verschiedene Ein- und Ausschaltpunkte.

3.3.4.2 Schaltpunkte der Lüfter

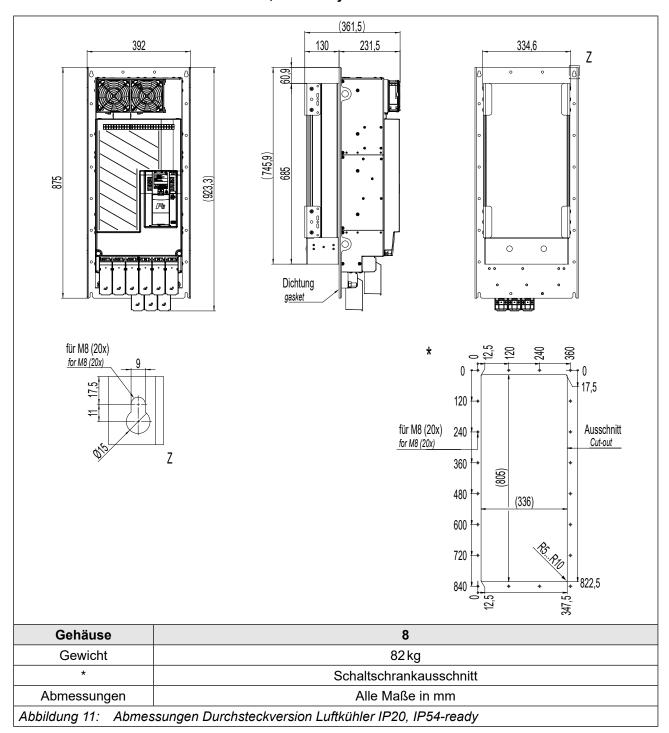

Der Schaltpunkt für die Einschalttemperatur und das Maximaldrehzahl-Level der Lüfter sind einstellbar. In der folgenden Tabelle sind die Standardwerte angegeben.

Lüfter		Kühlkörper	Innenraum			
Einschalttemperatur	T/°C	30	20			
Maximaldrehzahl-Level	T/°C	65	40			
Tabelle 30: Schaltpunkte der Lüfter						

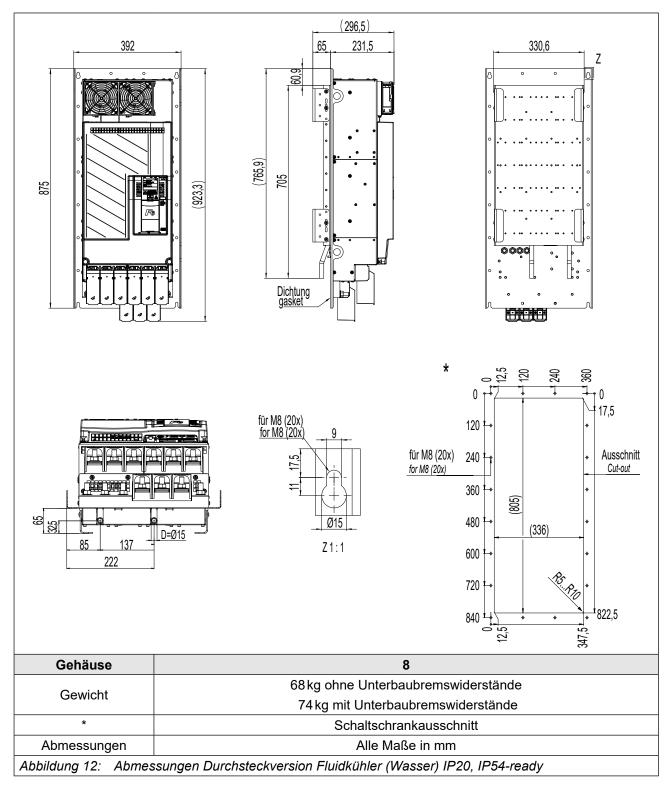
4 Einbau


4.1 Abmessungen und Gewichte

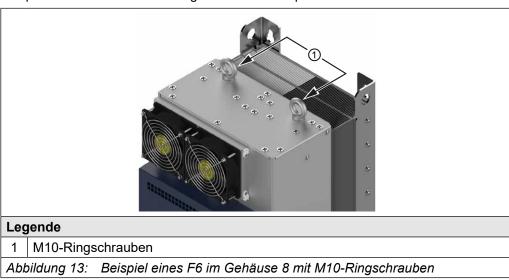
4.1.1 Einbauversion Luftkühler


4.1.2 Einbauversion Fluidkühler (Wasser)

51


ABMESSUNGEN UND GEWICHTE

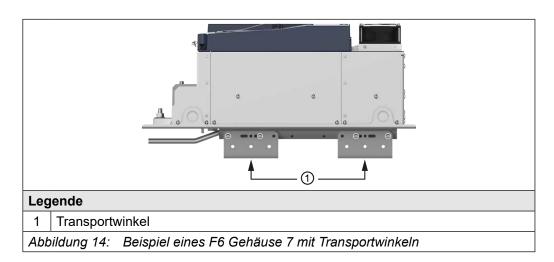
4.1.3 Durchsteckversion Luftkühler IP20, IP54-ready


4.1.4 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready

4.2 Schaltschrankeinbau

4.2.1 Transport mit Ringschrauben

Bei Antriebsstromrichtern im Gehäuse 7, 8 und 9 befinden sich an der Oberseite 2 Gewindebuchsen für M10-Ringschrauben nach *DIN 580*. Diese dienen der Aufnahme von entsprechenden Hebevorrichtungen für den Transport.


4.2.2 Durchsteckgeräte mit Transportwinkel

Die Transportwinkel können nach der Montage des Antriebsstromrichters entfernt werden. Die Transportwinkel müssen aufbewahrt werden, um den Antriebsstromrichter im Servicefall wieder transportfähig zu machen.

ACHTUNG

Beschädigung durch unsachgemäße Montage.

▶ Die Transportwinkel dürfen nicht zur Befestigung des Antriebsstromrichters genutzt werden.

ACHTUNG

Beschädigung der Wasseranschlüsse.

Abknicken der Rohre!

▶ Das Gerät niemals ohne Transportwinkel abstellen oder transportieren!

4.2.3 Befestigungshinweise

Zur Montage der Antriebsstromrichter wurden folgende Befestigungsmaterialien mit der entsprechenden Güte von KEB getestet.

Benötigtes Material	Anzugsdrehmoment
Sechskantschraube <i>ISO 4017</i> - M12 - 8.8 verzinkt	80 Nm
Secriskantschraube 750 4017 - WHZ - 6.6 Verzinkt	705lb inch
Flache Scheibe ISO 7090 - 12 - 200 HV verzinkt	_
Tabelle 31: Befestigungshinweise für Einbauversion	

Benötigtes Material	Anzugsdrehmoment
Sechskantschraube <i>ISO 4017</i> - M8 - 8.8 verzinkt	22 Nm
Secriskantschraube 150 4017 - Mo - 6.6 Verzinkt	190 lb inch
Flache Scheibe ISO 7090 - 8 - 200 HV verzinkt	_
Tabelle 32: Befestigungshinweise für Durchsteckversion	

ACHTUNG

Verwendung von anderem Befestigungsmaterial

➤ Das alternativ gewählte Befestigungsmaterial muss die oben genannten Werkstoffkennwerte (Güte) und Anzugsdrehmomente einhalten!

Die Verwendung anderer Befestigungsmaterialien erfolgt außerhalb der Kontrollmöglichkeiten von KEB und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

4.2.4 Einbauabstände

Verlustleistung zur Schaltschrankauslegung => 3.2.4 Verlustleistung bei Bemessungsbetrieb. Abhängig von der Betriebsart / Auslastung kann hier ein geringerer Wert angesetzt werden.

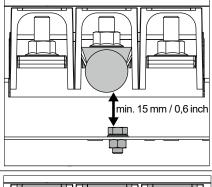
Maximale Kühlleistung erreichen

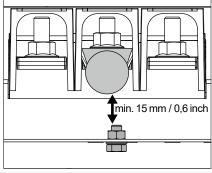
Für maximale Kühlleistung (Volumenstrom) muss der Antriebsstromrichter ohne Abstand auf einer glatten, geschlossenen Montageplatte montiert werden.

A E D C
F B

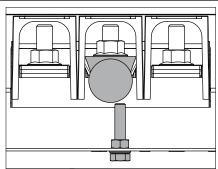
Maß	Abstand in mm	Abstand in inch
Α	150	6
В	100	4
С	30	1,2
D	0	0
E	0	0
F 1)	50	2

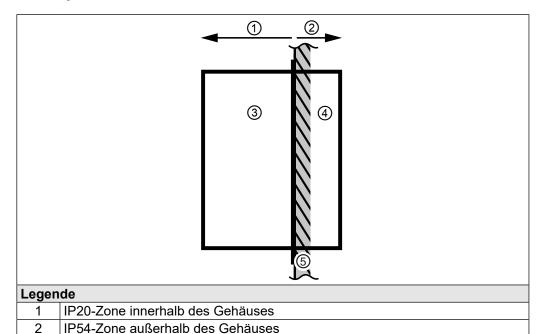
¹⁾ Abstand zu vorgelagerten Bedienelementen in der Schaltschranktür.


Abbildung 15: Einbauabstände


ACHTUNG

Spannungsüberschlag!


- ► Schraubenlänge bei Durchsteckversion beachten!
- ► Isolationsabstand zwischen Leiter und Schraube von mindestens 15 mm (0,6 inch) einhalten!



4.2.5 Montage von IP54-ready Geräten

3

4

IP54-Zone: Kühlkörper außerhalb des Gehäuses

Antriebsstromrichter (Leistungsteil und Steuerung)

Antriebsstromrichter (Kühlkörper) Gehäuse (z.B. Schaltschrankwand) Abbildung 16: Montage von IP54-ready Geräten

> Die Schutzart IP54 kann ausschließlich im ordnungsgemäß eingebauten Zustand erreicht werden.

> Für eine ordnungsgemäße Montage muss eine geeignete IP54-Dichtung (=> "5.3.2 Dichtung für IP54-ready Geräte") zwischen Kühlkörper und Gehäuse (z.B. Schaltschrankwand) verbaut werden.

> Nach dem Einbau muss die Dichtigkeit überprüft werden. Die Trennung zum Gehäuse entspricht bei ordnungsgemäßer Montage der Schutzart IP54.

> Bei Luftgekühlten Geräten müssen die Lüfter jedoch vor ungünstigen Umgebungseinflüssen geschützt werden.

> Dazu zählen brennbare, ölige oder gefährliche Dämpfe oder Gase, korrosive Chemikalien, grobe Fremdkörper und übermäßiger Staub. Dies betrifft besonders den Zugang des Kühlkörpers von oben (Luftaustritt). Eisbildung ist unzu-

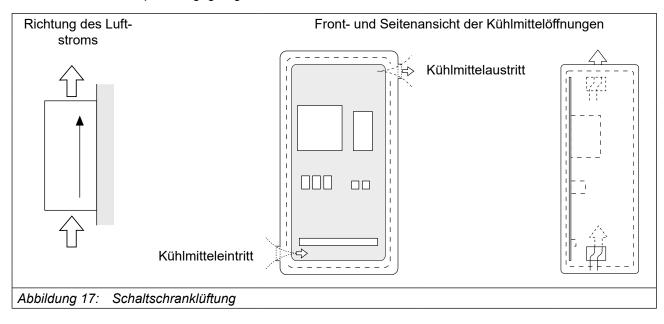
UL: Gerätekühlkörper ist als NEMA Type 1 eingestuft.

IP20-Zone: Gerät innerhalb des Gehäuses

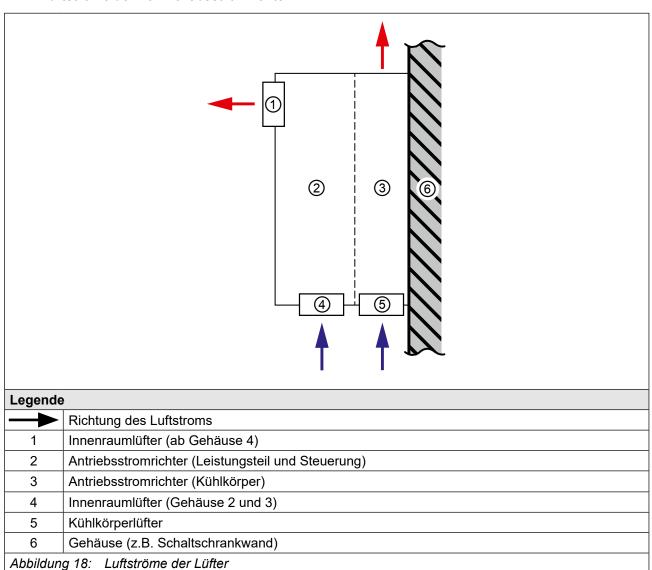
Dieser Teil ist zum Einbau in ein für die angestrebte Schutzart geeignetes Gehäuse (z.B. Schaltschrank) vorgesehen.

Die Leistungsanschlüsse sind ausgenommen => "3.1.1 Klimatische Umweltbedingungen".

ACHTUNG

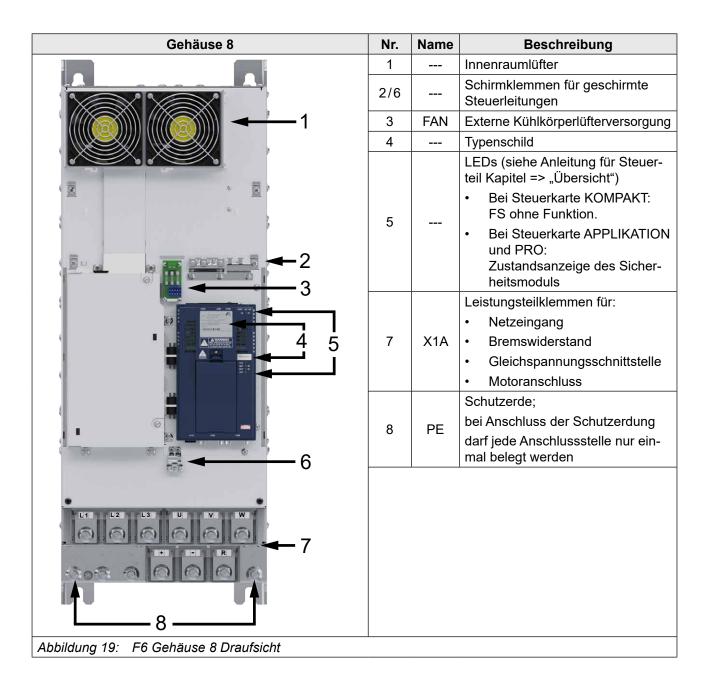

Defekt durch dauerhaftes Spritzwasser!

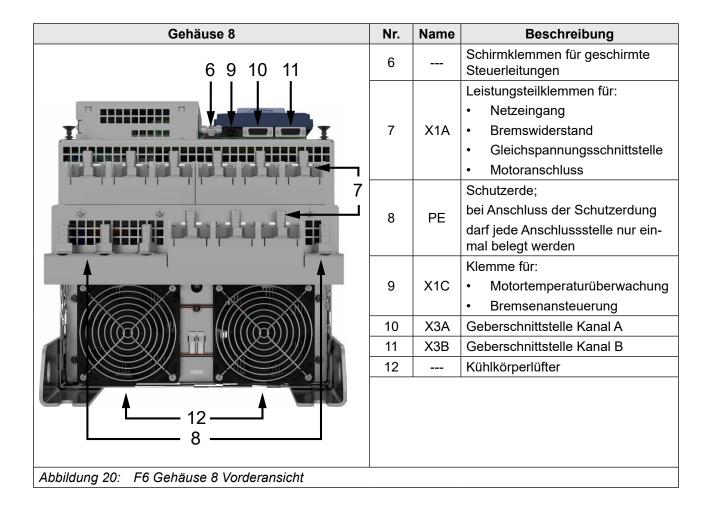
▶ Das Gerät niemals dauerhaftem Spritzwasser (z.B. direkte Regeneinwirkung) aussetzen!


4.2.6 Schaltschrankbelüftung

Wenn konstruktionsbedingt nicht auf eine Innenraumlüftung des Schaltschrankes verzichtet werden kann, muss durch entsprechende Filter der Ansaugung von Fremdkörpern entgegen gewirkt werden.

SCHALTSCHRANKEINBAU


4.2.7 Luftströme der F6 Antriebsstromrichter



5 Installation und Anschluss

5.1 Übersicht des COMBIVERT F6

ÜBERSICHT DES COMBIVERT F6

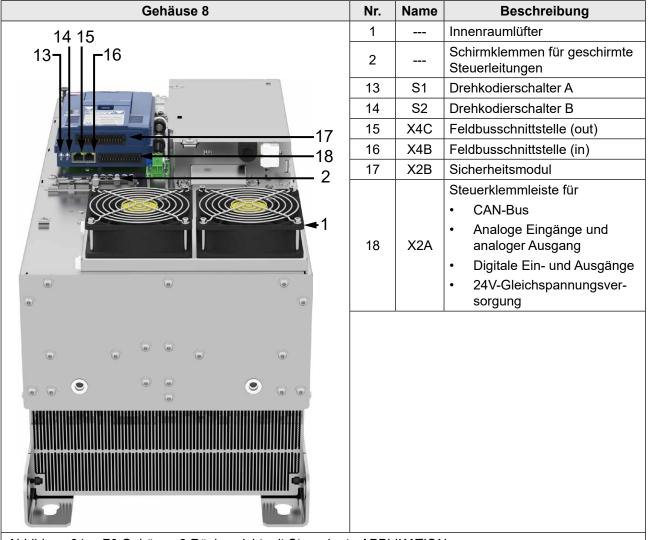


Abbildung 21: F6 Gehäuse 8 Rückansicht mit Steuerkarte APPLIKATION

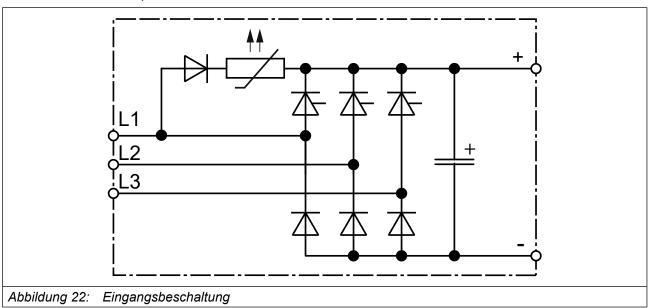
Weitere Informationen sind in der jeweiligen Steuerkartenanleitung zu finden.

Gebrauchsanleitung COMBIVERT F6 Steuerkarte APPLIKATION www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte KOMPAKT www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-k-inst-20144795_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte PRO www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_de.pdf

5.2 Anschluss des Leistungsteils


ACHTUNG

Zerstörung des Antriebsstromrichters!

▶ Niemals Netzeingang und Motorausgang vertauschen!

5.2.1 Anschluss der Spannungsversorgung

Der COMBIVERT F6 Gehäuse 8 kann vom Netz über die Klemmen L1, L2 und L3 gespeist werden.

Minimale Wartezeit zwischen zwei Einschaltvorgängen 5 Minuten!

Zyklisches Aus- und Einschalten des Gerätes führt zur temporären Hochohmigkeit des Kaltleiters (PTC) im Eingang. Nach Abkühlung des PTC ist eine erneute Inbetriebnahme ohne Einschränkung möglich.

5.2.1.1 Klemmleiste X1A für 400 V-Geräte

Name	Funktion	Klemmenanschluss	Anzugsdrehmoment	Max. Anzahl der Leiter
L1	- Netzanschluss			
L2				
L3	- 3-phasig			
U				
V	Motoranschluss	12 mm Stehbolzen	35 Nm	2
W		für M12-Kabelschuhe	310 lb inch	۷
+	DC-Klemmen			
-	DC-Riemmen			
R	Anschluss für Bremswider- stand (zwischen + und R)			

Abbildung 23: Klemmleiste X1A für 400 V-Geräte

5.2.2 Schutz- und Funktionserde

Schutz- und Funktionserde dürfen nicht an derselben Klemme angeschlossen werden.

5.2.2.1 Schutzerdung

Die Schutzerde (PE) dient der elektrischen Sicherheit insbesondere dem Personenschutz im Fehlerfall.

A VORSICHT

Elektrischer Schlag durch Falschdimensionierung!

► Erdungsquerschnitt ist entsprechend *DIN IEC 60364-5-54* zu wählen!

Name	Funktion	Klemmenanschluss	Anzugsdrehmoment	Max. Anzahl der Leiter			
(II)	Anschluss für Schutzerde	12 mm Gewindestift für M12-Kabelschuhe	35 Nm 310 lb inch	1			
Abbildung 24: Anschluss für Schutzerde							

Fehlerhafte Montage des PE-Anschlusses

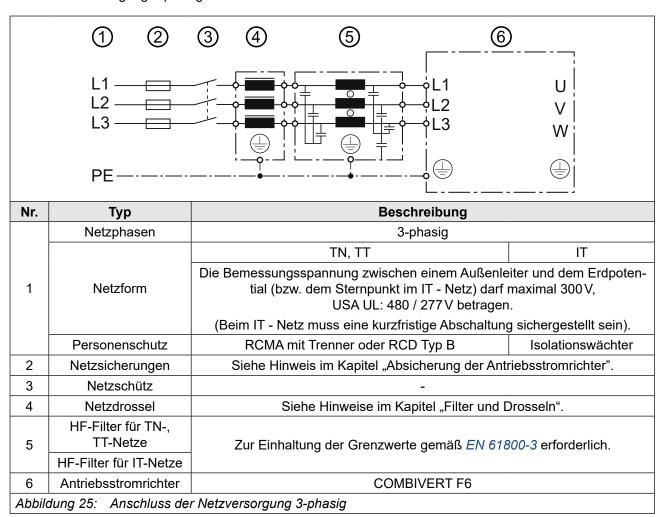
Zur Befestigung der PE-Rohrkabelschuhe müssen die vormontierten M12-Gewindestifte und M12-Muttern mit Flansch verwendet werden.

5.2.2.2 Funktionserdung

Eine Funktionserdung kann zusätzlich notwendig sein, wenn aus EMV-Gründen weitere Potentialausgleiche zwischen Geräten oder Teilen der Anlage zu schaffen sind.

Wird der Antriebsstromrichter EMV-technisch verdrahtet, ist eine zusätzliche Funktionserde (FE) nicht erforderlich.

Die Funktionserde darf nicht grün/gelb verdrahtet werden!


Gebrauchsanleitung EMV- und Sicherheitshinweise. www.keb.de/fileadmin/media/Manuals/dr/emv/0000ndb0000.pdf

5.2.3 AC-Netzanschluss

5.2.3.1 AC-Versorgung 3-phasig

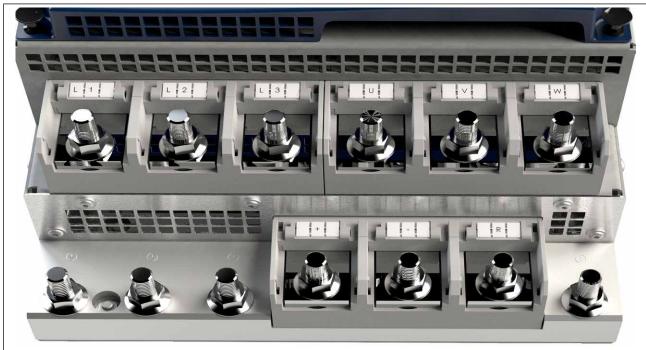
5.2.3.2 Netzzuleitung

Der Leiterquerschnitt der Netzzuleitung wird von folgenden Faktoren bestimmt:

- Eingangsstrom des Antriebsstromrichters
- · Verwendeter Leitungstyp
- · Verlegeart und Umgebungstemperaturen
- Den vor Ort gültigen Elektrovorschriften

Der Projektierer ist für die Auslegung verantwortlich!

ANSCHLUSS DES LEISTUNGSTEILS


5.2.4 DC-Anschluss

ACHTUNG

DC-Betrieb

▶ Der DC-Betrieb ist nur nach Rücksprache mit KEB zulässig!

5.2.4.1 Klemmleiste X1A DC-Anschluss

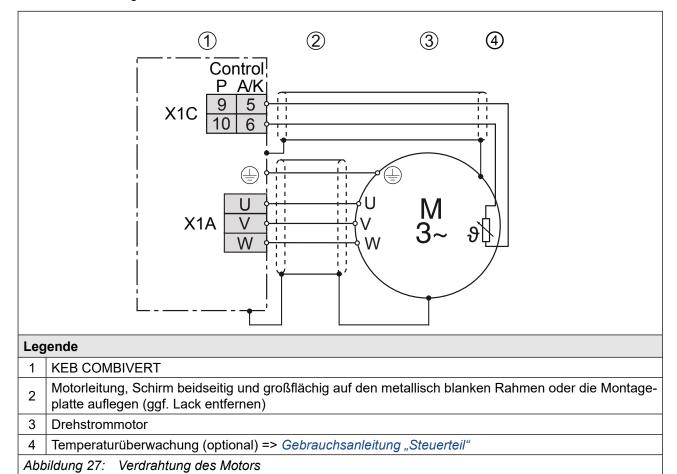

Name	Funktion	Klemmenanschluss	Anzugsdrehmoment	Max. Anzahl der Leiter
+	DC-Klemmen	12 mm Stehbolzen für	35 Nm	0
-	DC-Kleffiffleff	M12-Kabelschuhe	310 lb inch	2
		•		

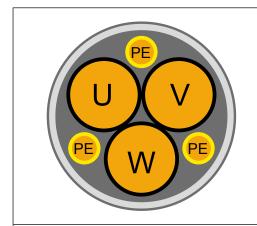
Abbildung 26: Klemmleiste X1A DC-Anschluss

5.2.5 Anschluss des Motors

5.2.5.1 Verdrahtung des Motors

ANSCHLUSS DES LEISTUNGSTEILS

5.2.5.2 Klemmleiste X1A Motoranschluss


Name	Funktion	Klemmenanschluss	Anzugsdrehmoment	Max. Anzahl der Leiter			
V V	Motoranschluss	12mm Stehbolzen für M12-Kabelschuhe	35Nm 310 lb inch	2			
Abbildung 28: Klemmleiste X1A Motoranschluss							

5.2.5.3 Auswahl der Motorleitung

Bei kleinen Leistungen in Verbindung mit langen Motorleitungslängen spielt die richtige Verdrahtung sowie die Motorleitung selbst eine wichtige Rolle. Kapazitätsarme Leitungen (Phase/Phase < 65 pF/m, Phase/Schirm < 120 pF/m) am Antriebsstromrichterausgang haben folgende Auswirkungen:

- Ermöglichen größere Motorleitungslängen => "5.2.5.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung"
- Bessere EMV-Eigenschaften (Reduktion der Gleichtakt Ausgangsströme gegen Erde)

Bei großen Motorleistungen (ab 30 kW) müssen geschirmte Motorleitungen mit symmetrischem Aufbau verwendet werden. Bei diesen Leitungen ist der Schutzleiter gedrittelt und gleichmäßig zwischen den Phasenleitungen angeordnet. Sofern die örtlichen Bestimmungen dies zulassen, kann eine Leitung ohne Schutzleiter verwendet werden. Dieser muss dann extern verlegt werden. Bestimmte Leitungen lassen auch den Schirm zur Verwendung als Schutzleiter zu. Hierzu sind die Angaben des Leitungsherstellers zu beachten!

Abbildung 29: Symmetrische Motorleitung

5.2.5.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung

Die maximale Motorleitungslänge ist abhängig von der Kapazität der Motorleitung sowie von der einzuhaltenden Störaussendung. Hier sind externe Maßnahmen zu ergreifen (z.B. der Einsatz eines Netzfilters).

Die folgenden Angaben gelten für den Betrieb unter Bemessungsbedingungen und der Verwendung der unter => "5.3.1 Filter und Drosseln" aufgeführten KEB Filter.

HF-Filter 28E6T60-1150 mit geräteabhängiger Netzdrossel

	Max. Motorleitungslänge geschirmt (kapazitätsarm)					
Gerätegröße		27	28			
Grenzwertklasse gemäß EN 61800-3	C2	C3	C2	C3		
Motorleitungslänge @ fs = 2kHz	100m	100m	100m	100m		
Motorleitungslänge @ fs = 4 kHz	50m	100m	50m	100m		
Motorleitungslänge @ fs = 8 kHz	50m	100m	50m	100m		
Tabelle 33: Maximale Motorleitungslänge Filter 28E6T60-1150						

ANSCHLUSS DES LEISTUNGSTEILS

HF-Filter 28E4T60-1001 / 28U5A0W-3000 mit geräteabhängiger Netzdrossel

	Max. Motorleitungslänge geschirmt (kapazitätsarm)					
Gerätegröße		27	28			
Grenzwertklasse gemäß EN 61800-3	C2	C3	C2	C3		
Motorleitungslänge @ fs = 2 kHz	-	100m	-	100m		
Motorleitungslänge @ fs = 4 kHz	-	100m	-	100m		
Motorleitungslänge @ fs = 8 kHz	-	100m	-	100m		
Tabelle 34: Maximale Motorleitungslänge Filter 28E4T60-1001 / 28U5A0W-3000						

HF-Filter 30E6T60-1150 mit geräteabhängiger Netzdrossel

	Max. Motorleitungslänge geschirmt (kapazitätsarm)					
Gerätegröße	2	29	30			
Grenzwertklasse gemäß EN 61800-3	C2	C3	C2	C3		
Motorleitungslänge @ fs = 2 kHz	100m	100m	30m	100m		
Motorleitungslänge @ fs = 4 kHz	30m	100m	-	100m		
Motorleitungslänge @ fs = 8 kHz	-	100m	-	100m		
Tabelle 35: Maximale Motorleitungslänge Filter 30E6T60-1150						

HF-Filter 30E4T60-1001 / 30U5A0W-3000 mit geräteabhängiger Netzdrossel

	Max. Motorleitungslänge geschirmt (kapazitätsarm)							
Gerätegröße	27		28		29		30	
Grenzwertklasse gemäß EN 61800-3	C2	С3	C2	C3	C2	С3	C2	С3
Motorleitungslänge @ fs = 2 kHz	50m	100m	50m	100m	50m	100m	30m	50m
Motorleitungslänge @ fs = 4 kHz	-	100m	-	100m	-	100m	-	50m
Motorleitungslänge @ fs = 8 kHz	-	100m	-	100m	-	100m	-	100m
Tabelle 36: Maximale Motorleitungslänge Filter 30E4T60-1001 / 30U5A0W-3000								

[&]quot;-" NIcht zulässige Motorleitungslänge

¹⁾ Größere Leitungslängen nur nach Rücksprache mit KEB zulässig.

Durch den Einsatz von Motordrosseln oder Motorfiltern kann sich die Leitungslänge erheblich verlängern. KEB empfiehlt den Einsatz ab einer Leitungslänge von 25 m.

5.2.5.5 Motorleitungslänge bei Parallelbetrieb von Motoren

Die resultierende Motorleitungslänge bei Parallelbetrieb von Motoren, bzw. bei Parallelverlegung durch Mehraderanschluss ergibt sich aus folgender Formel:

Resultierende Motorleitungslänge = ∑Einzelleitungslängen x √Anzahl der Motorleitungen

5.2.5.6 Motorleitungsquerschnitt

Der Motorleitungsquerschnitt ist abhängig

- von der Form des Ausgangsstroms (z.B. Oberwellengehalt)
- vom realen Effektivwert des Motorstroms
- · von der Leitungslänge
- vom Typ der verwendeten Leitung
- von Umgebungsbedingungen wie Bündelung und Temperatur

5.2.5.7 Verschaltung des Motors

ACHTUNG

Fehlerhaftes Verhalten des Motors!

► Generell sind immer die Anschlusshinweise des Motorenherstellers gültig!

ACHTUNG

Motor vor Spannungsspitzen schützen!

▶ Antriebsstromrichter schalten am Ausgang mit einem hohen du/dt. Insbesondere bei langen Motorleitungen (>15 m) können dadurch Spannungsspitzen am Motor auftreten, die dessen Isolationssystem gefährden. Zum Schutz des Motors kann eine Motordrossel, ein du/dt-Filter oder ein Sinusfilter unter Berücksichtigung der Betriebsart eingesetzt werden.

ANSCHLUSS DES LEISTUNGSTEILS

5.2.5.8 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)

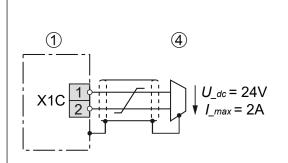
Im COMBIVERT ist eine umschaltbare Temperaturauswertung implementiert.

Es stehen verschiedene Betriebsarten der Auswertung zur Verfügung. Diese sind abhängig von der Steuerkarte => Gebrauchsanleitung "Steuerteil".

Die gewünschte Betriebsart ist per Software einstellbar (dr33). Wird die Auswertung nicht benötigt, muss sie per Software (mit Parameter pn12 = 7) deaktiviert werden => *Programmierhandbuch*.

X1C	PIN	Name	Beschreibung			
	1	BR+	Bremsenansteuerung / Ausgang +			
	2	BR-	Bremsenansteuerung / Ausgang -			
	3	reserviert	_			
2 4 6	4 reserviert		-			
	5	TA1	Temperaturerfassung / Ausgang +			
	6	TA2	Temperaturerfassung / Ausgang -			
1 3 5						
Abbildung 30: Klemmleiste	' (1C für	Steuerkarte APPLIK	(ATION und KOMPAKT			

X1C	PIN	Name	Beschreibung
	1	BR+	Bremsenansteuerung / Ausgang +
	2	BR-	Bremsenansteuerung / Ausgang -
	3	0V	Zur Vergergung der Bückmeldeeingänge
	4	24Vout	Zur Versorgung der Rückmeldeeingänge
2 4 6 8 10	8 10 5 DIBR1 Rückmeldeeingang 1 für Bremse oder F	Rückmeldeeingang 1 für Bremse oder Relais	
	6	DIBR2	Rückmeldeeingang 2 für Bremse oder Relais
	7	reserviert	_
	8	reserviert	_
	9	TA1	Temperaturerfassung / Eingang +
	10	TA2	Temperaturerfassung / Eingang -
Abbildung 31: Klemmleiste X	(1C für	Steuerkarte PRO	


ACHTUNG

Störungen durch falsche Leitungen oder Verlegung!

Fehlfunktionen der Steuerung durch kapazitive oder induktive Einkopplung.

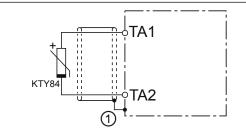
- ► Leitungen vom Motortemperatursensor (auch geschirmt) nicht zusammen mit Steuerleitungen verlegen.
- ► Leitungen vom Motortemperatursensor innerhalb der Motorleitungen nur mit doppelter Abschirmung zulässig!

Bei Steuerkarte APPLIKATION und KOMPAKT:

Die Spannung zur Ansteuerung einer Bremse ist von der internen Spannungsversorgung entkoppelt. Die Bremse funktioniert nur bei externer Versorgung.

Bei Steuerkarte PRO:

Die Bremse kann sowohl mit interner als auch externer Spannung versorgt werden. Spannungstoleranzen und Ausgangsströme unterscheiden sich bei interner oder externer Spannungsversorgung.


Spezifikation in der jeweiligen

=> Gebrauchsanleitung "Steuerteil" beachten.

1 COMBIVERT

4 Bremse

Abbildung 32: Anschluss der Bremsenansteuerung

KTY-Sensoren sind gepolte Halbleiter und müssen in Durchlassrichtung betrieben werden!

Die Anode an TA1 und die Kathode an TA2 anschließen! Nichtbeachtung führt zu Fehlmessungen im oberen Temperaturbereich. Ein Schutz der Motorwicklung ist dann nicht mehr gewährleistet.

1 Anschluss über Schirmauflageblech (falls nicht vorhanden, auf der Montageplatte auflegen).

Abbildung 33: Anschluss eines KTY-Sensors

ACHTUNG

Kein Schutz der Motorwicklung bei falschem Anschluss!

- ► KTY-Sensoren in Durchlassrichtung betreiben.
- ► KTY-Sensoren nicht mit anderen Erfassungen kombinieren.

Weitere Hinweise zur Verdrahtung der Temperaturüberwachung und der Bremsenansteuerung sind in der jeweiligen Steuerteilanleitung zu beachten.

5.2.6 Anschluss und Verwendung von Bremswiderständen

A VORSICHT

Brandgefahr beim Einsatz von Bremswiderständen!

▶ Die Brandgefahr kann durch den Einsatz von "eigensicheren Bremswiderständen" bzw. durch Nutzung geeigneter Überwachungsfunktionen / -schaltungen deutlich verringert werden.

ACHTUNG

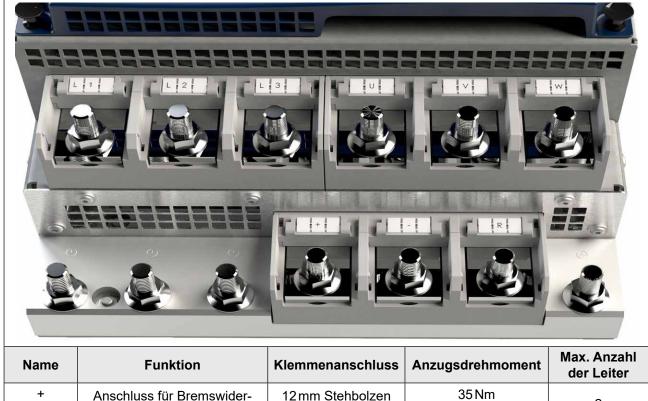
Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters!

► Der minimale Bremswiderstandswert darf nicht unterschritten werden => "3.2 Gerätedaten der 400 V-Geräte"

A VORSICHT

Heiße Oberflächen durch Belastung des Bremswiderstands!



Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Oberfläche vor Berührung prüfen.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.

5.2.6.1 Klemmleiste X1A Anschluss Bremswiderstand

Name	Funktion	Klemmenanschluss	Anzugsdrehmoment	Max. Anzahl der Leiter				
+	Anschluss für Bremswider-	12 mm Stehbolzen	35 Nm	2				
R	stand (zwischen + und R)	für M12-Kabelschuhe	310 lb inch	2				
Abbildung 3	Abbildung 34: Klemmleiste X1A Anschluss Bremswiderstand							

Bei Geräten mit Unterbaubremswiderständen ist ein Anschluss externer Bremswiderstände an die Klemme R nicht zulässig.

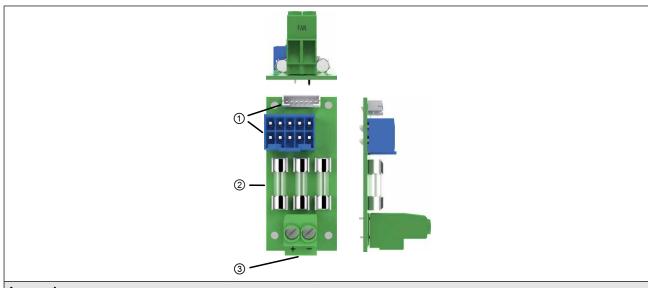
ANSCHLUSS DES LEISTUNGSTEILS

5.2.6.2 Verwendung nicht eigensicherer Bremswiderstände

A WARNUNG

Verwendung nicht eigensicherer Bremswiderstände Brand- oder Rauchentwicklung bei Überlastung oder Fehler!

- ▶ Nur Bremswiderstände mit Temperatursensor verwenden.
- ► Temperatursensor auswerten.
- ► Fehler am Antriebsstromrichter auslösen (z.B. externer Eingang).
- ► Eingangsspannung wegschalten (z.B. Eingangsschütz).
- ► Anschlussbeispiele für nicht eigensichere Bremswiderstände => Gebrauchsanleitung "Installation Bremswiderstände".



Gebrauchsanleitung "Installation Bremswiderstände" www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf

5.2.7 Externe Kühlkörperlüfterversorgung (FAN)

Legende						
1			Nur interne Verwendung			
2			Sicherung: F200, F201, F202			
2			SIBA GmbH No. 179120.4			
3			FAN: Anschluss +/- für externe 24V Spannungsversorgung			
Sicherung(en) // A		//A	4 (Typ gG)			
Max Anzahl der Leiter			2			
Versorgungsspannung		<i>UFAN_dc</i> / V	24 ± 5%			
Bemessungsstrom		IFAN_dc / A	8			
Peak-Strom		IFAN_Peak / A	12			
Anzugodrohmomont		F _N / Nm	0,50,6			
Anzugsdrehmoment	_	FN / Ib inch	4,55,3			
	für IEC	A / mm²	0,24 (Flexible Leitung mit Aderendhülse)			
Anachlucaguarachnitt	IUI IEC	A / IIIIII	1,5 max. (bei 2 Leitern)			
Anschlussquerschnitt	für UL	A / AWG	2410 (UL: Flexible Leitung ohne Aderendhülse)			
	iui UL		14 max. (Bei 2 Leitern)			
Abbildung 35: Externe h	Kühlkörperlü	ifterversorgung				

Die Steuerung und Kühlkörperlüfter sollten über getrennte externe Spannungsquellen versorgt werden.

Dies bietet im Fehlerfall der Kühlkörperlüfter eine störungsfreie Weiterversorgung der Steuerung.

ACHTUNG

Verwendung ungeeigneter Spannungsquellen!

Elektrischer Schlag!

- ▶ Nur Spannungsquellen (PELV) gemäß VDE 0100 zulässig.
- ► Auf ausreichende Überspannungskategorie der Spannungsversorgung achten.

5.3 Zubehör

5.3.1 Filter und Drosseln

Spannungsklasse	Antriebsstromrichtergröße	HF-Filter Netzdrossel 50 Hz / 4% Uk
	27	 28E6T60-1150 28E4T60-1001 28U5A0W-3000 30E4T60-1001 28Z1B04-1007 28Z1B04-1007
400 V	28	 30U5A0W-3000 28E6T60-1150 28E4T60-1001 28U5A0W-3000 30E4T60-1001 28Z1B04-1000 28Z1B04-1007
	29	 30U5A0W-3000 30E6T60-1150 30E4T60-1001 30U5A0W-3000 30E6T60-1150 29Z1B04-1000 30Z1B04-1007
Tabelle 37: Filter und D	30	• 30E4T60-1001 • 30U5A0W-3000 • 30Z1B04-1007

ACHTUNG

Überhitzung der Unterbaufilter!

▶ Die Verwendung von Unterbaufiltern bei Antriebsstromrichtern mit der Materialnummer xxF6xxx-xxx9 (Fluidkühler Wasser, Einbauversion, Unterbaubremswiderstände) führt zu Überhitzung und ist nicht zulässig!

Die angegebenen Filter und Drosseln sind für Bemessungsbetrieb ausgelegt.

5.3.2 Dichtung für IP54-ready Geräte

Bezeichnung	Materialnummer
Flachdichtung IP54	00F6T45-0001
Tabelle 38: Dichtung für IP54-ready Geräte	

5.3.3 Nebenbaubremswiderstände

Technische Daten und Auslegung zu nichteigensicheren Bremswiderständen

 $www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf$

6 Betrieb von flüssigkeitsgekühlten Geräten

6.1 Wassergekühlte Geräte

Bei Applikationen in denen prozessbedingt Kühlflüssigkeit vorhanden ist, bietet sich die Anwendung von wassergekühlten KEB COMBIVERT Antriebsstromrichtern an. Bei der Verwendung sind jedoch nachfolgende Hinweise unbedingt zu beachten.

6.1.1 Kühlkörper und Betriebsdruck

Bauart	Material	max. Betriebsdruck	Anschluss
Aluminium Kühlkörper mit Edelstahlrohren	Edelstahl 1.4404	10 bar	=> "6.1.4 Anschluss des Kühlsystems"

ACHTUNG

Verformung des Kühlkörpers!

- ▶ Um eine Verformung des Kühlkörpers und die damit verbundenen Folgeschäden zu vermeiden, darf der jeweils angegebene maximale Betriebsdruck auch von Druckspitzen kurzzeitig nicht überschritten werden.
- ► Es ist die Druckgeräterichtlinie 2014/68/EU über Druckgeräte zu beachten!

6.1.2 Materialien im Kühlkreislauf

Für die Verschraubungen und auch im Kühlkreis befindliche metallische Gegenstände, die mit der Kühlflüssigkeit (Elektrolyt) in Kontakt stehen, ist ein Material zu wählen, welches eine geringe Spannungsdifferenz zum Kühlkörper bildet, damit keine Kontaktkorrosion und/ oder Lochfraß entsteht (elektrochemische Spannungsreihe, siehe folgende Tabelle). Der spezifische Einsatzfall ist in Abstimmung des gesamten Kühlkreislaufes vom Kunden selbst zu prüfen und hinsichtlich der Verwendbarkeit der eingesetzten Materialien entsprechend einzustufen. Bei Schläuchen und Dichtungen ist darauf zu achten, dass halogenfreie Materialien verwendet werden.

Eine Haftung für entstandene Schäden durch falsch eingesetzte Materialien und daraus resultierender Korrosion kann nicht übernommen werden!

Material	gebildetes lon	Normpotenzial	Material	gebildetes lon	Normpotenzial			
Lithium	Li+	-3,04 V	Nickel Ni2+		-0,25V			
Kalium	K+	-2,93 V	Zinn	Sn2+	-0,14 V			
Calcium	Ca2+	-2,87 V	Blei	Pb3+	-0,13 V			
Natrium	Na+	-2,71 V	Eisen	Fe3+	-0,037 V			
Magnesium	Mg2+	-2,38 V	Wasserstoff	2H+	0,00 V			
Titan	Ti2+	-1,75V	Edelstahl (1.4404)	diverse	0,20,4 V			
Aluminium	Al3+	-1,67 V	Kupfer	Cu2+	0,34 V			
Mangan	Mn2+	-1,05 V	Kohlenstoff	C2+	0,74 V			
Zink	Zn2+	-0,76 V	Silber	Ag+	0,80 V			
Chrom	Cr3+	-0,71V	Platin	Pt2+	1,20 V			
	weiter auf nächster Seite							

81

WASSERGEKÜHLTE GERÄTE

Material	gebildetes lon	Normpotenzial	Material	gebildetes Ion	Normpotenzial		
Eisen	Fe2+	-0,44 V	Gold	Au3+	1,42 V		
Cadmium	Cd2+	-0,40 V	Gold	Au+	1,69 V		
Cobald	Co2+	-0,28 V					
Tabelle 39: Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff							

6.1.3 Anforderungen an das Kühlmittel

Die Anforderungen an das Kühlmittel hängen von den Umgebungsbedingungen, sowie vom verwendeten Kühlsystem ab.

Generelle Anforderungen an das Kühlmittel:

Anforderung	Beschreibung
Normen	Korrosionsschutz nach <i>DIN EN 12502-15</i> , Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen nach <i>VGB R 455 P</i> .
VGB Kühlwasserrichtlinie	Die VGB Kühlwasserrichtlinie (<i>VGB R 455 P</i>) enthält Hinweise über gebräuchliche Verfahrenstechniken der Kühlung. Inbesondere werden die Wechselwirkungen zwischen dem Kühlwasser und den Komponenten des Kühlsystems beschrieben.
Abrasivstoffe	Abrasivstoffe, wie sie in Scheuermitteln (Quarzsand) verwendet werden, setzen den Kühlkreislauf zu.
Hartes Wasser	Kühlwasser darf keine Wassersteinablagerungen oder lockere Ausscheidungen verursachen. Die Gesamthärte sollte zwischen 720 °dH liegen, die Karbonhärte bei 310 °dH.
Weiches Wasser	Weiches Wasser (<7°dH) greift die Werkstoffe an.
Frostschutz	Bei Applikationen, bei denen der Kühlkörper oder die Kühlflüssigkeit Temperaturen unter 0°C ausgesetzt ist, muss ein entsprechendes Frostschutzmittel eingesetzt werden. Zur besseren Verträglichkeit mit anderen Additiven am Besten Produkte von einem Hersteller verwenden.
	KEB empfiehlt das Frostschutzmittel Antifrogen N von der Firma Clariant mit einem maximalen Volumenanteil von 52 %.
Korrosionsschutz	Als Korrosionsschutz können Additive eingesetzt werden. In Verbindung mit Frostschutz muss der Frostschutz eine Konzentration von 2025 Vol% haben, um eine Veränderung der Additive zu verhindern.
	Alternativ kann ein Frostschutz / Glykol mit einer Konzentration von 20% max. Vol 52% eingesetzt werden. Wird ein Frostschutz verwendet muss das Wasser nicht zusätzlich mit Additiven versehen werden.
Tabelle 40: Anforderung	gen an das Kühlmittel

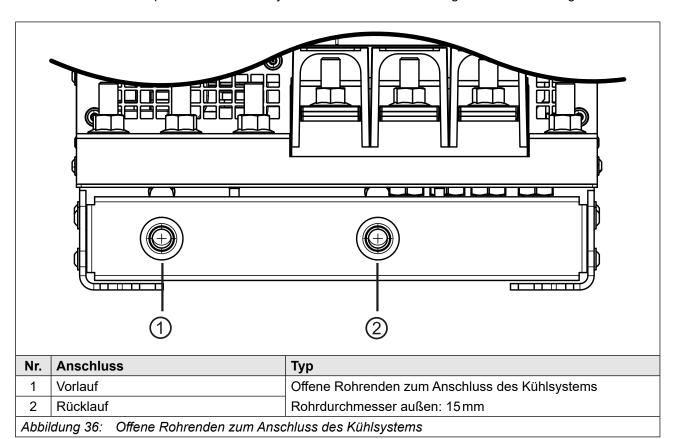
Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Anforderung	Beschreibung
Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Wasserfilter entgegen gewirkt werden.
Salzkonzentration	Bei halboffenen Systemen kann durch Verdunstung der Salzgehalt ansteigen. Dadurch wird das Wasser korrosiver. Zufügen von Frischwasser und Entnahme von Nutzwasser wirkt dem entgegen.
Algen und Schleimbak- terien	Durch die erhöhte Wassertemperatur und der Kontakt mit Luftsauerstoff können sich Algen und Schleimbakterien bilden. Diese setzten die Filter zu und behindern somit den Wasserfluss. Biozid-haltige Additive können dies verhindern. Insbesondere bei längerem Stillstand des Kühlkreislaufs ist hier vorzubeugen.
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.
Tabelle 41: Besondere	Anforderungen bei offenen und halboffenen Kühlsystemen

ACHTUNG

Verlust der Garantieansprüche!

► Schäden am Gerät, die durch verstopfte, korrodierte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Gewährleistungsansprüche.


6.1.4 Anschluss des Kühlsystems

Die Anbindung an das Kühlsystem kann als geschlossener oder offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung der Kühlflüssigkeit sehr gering ist. Vorzugsweise sollte auch eine Überwachung des pH-Wertes der Kühlflüssigkeit installiert werden.

Beim erforderlichen Potenzialausgleich ist auf einen entsprechenden Leiterquerschnitt zu achten, um elektrochemische Vorgänge möglichst gering zu halten.

=> "6.1.2 Materialien im Kühlkreislauf"

Weitere Elemente im Kühlkreislauf wie Pumpe, Absperrventile, Entlüftung usw. sind entsprechend dem Kühlsystem sowie den örtlichen Gegebenheiten zuzufügen.

Zum Anschluss des Kühlsystems empfiehlt KEB den Einsatz von Funktionsmuttern z.B.des Herstellers "Parker", Typ FMxxL71 (xx = Rohrdurchmesser).

Um den Volumenstrom im Kühlsystem zu überwachen empfiehlt KEB den Einsatz eines Volumenstromwächters.

6.1.5 Kühlmitteltemperatur und Betauung

Die Vorlauftemperatur sollte in Abhängigkeit vom Volumenstrom so gewählt werden, dass bei Bemessungsbetrieb die Kühlkörpertemperatur immer 10 K unter dem Übertemperaturpegel (OH) liegt. Dadurch wird ein sporadisches Abschalten vermieden.

Die maximale Kühlkörpertemperatur ist dem Kapitel => "3.3.1 Schaltfrequenz und Temperatur" zu entnehmen.

6.1.5.1 Betauung

Eine Temperaturdifferenz zwischen Antriebsstromrichter und Umgebungstemperatur kann bei hoher Luftfeuchtigkeit zu Betauung führen.

Betauung stellt eine Gefahr für den Antriebsstromrichter dar. Durch entstehende Kurzschlüsse kann der Antriebsstromrichter zerstört werden.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

Der Anwender muss sicherstellen, dass jegliche Betauung vermieden wird!

6.1.5.2 Zuführung temperierter Kühlflüssigkeit

- Die Zuführung optimal temperierter Kühlflüssigkeit ist möglich durch die Verwendung von Heizungen im Kühlkreislauf zur Steuerung der Kühlflüssigkeitstemperatur.
- Die folgende Taupunkttabelle zeigt die Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

Luftfeuchtigkeit / %	10	20	30	40	50	60	70	80	90	100
Umgebungs- temperatur / °C										
-25	-45	-40	-36	-34	-32	-30	-29	-27	-26	-25
		_								
-20	-42	-36	-32	-29	-27	-25	-24	-22	-21	-20
-15	-37	-31	-27	-24	-22	-20	-18	-16	-15	-15
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11	-10
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6	-5
0	-26	-19	-14	-11	-8	-6	-4	-3	-2	0
5	-23	-15	-11	-7	-5	-2	0	2	3	5
10	-19	-11	-7	-3	0	1	4	6	8	9
15	-18	-7	-3	1	4	7	9	11	13	15
20	-12	-4	1	5	9	12	14	16	18	20
25	-8	0	5	10	13	16	19	21	23	25
30	-6	3	10	14	18	21	24	26	28	30
35	-2	8	14	18	22	25	28	31	33	35
40	1	11	18	22	27	31	33	36	38	40
45	4	15	22	27	32	36	38	41	43	45
50	8	19	28	32	36	40	43	45	48	50
	Kühlmitteleintrittstemperatur / °C									

85

Informationen zum Kühlflüssigkeitsmanagement sind im folgenden Dokument aufgeführt

www.keb.de/fileadmin/media/Techinfo/dr/an/ti_dr_an-liquid-cooling-00004_de.pdf

ACHTUNG

Zerstörung des Kühlkörpers bei Lagerung/ Transport von wassergekühlten Geräten!

Folgende Punkte bei Lagerung von wassergekühlten Geräten beachten:

- ► Kühlkreislauf vollständig entleeren
- ► Kühlkreislauf mit Druckluft ausblasen

ACHTUNG

Zerstörung des Antriebsstromrichters durch Betauung!

► Nur NC-Ventile verwenden!

6.1.6 Zulässiger Volumenstrom bei Wasserkühlung

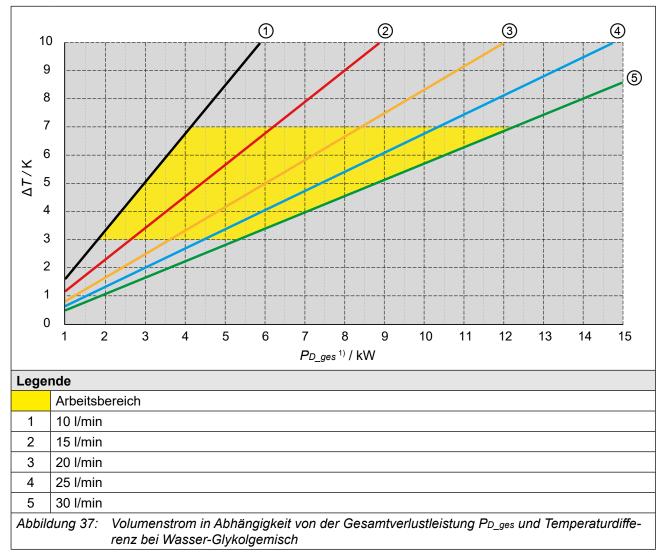
Es muss der Volumenstrom der folgenden Tabelle eingehalten werden.

Zulässiger Volumenstrom			
Min. Volumenstrom	Q_min / I/min	10	
Max. Volumenstrom	Q_max / I/min	33	
Tabelle 43: Zulässiger Volumenstrom bei Wasserkühlung			

Der Volumenstrom ist abhängig von der Gesamtverlustleistung.

=> "6.1.7 Kühlmittelerwärmung"

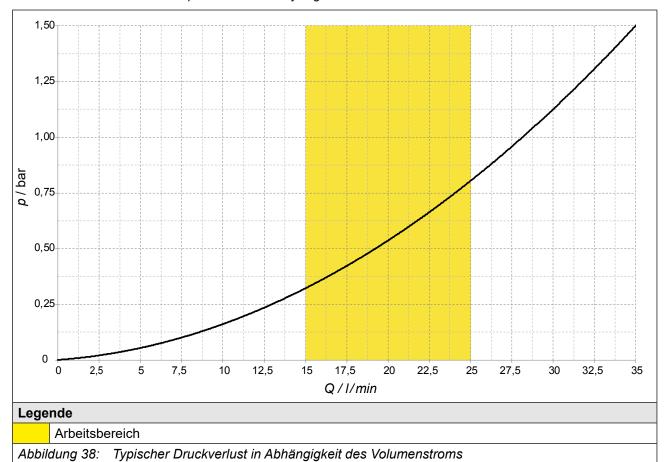
ACHTUNG


Zerstörung des Kühlkörpers durch Erosion!

Der maximal zulässige Volumenstrom darf nicht überschritten werden.

6.1.7 Kühlmittelerwärmung

Volumenstrom in Abhängigkeit von der Gesamtverlustleistung und Temperaturdifferenz zwischen Vorlauf und Rücklauf.



¹⁾ P_{D_ges} kann durch Überlast, höhere Schaltfrequenz oder Unterbaubremswiderstände höher als die Verlustleistung P_D bei Bemessungsbetrieb ausfallen.

WASSERGEKÜHLTE GERÄTE

6.1.8 Typischer Druckverlust des Kühlkörpers

- Der unten dargestellte Kurvenverlauf gilt für 25 °C Vorlauftemperatur und einem Glykolanteil von 52 %.
- Werden höhere Vorlauftemperaturen gefahren sinkt der Druckverlust im System.
- Dies gilt auch für Kühlmedien wie Wasser oder ein anderes Glykolgemisch
- Empfohlen wird ein Glykolgemisch von Clariant in einem Verhältnis von 52 % oder 33 %.

88

7 Zertifizierung

7.1 CE-Kennzeichnung

CE gekennzeichnete Antriebsstromrichter sind in Übereinstimmung mit den Vorschriften der Niederspannungsrichtlinie und EMV-Richtlinie entwickelt und hergestellt worden. Die harmonisierten Normen der Reihe *EN 61800-5-1* und *EN 61800-3* werden angewendet.

Für weitere Informationen zu den CE-Konformitätserklärungen => 7.3 Weitere Informationen und Dokumentation

7.2 UL-Zertifizierung

Eine Abnahme gemäß UL ist bei KEB Antriebsstromrichtern auf dem Typenschild durch nebenstehendes Logo gekennzeichnet.

Zur Konformität gemäß UL für einen Einsatz auf dem nordamerikanischen und kanadischen Markt sind folgende zusätzliche Hinweise unbedingt zu beachten (englischer Originaltext):

· All models:

Maximum Surrounding Air Temperature: 45°C

- Use 75°C Copper Conductors Only
- All Models: "Suitable For Use On A Circuit Capable Of Delivering Not More Than 18000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details."

All Models: "Suitable For Use On A Circuit Capable Of Delivering Not More Than 100,000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Semiconductor Fuses by SIBA, Type 20 6xy32.xxx, or by Bussmann, Type 170M3xyx or by Littelfuse, Type L70QSxxx.x, see instruction manual for Branch Circuit Protection details."

CSA: For Canada, this marking shall be provided on the device or on a separate label shipped with the device.

"Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes".

CSA: For Canada:

"Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I".

LA PROTECTION INTÉGRÉE CONTRE LES COURTSCIRCUITS N'ASSURE PAS LA PROTECTION DE LA DÉRIVATION. LA PROTECTION DE LA DÉRIVA-TION DOIT ÊTRE EXÉCUTÉE CONFORMÉMENT AU CODE CANADIEN DE L'ÉLECTRICITÉ, PREMIÈRE PARTIE.

- "For Use in a Pollution Degree 2 environment".
 For installations according to Canadian National Standard C22.2 No. 274-13:
 "For use in Pollution Degree 2 and Overvoltage Category III environments only." or equivalent.
- · "Control Circuit Overcurrent Protection Required".

"WARNING – The opening of the branch circuit protective device may be an
indication that a fault current has been interrupted. To reduce the risk of fire or
electrical shock, current-carrying parts and other components of the controller
should be examined and replaced if damaged. If burnout of the current element of
an overload relay occurs, the complete overload relay must be replaced."
CSA: For Canada:

"ATTENTION - LE DÉCLENCHEMENT DU DISPOSITIF DE PROTECTION DU CIRCUIT DE DÉRIVATION PEUT ÊTRE DÛ À UNE COUPURE QUI RÉSULTE D'UN COURANT DE DÉFAUT. POUR LIMITER LE RISQUE D'INCENDIE OU DE CHOC ÉLECTRIQUE, EXAMINER LES PIÈCES PORTEUSES DE COURANT ET LES AUTRES ÉLÉMENTS DU CONTRÔLEUR ET LES REMPLACER S'ILS SONT ENDOMMAGÉS. EN CAS DE GRILLAGE DE L'ÉLÉMENT TRAVERSÉ PAR LE COURANT DANS UN RELAIS DE SURCHARGE, LE RELAIS TOUT ENTIER DOIT ÊTRE REMPLACÉ."

- · For liquid cooled devices:
 - Maximum operating pressure: 10 bar (145 psi)
 - Liquid inlet temperature range: +5...+55°C
 - Min liquid flow rate: 10 l/min
 - Coolant type: Water or a mixture of water with a maximum of 52% monoethylene glycol
- "Only for use in non-corner grounded type WYE source not exceeding 277 V phase to ground" (or equivalent).
- · Break resistor ratings and duty cycle:
 - Duty cycle 50%
 - Max. 60 sec on-time, (60 sec off-time)

7.3 Weitere Informationen und Dokumentation

Ergänzende Anleitungen und Hinweise zum Download finden Sie unter www.keb.de/de/service/downloads

Allgemeine Anleitungen

- · EMV- und Sicherheitshinweise
- Anleitungen für weitere Steuerkarten, Sicherheitsmodule, Feldbusmodule, etc.

Anleitungen für Konstruktion und Entwicklung

- · Eingangssicherungen gemäß UL
- Programmierhandbuch f
 ür Steuer- und Leistungsteil
- Motorkonfigurator, zur Auswahl des richtigen Antriebsstromrichters, sowie zur Erstellung von Downloads zur Parametrierung des Antriebsstromrichters

Zulassungen und Approbationen

- CE-Konformitätserklärung
- TÜV-Bescheinigung
- FS-Zertifizierung

Sonstiges

- COMBIVIS, die Software zur komfortablen Parametrierung der Antriebsstromrichter über einen PC (per Download erhältlich)
- EPLAN-Zeichnungen

8 Änderungshistorie

Version	Datum	Beschreibung	
00	2017-08	Erstellung eines Prototyp.	
00	2018-05	Erstellung der Vorserienanleitung.	
01 2019-01	Änderungen der technischen Daten.		
	2019-01	Abbildungen der Überlastcharakteristiken angepasst.	
02	2020-08	Änderung der technischen Daten. Änderung der Überlastcharakteristiken, Redaktionelle Änderungen.	
03	2021-08	Zeichnungen, technische Daten aktualisiert.	
04	2022-03	Aufnahme des UL-Zertifikats, Zeichnungen angepasst.	
05	2023-03	Filter angepasst. Erstellung der Serienversion	

NOTIZEN

Benelux | KEB Automation KG

Dreef 4 - box 4 1703 Dilbeek Belgien

Tel: +32 2 447 8580

Brasilien | KEB SOUTH AMERICA - Regional Manager

Rua Dr. Omar Pacheco Souza Riberio, 70

CEP 13569-430 Portal do Sol, São Carlos Brasilien

Tel: +55 16 31161294 E-Mail: roberto.arias@keb.de

China | KEB Power Transmission Technology (Shanghai) Co. Ltd.

No. 435 QianPu Road Chedun Town Songjiang District

201611 Shanghai P. R. China

Tel: +86 21 37746688 Fax: +86 21 37746600

Deutschland | Getriebemotorenwerk

KEB Antriebstechnik GmbH

Wildbacher Straße 5 08289 Schneeberg Deutschland

Telefon +49 3772 67-0 Telefax +49 3772 67-281

Internet: www.keb-drive.de E-Mail: info@keb-drive.de

Frankreich | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel

94510 La Queue en Brie Frankreich

Tel: +33 149620101 Fax: +33 145767495

Großbritannien | KEB (UK) Ltd.

5 Morris Close Park Farm Indusrial Estate

Wellingborough, Northants, NN8 6 XF Großbritannien

Tel: +44 1933 402220 Fax: +44 1933 400724

Italien | KEB Italia S.r.I. Unipersonale

Via Newton, 2 20019 Settimo Milanese (Milano) Italien

Tel: +39 02 3353531 Fax: +39 02 33500790

Japan | KEB Japan Ltd.

15 - 16, 2 - Chome, Takanawa Minato-ku Tokyo 108 - 0074 Japan

Tel: +81 33 445-8515 Fax: +81 33 445-8215

E-Mail: info@keb.jp Internet: www.keb.jp

Österreich | KEB Automation GmbH

Ritzstraße 8 4614 Marchtrenk Österreich

Tel: +43 7243 53586-0 Fax: +43 7243 53586-21

Polen | KEB Automation KG

Tel: +48 60407727

Schweiz | KEB Automation AG

Witzbergstraße 24 8330 Pfäffikon/ZH Schweiz

Tel: +41 43 2886060 Fax: +41 43 2886088

Spanien | KEB Automation KG

c / Mitjer, Nave 8 - Pol. Ind. LA MASIA

08798 Sant Cugat Sesgarrigues (Barcelona) Spanien

Tel: +34 93 8970268 Fax: +34 93 8992035

E-Mail: vb.espana@keb.de

Südkorea | KEB Automation KG

Deoksan-Besttel 1132 ho Sangnam-ro 37

Seongsan-gu Changwon-si Gyeongsangnam-do Republik Korea

Tel: +82 55 601 5505 Fax: +82 55 601 5506

Tschechien | KEB Automation GmbH

Videnska 188/119d 61900 Brno Tschechien

Tel: +420 544 212 008

USA | KEB America, Inc.

5100 Valley Industrial Blvd. South Shakopee, MN 55379 USA

Tel: +1 952 2241400 Fax: +1 952 2241499

WEITERE KEB PARTNER WELTWEIT:

... www.keb.de/de/kontakt/kontakt-weltweit

Automation mit Drive

www.keb.de

KEB Automation KG Südstraße 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de