COMBIVERT


(GB) Instruction Manual

Housing D

230 V 1.5...4.0 kW 400 V 1.5...7.5 kW

Original manual	
Mat.No.	Rev.
00F50EB-KD00	1E

Table of contents

1.	Preface	5
1.1	Information on special measures	5
1.2	Documentation	5
1.3	Validity and liability	
1.4	Copyright	
1.5	Specified application	7
1.6	Product description	7
1.7	Unit identification	8
1.8	Safety and application notes	9
2.	Technical Data	
2.1	Operating conditions	10
2.2	Technical data of the 230V class	
2.3	Technical data of the 400V class	12
2.4	DC supply	13
2.4.1	Calculation of the DC input current	
2.4.2	Internal input circuit	13
2.5	Dimensions and weights	
2.6	Terminal strips of the power circuit	18
2.6.1	Permissible cable cross-sections and tightening torques of the terminals	18
2.7	Accessories	19
2.7.1	Filter and chokes	19
2.8	Connection Power Unit	20
2.8.1	Mains and motor connection	20
2.8.1.1	Mains connection 1-phase	20
	Mains connection 3-phase	
2.8.1.3	DC connection	21
2.8.2	Selection of the motor cable	21
2.8.3	Connection of the motor	22
2.8.3.1	Motor cable length for parallel operation of motors	22
2.8.4	Temperature detection T1, T2	
2.8.4.1	Use of the temperature input	23
2.8.5	Connection of a braking resistor	
2.8.5.1	Braking resistor without temperature monitoring	24
2.8.5.2	Braking resistor with overheat protection	25
Α.	Annex A	26
A .1	Overload characteristic	
A.2	Overload protection in the lower speed range	26
A.3	Calculation of the motor voltage	
A.4	Shut down	27
A.4.1	Maintenance	27
A.4.2	Storage	27
A.4.3	Cooling circuit	

Table of Contents

A.4.4		on	
A.4.5	Disposal		28
B.	Annex B		29
B.1			
B.1.1	CE Marking		29
B.1.2			
C.	Annex C		33
C.1		e response threshold of the braking transistor	
List	of figures		
Figure	1: Intern	al input circuit	13
Figure	2: Dimer	nsions mounted version	14
Figure	Dimer	nsions Flatrear	15
Figure	4: Dimer	nsions through-mount version	16
Figure	5: Dimer	nsions through-mount version(special version)	17
Figure	6: Termii	nal strips of the power circuit	18
Figure	7: Mains	connection 1-phase	20
Figure	8: Mains	connection 3-phase	21
Figure	9: DC cc	onnection	21
Figure	10: Conne	ection of the motor	22
Figure	11: Use o	f the temperature input	23
Figure	12: Brakir	ng resistor without temperature monitoring	24
Figure	13: Brakir	ng resistor with overheat protection	25
Figure		oad characteristic	
Figure	15: Overlo	oad protection in the lower speed range	26
Figure		ection F6	
Figure		ging the response threshold of the braking transistor	

1. Preface

The described hard- and software are developments of the Karl E. Brinkmann GmbH. The enclosed documents correspond to conditions valid at printing. Misprint, mistakes and technical changes reserved.

1.1 Information on special measures

The used pictograms have following significance:

Danger

Is used, when death or serious bodily injury may be the consequence of non-observance of the measure.

Warning

Is used, when bodily injury and/or substantial property damage may be the consequence of non-observance of the measure.

Caution

Is used, when property damage may be the consequence of non-observance of the measure.

Attention

Is used, when noise sensitive or unrequested operation may be the consequence of non-observance of the measure.

Info

Is used, when a better or simpler result can be the consequence of the measure.

For a special case the instructions can be supplemented by additional pictograms and text.

1.2 Documentation

Attention Documentation via www.keb.de Prior to performing any work on the unit, it is absolutely necessary to download and read the documentation, especially the safety precautions and instructions for use. Follow these steps to get the documentation: Read the material number (Mat.No.) from nameplate Step 1 Input the material number at "www.keb.de => Service => Downloads" and click "search". **Downloads** Step 2 Suche nach Materialnummern Bitte geben Sie eine vollständige (11-stellige) Materialnummer ein. suchen continued on the next page

	Should you be unable to read or understand the documentation, do not take any further steps. Please inform our support network for further
Step 3	The entire documentation associated with the device will be displayed, including the instruction manuals in German and English. If available, other translations are also indicated. Make sure that the user understands the provided language.

Non-observance of the safety instructions leads to the loss of any liability claims. The warnings and safety instructions in this manual work only supplementary. This list is not exhaustive.

1.3 Validity and liability

assistance.

The use of our units in the target products is beyond of our control and therefore exclusively the responsibility of the machine manufacturer, system integrator or customer.

The information contained in the technical documentation, as well as any user-specific advice in spoken and written and through tests, are made to best of our knowledge and information about the application. However, they are considered for information only without responsibility. This also applies to any violation of industrial property rights of a third-party.

Selection of our units in view of their suitability for the intended use must be done generally by the user.

Tests can only be done within the application by the machine manufacturer. They must be repeated, even if only parts of hardware, software or the unit adjustment are modified.

Unauthorized opening and tampering may lead to death, bodily injury, property damage and malfunctions. Modification or repair is permitted only by authorized personnel by KEB. Infringement will annul the liability for resulting consequences.

The suspension of liability is especially valid also for operation interruption loss, loss of profit, data loss or other damages. The disclaimer will void the warranty. This is also valid, if we referred first to the possibility of such damages.

If single regulations should be or become void, invalid or impracticable, the effectivity of all other regulations or agreements is not affected.

Through multitude applications not each possible case of installation, operation or maintenance can be considered. If you require further information or if special problems occur which are not treated detailed in the documentation, you can request the necessary information via the local Karl E. Brinkmann GmbH agency.

1.4 Copyright

The customer may use the instruction manual as well as further documents or parts from it for internal purposes. Copyrights are with KEB and remain valid in its entirety.

KEB®, COMBIVERT®, COMBICONTROL® and COMBIVIS® are registered trademarks of Karl E. Brinkmann GmbH.

Other wordmarks or/and logos are trademarks (™) or registered trademarks (®) of their respective owners and are listed in the footnote on the first occurrence.

When creating our documents we pay attention with the utmost care to the rights of third parties. Should we have not marked a trademark or breach a copyright, please inform us in order to have the possibility of remedy.

1.5 Specified application

The used semiconductors and components of the Karl E. Brinkmann GmbH are developed and dimensioned for the use in industrial products. If the KEB COMBIVERT is used in machines, which work under exceptional conditions or if essential functions, life-supporting measures or an extraordinary safety step must be fulfilled, the necessary reliability and security must be ensured by the machine builder.

The operation of our products outside the indicated limit values of the technical data leads to the loss of any liability claims.

Units with safety function are limited to a service life of 20 years. Then the device must be replaced.

1.6 Product description

This instruction manual describes the power circuits of the following units:

Unit type: Frequency inverter Series: COMBIVERT F5/F6

Power range: 1.5...4.0 kW / 230 V class

1.5...7.5 kW / 400 V class

Housing size: D

Version: air-cooled

Features of the power circuits:

- only slight switching losses due to IGBT
- low noise development due to high switching frequency
- extensive safety device for current, voltage and temperature
- voltage and current monitoring in static and dynamic operation
- conditionally short circuit proof and earth-fault proof
- · hardware current limit
- integrated cooling fan

1.7 Unit identification

15 F5 K 1 E-3 5 0 A

cooling	
0, 5, A, F	Heat sink (standard)
1, B, G	Flat rear
2, C, H	Water cooling
3, D, I	Convection

Encoder interface

0: none

S	Switching frequency; short time current limit; overcurrent limit										
\subseteq	Owitoring requericy, short time current limit, overcurrent limit										
0	2 kHz; 125 %; 150 %	5	4 kHz; 150 %; 180 %	Α	8 kHz; 180 %; 216 %	F	16 kHz; 200 %; 240 %				
1	4 kHz; 125 %; 150 %	6	8 kHz; 150 %; 180 %	В	16 kHz; 180 %; 216 %	G	2kHz; 400%; 480%				
2	8 kHz; 125 %; 150 %	7	16 kHz; 150 %; 180 %	С	2 kHz; 200 %; 240 %	Н	4 kHz; 400 %; 480 %				
3	16 kHz; 125 %; 150 %	8	2 kHz; 180 %; 216 %	D	4 kHz; 200 %; 240 %	I	8 kHz; 400 %; 480 %				
4	2kHz; 150%; 180%	9	4 kHz; 180 %; 216 %	Ε	8 kHz; 200 %; 240 %	K	16 kHz; 400 %; 480 %				

Input identification									
0	1ph 230 VAC/DC	5	400 V class DC	Α	6ph 400 VAC				
1	3ph 230 VAC/DC	6	1ph 230 VAC	В	3ph 600 VAC				
2	1/3ph 230 VAC/DC	7	3ph 230 VAC	С	6ph 600 VAC				
3	3ph 400 VAC/DC	8	1/3ph 230 VAC	D	600 V D C				
4	230 V class DC	9	3ph 400 VAC						

Housing type A, B, D, E, G, H, R, U, W, P

Accessorie	Accessories (AD with safety relay)								
0, A	0, A none								
1, B	Braking transistor								
2, C	integrated filter								
3, D	Braking transistor and integrated filter								

Control type		
A APPLICATION	K	like A with safety technology
B BASIC (controlled frequency inverter) 1)		
C COMPACT (controlled frequency inverter)		
E SCL	Р	like E with safety technology
G GENERAL (controlled frequency inverter)		
HASCL	L	like H with safety technology
M MULTI (regulated, field-oriented frequency inve	erter fo	or three-phase asynchronous motors)
S SERVO (regulated frequency inverter for s	synch	ironous motors)

Series F5/F6

Inverter size

Attention

Devices of the type F6-K only support a max. switching frequency of 8kHz.

¹⁾ Devices with control type "BASIC" are subject to export authorisation according to entry 3A225 Annex I of the Dual-Use Regulation. For more information see "Technical data".

1.8 Safety and application notes

Safety and operating instructions for drive converter

(in accordance with: Low-Voltage Directive 2006/95/EC)

1. General

In operation, drive converter depending on their degree of protection, may have live, uninsulated and possibly also moving or rotating parts, as well as hot surfaces.

In case of inadmissible removal of the required covers, of improper use, wrong installation or maloperation, there is the danger of serious personal injury and damage to property.

For further information, see documentation.

All operations serving transport, installation and commissioning as well as maintenance are to be carried out by skilled technical personnel (Observe IEC 364 or CENELEC HD 384 or DIN VDE 0100 and IEC 664 or DIN/VDE 0110 and national accident prevention rules!).

For the purposes of these basic safety instructions, "skilled technical personnel" means persons who are familiar with the installation, mounting, commissioning and operation of the product and have the qualifications needed for the performance of their functions.

2. Specified application

Drive converter are components which are intended for the installation in electric systems or machines.

In case of installation in machinery, commissioning of the drive converter (i.e. the starting of normal operation) is prohibited until the machinery has been proved to conform to the provisions of the directive 2006/42/EC (Machinery Directive). Account is to be taken of EN 60204.

The drive converter meet the requirements of the Low-Voltage directive 2004/1082014/30/EC. The associated standards are set out in the Declaration of Conformity!

The technical data as well as information concerning the supply conditions shall be taken from the rating plate and from the documentation and shall be strictly observed.

3. Transport, storage

The instructions for transport, storage and proper use shall be complied with.

The climatic conditions shall be in conformity with prEN 50178.

4. Installation

The installation and cooling of the appliances shall be in accordance with the specifications in the pertinent documentation.

The drive converter shall be protected against excessive strains. In particular, no components must be bent or isolating distances altered in the course of transportation or handling. No contact shall be made with electronic components and contacts.

Drive converter contain electrostatic sensitive components which are liable to damage through improper use. Electric components must not be mechanically damaged or destroyed (potential health risks).

5. Electrical connection

When working on live drive converter, the applicable national accident prevention rules (e.g. VBG 3) must be complied with.

The electrical installation shall be carried out in accordance with the relevant requirements (e.g. cross-sectional areas of conductors, fusing, PE connection). For further information, see documentation.

Instructions for the installation in accordance with EMC requirements, like screening, earthing, location of filters and wiring, are contained in the drive converter documentation. They must always be complied with, also for drive converter bearing a CE marking. Observance of the limit values required by EMC law is the responsibility of the manufacturer of the installation or machine.

6. Operation

Installations which include drive converter shall be equipped with additional control and protective devices in accordance with the relevant applicable safety requirements, e.g. act respecting technical equipment, accident prevention rules etc.. Changes to the drive converter by means of the operating software are admissible.

After disconnection of the drive converter from the voltage supply, live appliance parts and power terminals must not be touched immediately because of possibly energized capacitors. In this respect, the corresponding signs and markings on the drive converter must be observed.

During operation, all covers and doors shall be kept closed.

7. Maintenance

The manufacturer's documentation shall be followed. KEEP SAFETY INSTRUCTIONS IN A SAFE PLACE!

2. Technical Data

2.1 Operating conditions

		Standard	Standard/	Instructions				
			class					
Definition acc.		EN 61800-2		Inverter product standard: rated specifications				
Dominion door		EN 61800-5-1		Inverter product standard: general safety				
				max. 2000 m above sea level				
Site altitude				(with site altitudes over 1000 m a derating of 1 % per				
				100 m must be taken into consideration)				
Ambient conditio	ns during oper	ation						
	Temperature		3K3	extended to -1045 °C (use frost protection for water				
Climate	•		JNJ	cooling systems and temperatures below zero)				
	Humidity	EN 60721-3-3	3K3	585% (without condensation)				
Mechanical	Vibration	EN00721-3-3	3M1					
O a mata madina add a m	Gas		3C2					
Contamination	Solids		3S2					
Ambient conditio	ns during trans	sport						
	Temperature		2K3	Drain heat sink completely				
Climate	Humidity		2K3	(without condensation)				
NA - de - de - de	Vibration	EN 00704 0 0	2M1					
Mechanical	Surge	EN 60721-3-2	2M1	max. 100 m/s ² ; 11 ms				
0 1 1 11	Gas		2C2	,				
Contamination	Solids		2S2					
Ambient conditio		age						
	Temperature	-3-	1K4	Drain heat sink completely				
Climate	Humidity		1K3	(without condensation)				
	Vibration		1M1	(Without confidence)				
Mechanical	Surge	EN 60721-3-1	1M1	max. 100 m/s²; 11 ms				
	Gas		1C2	11100. 100111/0 , 111110				
Contamination	Solids		1S2					
Type of protection		EN 60529	IP20					
Environment	<u> </u>	IEC 664-1	11 20	Pollution degree 2				
Definition acc.		EN61800-3		Inverter product standard: EMC				
EMC emitted inter	rforonco	LINU 1000-3		inverter product standard. Lino				
	d interferences	_	C2 ¹⁾²⁾	Earlier limit value A (B optional) according to EN55011				
	d interferences		C2 ⁽²⁾	Earlier limit value A according to EN55011				
Interference immi			OZ.	Larier limit value A according to E1400011				
	atic discharges	EN61000-4-2	8 kV	AD (air discharge) and CD (contact discharge)				
Burst - Ports for			2kV	/ LD (all disoridings) and OD (contact discridings)				
urement control I		LING 1000-4-4	Z I V					
urement control t	•							
D	interfaces	EN 64000 4 4	4137					
	ower interfaces		4 kV	Dhana ahana tahan amawat				
	ower interfaces		1 / 2 kV	Phase-phase / phase-ground				
	magnetic fields	EN 0 1000-4-3	10 V/m					
Cable-fed disturbat		EN 61000-4-6	10 V	0.15-80 MHz				
	frequency fields		•					
Vol	Itage variation /	EN 61000-2-1	3	+10 % -15 %				
	voltage drop			90 %				
	ınsymmetries /	EN61000-2-4	3	3 %				
freq	uency changes	21101000-2-4	<u> </u>	2%				
			<u> </u>					

- 1) This product can cause high frequency disturbances in residential areas (category c1) which require noise suppression measures.
- 2) The specified value is only meet in connection with a corresponding filter.
- 3) Depending on the conditions and the appropriate derating higher temperatures can also be run in consultation with KEB.
- 4) There is no "Safe isolation" of the control above 2000 m.

2.2 Technical data of the 230V class

Inverter size			07	09	10	12		
Housing size			D	D	D	D		
Phases	1 3	1 3	1 3	3				
Output rated power	•	[kVA]	1.6	2.8	4.0	6.6		
Max. rated motor power		[kW]	0.75	1.5	2.2	4.0		
Output rated current		[A]	4	7.0	10	16.5		
Max. short time current	1)	[A]	7.2	12.6	18	29.7		
OC-tripping current		[A]	8.6	15.1	21.6	35.6		
Input rated current		[A]	8 5.6	14 9.8	20 14	23		
Max. permissible main fuse gG	5)	[A]	20 16	20 16	25 20	25		
Rated switching frequency		[kHz]	16	16	16	8		
Max. switching frequency		[kHz]	16	16	16	16		
Power dissipation at nominal operating		[W]	100	130	170	210		
Power dissipation at DC supply		[W]	90	120	155	185		
Standstill current at 4 kHz	2)	[A]	4	7	10	16.5		
Standstill current at 8 kHz	2)	[A]	4	7	10	16.5		
Standstill current at 16 kHz	2)	[A]	4	7	10	10		
Min. frequency at continuous full load		[Hz]	6 6		6	6		
Max. heat sink temperature			90 °C (194 °F)					
Motor cable cross-section	3)	[mm²]	2.5 1.5	2.5 1.5		4		
Min. braking resistor	4)	[Ω]	56	47	33	27		
Max. braking current	4)	[A]	7.5	9.5	12	15		
Overload characteristic			(see annex A)					
Input rated voltage		[V]		230 (UL				
Input voltage range Uin		[V]		1802				
Input voltage at DC operation		[V]		2503				
Mains frequency	[Hz]	50 / 60 ±2						
permitted mains forms			TN		Δ -mains	7)		
Output voltage	8)	[V]	3 x 0Uin					
Output frequency	9)	[Hz]	0400					
Max. motor line length shielded at 4 kHz		[m]	100 100					
Max. motor line length shielded at 8 kHz		[m]	50		100			
Max. motor line length shielded at 16 kHz		[m]	20		100			

- 1) With regulated systems 5% are to be subtracted as overmodulation capacity
- 2) Max. current before the OL2 function triggers (not at F5 in operating mode v/f)
- 3) Recommended minimum cross section of the motor line for rated power and a cable length of upto 100 m (CU)
- 4) This data is only valid for units with internal braking transistor (see "unit identification")
- 5) Protection in accordance with UL see annex B
- 6) IT system optional
- 7) Phase conductor grounded mains are only permissible without HF filters
- 8) The voltage at the motor is dependent on the series-connected units and on the control method (see A.3)
- 9) The actual output frequency is dependent on the parameterisation. The output frequency is to be limited in such way that 1/10 of the switching frequency is not exceeded.

Output frequencies >599 Hz are possible by changing the operating mode for control type "BASIC" (xxF5Bxx-xxxx) as well as special devices which are available upon request. This devices are subject to export authorisation according to entry 3A225 Annex I of the Dual-Use Regulation and they are marked accordingly in the delivery note. The output frequency is limited to max. 599 Hz for all other control types. This devices are not subject to export authorisation.

Info 1 Note pole pairs

The technical data are for 2/4-pole standard motors. With other pole numbers the inverter must be dimensioned onto the rated motor current. Contact KEB for special or medium frequency motors.

2.3 Technical data of the 400V class

Inverter size			07	09	10	12	13	14	
Housing size	D	 D	D	D	D	D			
Phases			3	3	3	3	3	3	
Output rated power	[kVA]	1.8	2.8	4.0	6.6	8.3	11		
Max. rated motor power	•							7.5	
Output rated current		 [A]	2.6	4.1	5.8	9.5	12	16.5	
Max. short time current	1)	<u>-</u> [A]	4.7	7.4	10.4	17	21.6	29.7	
OC-tripping current		[A]	5.6	8.9	12.5	21	25.9	35.6	
Input rated current		[A]	3.6	6	8	13	17	23	
Max. permissible main fuse gG	7)	[A]	16	16	16	20	25	25	
Rated switching frequency		[kHz]	16	8	4 8 16	8	4	2	
Max. switching frequency	6)	[kHz]	16	16	16 16 16	16	16	16	
Power dissipation at nominal operating						185	185	185	
Power dissipation at DC supply		[W]	87	100	130 150 160		165	160	
Standstill current at 4 kHz	2)	[A]	2.6		5.8 5.8 5.8		12	14.5	
Standstill current at 8 kHz	2)	[A]	2.6	4.1	5.2 5.8 5.8	9.5	9.5	9.9	
Standstill current at 16 kHz	2)	[A]	2.6	3.5	3.5 2.9 5.8	5.8	5.7	5.7	
Min. frequency at continuous full load		[Hz]	6	6	6	6	6	6	
Max. heat sink temperature				90°C (194°F)					
Motor cable cross-section	3)	[mm²]	1.5	1.5	1.5	2.5	4	4	
Min. braking resistor	4)	[Ω]	120	120	82	82	56	56	
Max. braking current	4)	[A]	7.5	7.5	10	10	15	15	
Overload characteristic				(see annex A)					
Input rated voltage	5)	[V]		400 (UL: 480)					
Input voltage range		[V]		305528 ±0					
Input voltage at DC operation		[V]			42074	6 ±0	_		
Mains frequency	[Hz]			50 / 60					
permitted mains forms			TN	, TT, IT ⁸⁾ , A		ns ⁹⁾			
Output voltage	[V]		3 x 0Uin						
Output frequency	[Hz]		0400						
Max. motor line length shielded at 4 kHz		[m]	30	100	100	100	100	100	
Max. motor line length shielded at 8 kHz		[m]		30	100	100	100	_	
Max. motor line length shielded at 16 kHz		[m]	10	10	20	100	100	_	

- 1) With regulated systems 5% are to be subtracted as overmodulation capacity
- 2) Max. current before the OL2 function triggers (not at F5 in operating mode v/f)
- 3) Recommended minimum cross section of the motor line for rated power and a cable length of upto 100 m (copper)
- 4) This data is only valid for units with internal brake transistor GTR 7 (see "unit identification")
- 5) At rated voltages ≥ 460 V multiply the rated current with factor 0.86
- 6) With BASIC control board only 2 kHz, with COMPACT 8 kHz, with F6-K only 8 kHz
- 7) Protection in accordance with UL see annex B
- 8) Restrictions when using HF filters
- 9) Phase conductor grounded mains are only permissible without HF filters
- 10) The voltage at the motor is dependent on the series-connected units and on the control method (see A.3)
- 11) The actual output frequency is dependent on the parameterisation. The output frequency is to be limited in such way that 1/10 of the switching frequency is not exceeded.

Output frequencies >599 Hz are possible by changing the operating mode for control type "BASIC" (xxF5Bxx-xxxx) as well as special devices which are available upon request. This devices are subject to export authorisation according to entry 3A225 Annex I of the Dual-Use Regulation and they are marked accordingly in the delivery note. The output frequency is limited to max. 599 Hz for all other control types. This devices are not subject to export authorisation.

Warning Input rated voltage

No braking resistor may be connected for control type "Basic" at an input rated voltage of 480 Vac. The response threshold of the braking transistsor (Pn.69) for all other controls without safety technology (A, E, G, H, M) must be adjusted at least to 770 Vdc (see annex D).

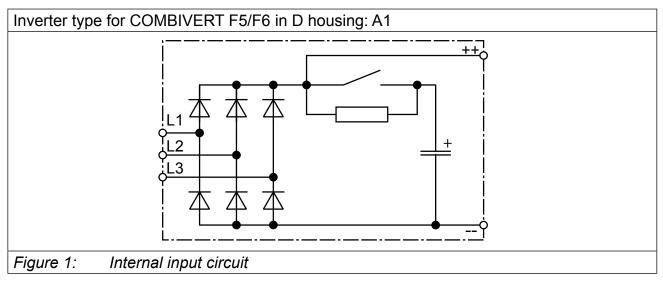
2.4 DC supply

2.4.1 Calculation of the DC input current

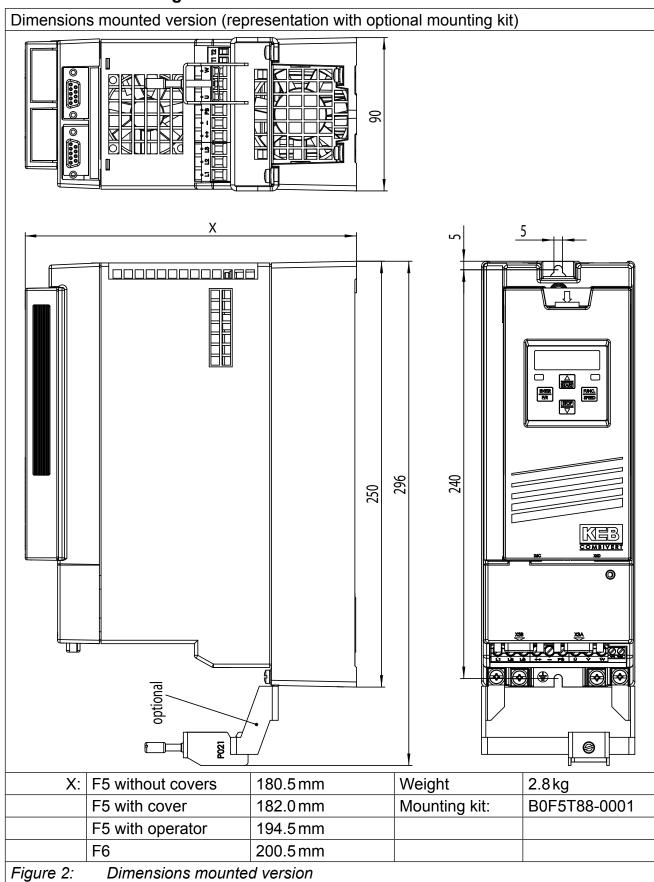
The **DC input current** of the inverter is basically determined by the used motor. The data can be taken from the motor name plate.

230V class:

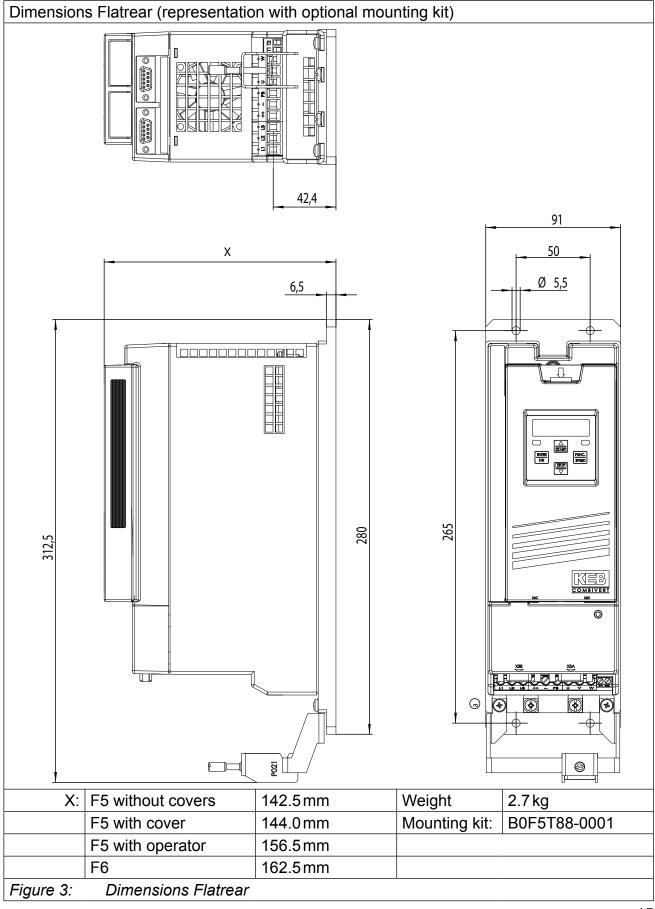
$$I_{DC}$$
= $\frac{\sqrt{3} \cdot \text{rated motor voltage} \cdot \text{rated motor current} \cdot \text{Motor cos } \phi}{\text{DC voltage (310 V)}}$

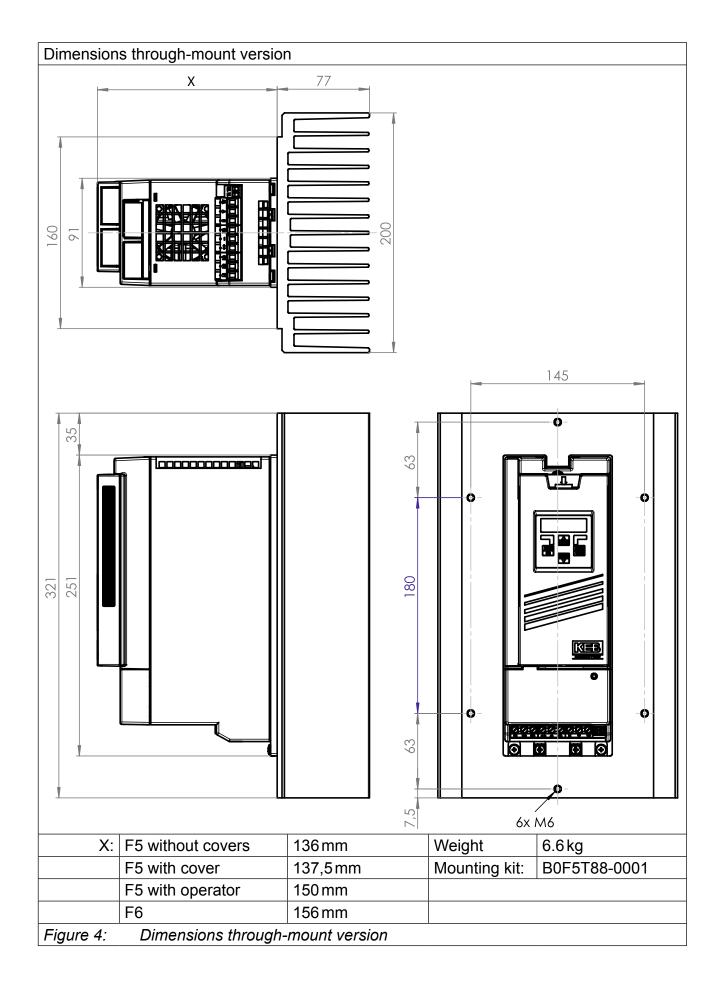

400V class :
$$I_{DC}$$
= $\frac{\sqrt{3} \cdot \text{rated motor voltage} \cdot \text{rated motor current} \cdot \text{Motor cos } \phi}{\text{DC voltage (540 V)}}$

The **DC input peak current** is determined by the operating range.

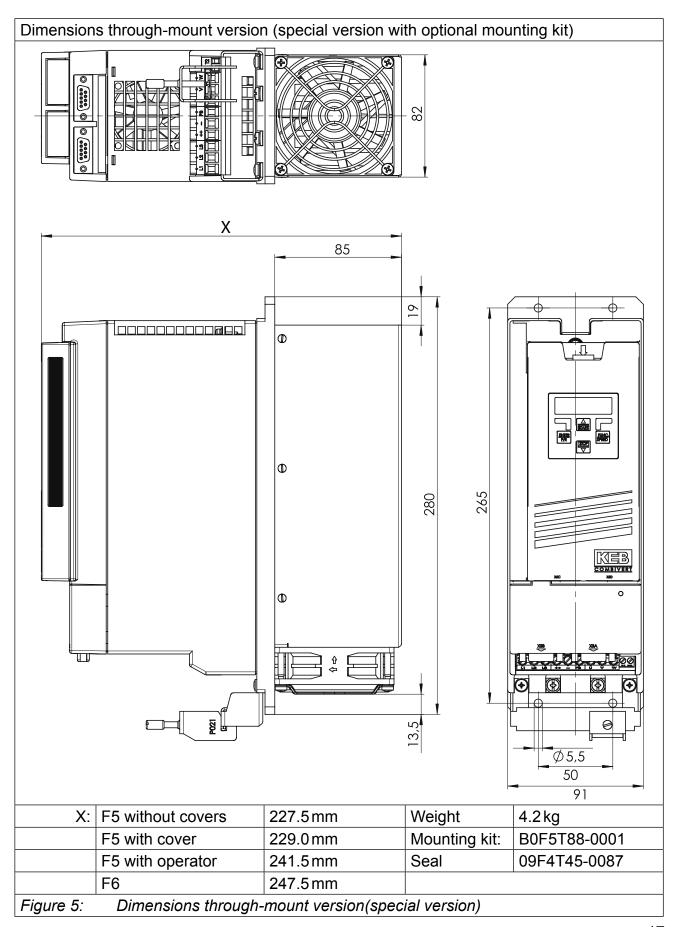

- If you accelerate on the hardware current limit, the short-time current limit of the inverter must be used in the formula above (instead of the rated motor current).
- If the motor in normal operation is never stressed with rated torque, it can be calculated with the real motor current.

2.4.2 Internal input circuit


The COMBIVERT F5/F6 in D housing corresponds to the inverter type A1. Pay attention to the inverter type in DC interconnection and in operation at regenerative units.

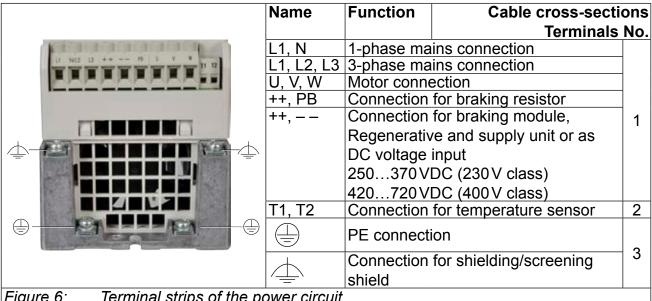


2.5 Dimensions and weights



2.6 Terminal strips of the power circuit

Caution



Observe input voltage, since 230 V and 400 V class possible

Info

All terminal strips following the requirements of the EN 60947-7-1 (IEC 60947-7-1)

Figure 6: Terminal strips of the power circuit

2.6.1 Permissible cable cross-sections and tightening torques of the terminals

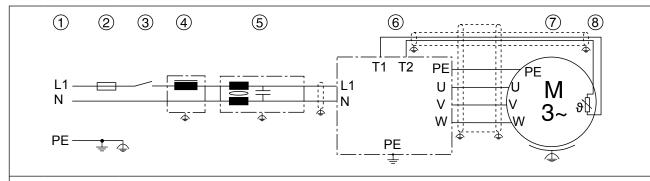
	permissib	le cross-secti fer	Tightenir	ng torque		
	mı	m²	A۱	VG	Nm	lb inch
No.	min	max	min	max	INIII	ID IIICH
1	0.25	4	24	10	0.6	5
2	0.25	1.5	26	14	0.6	5
3	Screw M4 fo	r ring thimble	1.3	11		

2.7 Accessories

2.7.1 Filter and chokes

Voltage class	Inverter	Filter	Mains choke 50 Hz	Motor choke 100 Hz
	size		(4 % Uk)	(4 % Uk)
220.1/	07		07Z1B02-1000	-
230 V	09	10E5T60-0002	09Z1B02-1000	_
1-phase	10		10Z1B02-1000	_
	07	10E5T60-1002	07Z1B03-1000	_
230 V 3-phase	09	13E5T60-1001	09Z1B03-1000	_
	10	13E3100-1001	10Z1B03-1000	_
	12	14U5T60-1001	12Z1B03-1000	_

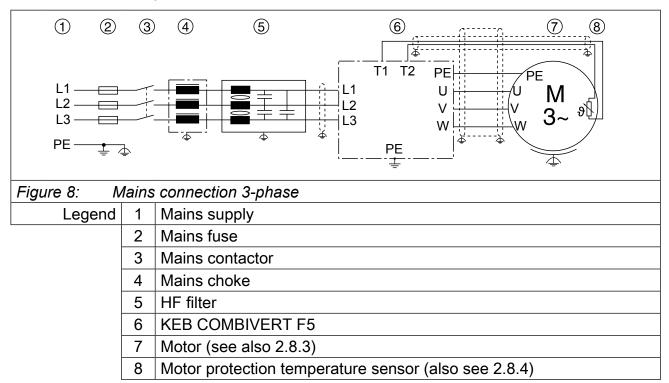
Voltage class	Inverter	Filter	Mains choke 50 Hz	Motor choke 100 Hz
	size		(4 % Uk)	(4 % Uk)
	07		07Z1B04-1000	07Z1F04-1010
	09	10E5T60-1002 13E5T60-1001	09Z1B04-1000	09Z1F04-1010
400 V	10		10Z1B04-1000	10Z1F04-1010
400 V	12		12Z1B04-1000	12Z1F04-1010
	13		13Z1B04-1000	13Z1F04-1010
	14	14E5T60-1001	14Z1B04-1000	14Z1F04-1010

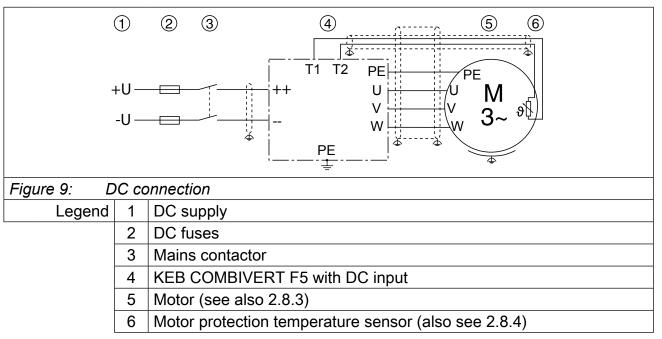

2.8 **Connection Power Unit**

2.8.1 Mains and motor connection

Incorrect connection possible! Caution

- Absolutely pay attention to the supply voltage of the KEB COMBIVERT. A 230 V unit at 400 V mains is destroyed immediately.
- Exchanging mains and motor connection leads to immediate destruction of the unit.
- Pay attention to the supply voltage and the correct polarity of the motor!

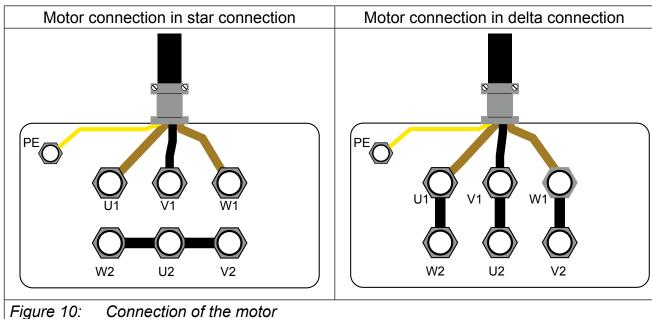

2.8.1.1 Mains connection 1-phase


Figure 7: N	igure 7: Mains connection 1-phase					
Legend	1	Mains supply				
2		Mains fuse				
3		Mains contactor				
	4	Mains choke				
	5	HF filter				
6		KEB COMBIVERT F5				
7		Motor (see also 2.8.3)				
8 Motor prote		Motor protection temperature sensor (also see 2.8.4)				

2.8.1.2 Mains connection 3-phase

2.8.1.3 DC connection

2.8.2 Selection of the motor cable


The correct selection and wiring of the motor cable is very important:

- lower abrasion of the motor bearings by leakage currents
- improved EMC characteristics
- lower symmetrical operating capacities
- · less losses by transient currents

2.8.3 Connection of the motor

As standard the connection of the motor must be carried out in accordance with the following table:

Connection of the motor					
230/400	V motor	400/690 V motor			
230 V 400 V		400 V	690 V		
Delta	Star	Delta	Star		

Attention

The connecting-up instructions of the motor manufacturer are generally valid!

Caution

Protect motor against voltage peaks!

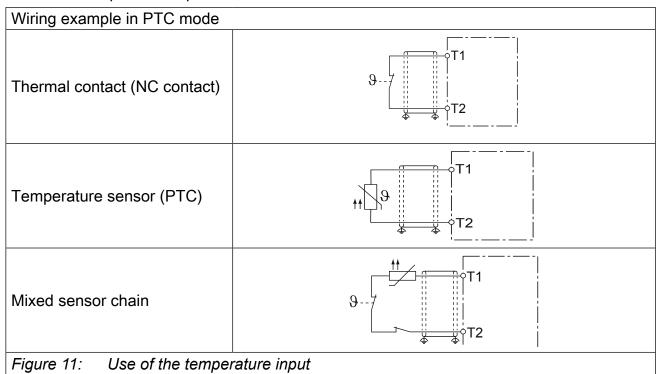
Inverters switch with dv/dt of approx. 5kV/µs at the output. Voltage peaks at the motor which endanger the insulation system can occur especially in case of long motor lines (> 15m).

A motor choke, a dv/dt-filter or sine-wave filter can be used for protection of the motor.

2.8.3.1 Motor cable length for parallel operation of motors

The resulting motor cable length for parallel operation of motors, or parallel installation with multiple cables arises from the following formula:

resulting motor cable length = \sum single line length x \sqrt{Number} of motor lines


2.8.4 Temperature detection T1, T2

In.17	Function of T1,	Pn.72	Resistance	Display ru.46	Error/Warn-	
	T2	(dr33)		(F6 => ru28)	ing 1)	
	T		< 750 Ω	T1-T2 closed	_	
	PTC	1	0.751.	undefined –		
5xh	(in accord- ance with DIN EN 60947-8)		(reset resistance)			
SXII			1.	undefined	V	
			(tripping resistance)	undenned	X	
			> 4 kΩ	T1-T2 open	Х	
1)	The column is val	The column is valid at factory setting. The function must be programmed accordingly				
1)	with parameters Pn.12, Pn.13, Pn.62 and Pn.72 for F5 in operating mode GENERAL					

Attention	<u></u>	motor	cable
-----------	---------	-------	-------

Do not lay PTC cable of the motor (also shielded) together with control cable! PTC cable inside the motor cable only permissible with double shielding!

2.8.4.1 Use of the temperature input

The function can be switched off with Pn.12="7" (CP.28) if no evaluation of the input is desired (standard in operating mode GENERAL). Alternatively a bridge can be installed between T1 and T2.

2.8.5 Connection of a braking resistor

Braking resistors dissipate the produced energy of the motor into heat during generatoric operation. Thus braking resistors can cause very high surface temperatures. During assembly pay attention to appropriate protection against contact and fire.

Info 1 Regenerative unit

The use of a regenerative unit is reasonable for applications which produce a lot of regenerative energy. Regeneration of excess energy into the mains.

Attention / Technical information

- The mains voltage must always be switched off in order to guarantee fire protection in case of a defective braking transistor.
- The frequency inverter remains in operation in spite of switched off power supply in generatoric operation. An error must be released by external wiring which switches the modulation off in the inverter. This can occur e.g. at terminals T1/T2 or via digital input. The frequency inverter must be programmed accordingly in each case.
- No braking resistor may be connected for control type "Basic" at an input rated voltage of 480 Vac. The response threshold of the braking transistsor (Pn.69) for all other controls without safety technology (A, E, G, H, M) must be adjusted at least to 770 Vdc (see annex D).

2.8.5.1 Braking resistor without temperature monitoring

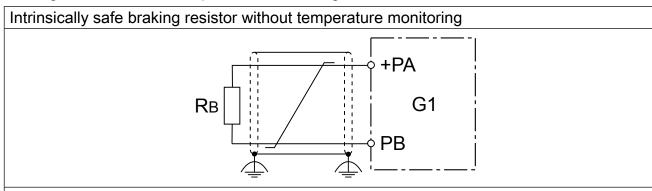
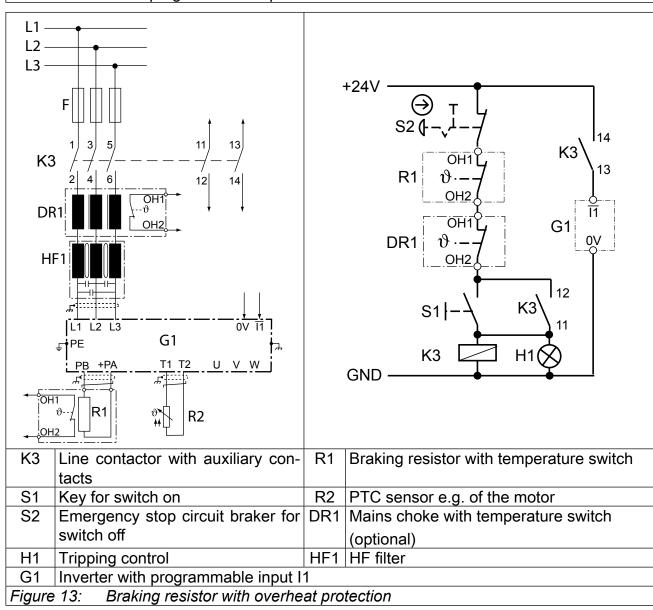


Figure 12: Braking resistor without temperature monitoring

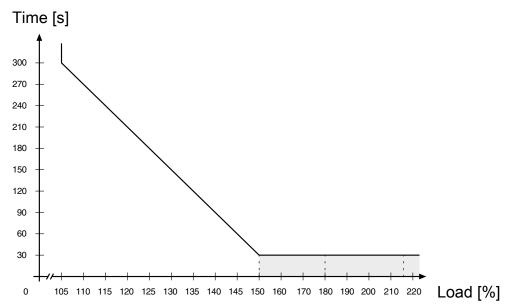
Attention /

Only "intrinsically safe" braking resistors are permissible for operation without temperature monitoring.



2.8.5.2 Braking resistor with overheat protection

This circuit offers a direct protection with defective braking transistor (GTR7). The braking resistor overheats and opens the terminals OH1 and OH2 with defective GTR7. The OH terminals open the holding circuit of the input contactor, so that the input voltage is switched off in error case. An error in inverter is released by opening the auxiliary contacts of K3. Regenerative operation is also secured by the internal fault disconnection. The input must be programmed and inverted to "external error". Automatic restarting after cooling of the braking resistor is prevented by the self-holding circuit of K3.


Info 1 Terminals T1/T2

If the PTC evaluation of the motor at terminals T1/T2 is not used, these terminals can be used instead of the programmable input.

A. Annex A

A.1 Overload characteristic

In this range the characteristic declines dependent on the overcurrent limit (see unit identification).

Figure 14: Overload characteristic

On exceeding a load of 105% the overload integrator starts. When falling below the integrator counts backwards. If the integrator achieves the overload characteristic that corresponds to the inverter, the error E.OL is triggered.

A.2 Overload protection in the lower speed range

(only operating mode MULTI and SERVO)

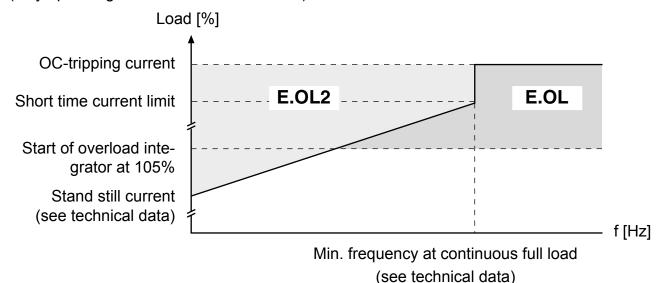


Figure 15: Overload protection in the lower speed range

A PT1 element (τ =280 ms) starts if the permissible current is exceeded. After its sequence of operation the error E.OL2 is triggered.

A.3 Calculation of the motor voltage

The motor voltage for dimensioning of the drive is depending on the used components. The mains voltage reduces according to the following table:

Mains choke Uk	4 %	Example:
Inverter open-loop	4 %	Closed-loop inverter with mains and motor choke at
Inverter closed-loop	8%	non-rigid supply system:
Motor choke Uk	1%	400 V mains voltage - 15 % = 340 V motor voltage
Non-rigid supply sys-	2%	
tem		

A.4 Shut down

All work may only be done by qualified personnel. The security must be ensured as follows:

- Disconnect power supply at MCCB
- Secure against restarting
- Await discharge time of capacitors (if necessary controlling by measurement at "+PA" and "-", respectively "++" and "--")
- Ensure loss of voltage by measurement

A.4.1 Maintenance

In order to avoid premature ageing and avoidable malfunctions, the measures mentioned below must be carried out in the appropriate cycle.

Cycle	Function
	Pay attention to unusual noises of the motor (e.g. vibrations) as well as of the
Constant	frequency inverter (e.g. fan).
Constant	Pay attention to unusual smells of the motor or frequency inverter (e.g. evap-
	oration of capacitor electrolyte, braise of the motor winding)
	Check unit for loose screws and plugs and if necessary tighten up.
	Clean frequency inverter from dirt and dust deposits. Pay attention especially
	to cooling fins and protective grid of the fans.
Monthly	Examine and clean extracted air filter and cooling air filter of the control cabi-
	net.
	Examine function of the fans of the KEB COMBIVERT. The fans must be re-
	placed in case of audible vibrations or squeak.
Annual	Check the connecting ducts for corrosion and change it if necessary for units
Ailluai	with water cooling.

A.4.2 Storage

The DC link of the KEB COMBIVERT is equipped with electrolytic capacitors. If the electrolytic aluminium capacitors are stored de-energized, the internal oxide layer is removed slowly. Due to the leakage current the oxide layer is unrenewed. If the capacitor starts running with rated voltage there is a high leakage current which can destroy the capacitor.

In order to avoid defectives, the KEB COMBIVERT must be started up depending on the storage period in accordance with the following specification:

Storage period < 1 year

Start-up without special measures

Storage period 1...2 years

Operate frequency inverter one hour without modulation

Storage period 2...3 years

- Remove all cables from the power circuit; especially of braking resistor or module
- · Open control release
- Connect variable transformer to inverter input
- Increase variable transformer slowly to indicated input voltage (>1 min) and remain at least on the specified time.

	Voltage class	Input voltage	Residence time
		0160 V	15 min
	230 V	160220 V	15 min
		220260 V	1 h
		0280 V	15 min
	400 V	280400 V	15 min
		400500 V	1 h

Storage period > 3 years

After expiration of this start-up the KEB COMBIVERT can be operated on nominal rating conditions or delivered to a new storage.

A.4.3 Cooling circuit

The cooling circuit must be completely empty if a unit shall be switched off for a longer period. The cooling circuit must be blown out additionally with compressed air at temperatures below 0°C.

A.4.4 Fault correction

A defective device should only be repaired by KEB or an authorized partner. Defective components, modules or options may only be replaced by original parts. The device must be returned in original packaging with a detailed bug report.

A.4.5 Disposal

Defective devices which should not be repaired or which are not safe because of their service life are applied as electronic waste and must be disposed as hazardous waste according to the local regulations.

Input voltages as before, however double the times per year. Eventually change capacitors.

B. Annex B

B.1 Certification

B.1.1 CE Marking

CE marked frequency inverter and servo drives were developed and manufactured to comply with the regulations of the Low-Voltage Directive 2006/95/EC.

The inverter or servo drive must not be started until it is determined that the installation complies with the Machine directive (2006/42/EC) as well as the EMC-directive (2004/108/EC) (note EN 60204).

The frequency inverters and servo drives meet the requirements of the Low-Voltage Directive 2006/95/EC. They are subject to the harmonized standards of the series EN61800-5-1.

This is a product of limited availability in accordance with IEC61800-3. This product may cause radio interference in residential areas. In this case the operator may need to take corresponding measures.

B.1.2 UL Marking

Acceptance according to UL is marked at KEB inverters with the adjacent logo on the type plate.

To be conform according to UL for use on the North American and Canadian Market the following additionally instructions must be observed (original text of the UL-File):

- For control cabinet mounting as "Open Type"
- "Only for use in WYE 480V/277V supply sources"
- Operator and Control Board Rating of relays (30 Vdc.: 1A)
- Maximum Surrounding Air Temperature 45 °C (113 °F)
- Overload protection at 130% of inverter output rated current (see type plate)
- Motor protection by adjustment of inverter parameters. For adjustment see application manual parameters Pn.14 and Pn.15.
- "Use 60/75°C Copper Conductors Only"
- Terminals Torque Value for Field Wiring Terminals, the value to be according to the R/C Terminal Block used.
- Use in a Pollution Degree 2 environment
- "Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes", or the equivalent".

further on next side

• "D Housing - Series Combivert, Cat. Nos. 07, 09, 10, 12, 13 or 14, followed by F5, followed by B or C, followed by 0, 1, 2, 3, A, B, C or D, followed by D-, followed by four suffixes.

D Housing - Series Combivert, Cat. No. 07, 09, 10, 12, 13 or 14, followed by F5, followed by B or C, followed by 0, 1, 2, 3, A, B, C or D, followed by D-, followed by three suffixes and followed by 4 or E or J.

Motor Overtemperature Protection:

above drive models are not provided with load and speed sensitive overload protection and thermal memory retention up on shutdown or loss of power (for details see NEC, article 430.126(A)(1)".

For 240 V Models:

"Suitable For Use On A Circuit Capable Of Delivering Not More Than 10000 rms Symmetrical Amperes, 240 Volts Maximum, when Protected by Fuses, see Instruction Manual for specified fuse details and alternate Branch Circuit Protection details."

For 480 V Models:

"Suitable For Use On A Circuit Capable Of Delivering Not More Than 10000 rms Symmetrical Amperes, 480 Volts Maximum, when Protected by Fuses, see Instruction Manual for specified fuse details and alternate Branch Circuit Protection details."

For all Models:

Branch Circuit Protection: input fusing for inverters of Drive Series F5-D and F6-D:

Inverter	Input	UL 248	Semiconductor fuses
model	Voltage	Fuse class RK5 or J or CC	Cat. No.
F5/F6	(V)	[A]*	(#)
07	240 /1ph	15	50 140 06 40
	240 /3ph	10	50 140 06 20
07	480 / 3ph	10	50 140 06 12
09	240 /1ph	20	50 140 06 40
	240 /3ph	15	50 140 06 25
09	480 / 3ph	10	50 140 06 12
10	240 /1ph	30	50 140 06 63
	240 /3ph	20	50 140 06 35
10	480 / 3ph	12	50 140 06 16
12	240 /1ph	35	50 140 06 100
	240 /3ph	25	50 140 06 50
12	480 / 3ph	15	50 140 06 25
13	480 / 3ph	25	50 140 06 40
14	480 / 3ph	30	50 140 06 40

*) The voltage rating of the Class rated fuses (CC,J or RK5) shall be at least equal to the voltage rating of the Drives.

(#) manufactured by Siba Sicherungen-Bau GmbH

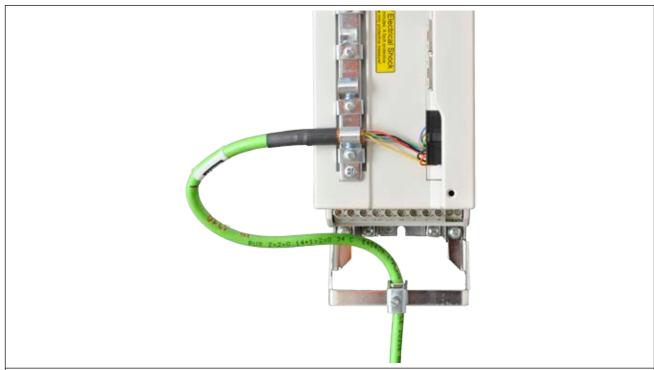
Branch Circuit Protection: Type E Self Protected Manual Motor Controllers for Drive series inverters F5–D and F6-D.

Listed (NKJH) Type E Self Protected Manual Motor Controllers. Type and manufacturer and electrical ratings as specified below:

240V devices:

Inverter	Drive input	Self Protected	Self Protected
model	rating	Manual Motor Controller Type	Manual Motor Controller
F5/F6		and manufacturer	rating
07	240V/ 1ph	PKZMO-16E, Eaton Industries	230 V/ 1ph, 2 hp
07	240V/ 3ph	PKZMO-10E, Eaton Industries	230V/ 3ph, 3 hp
09	240V/ 1ph	PKZMO-20E, Eaton Industries	230 V/ 1ph, 3 hp
09	240V/ 3ph	PKZMO-16E, Eaton Industries	230V/ 3ph, 5 hp
10	240V/ 1ph	PKZMO-32E, Eaton Industries	230 V/ 1ph, 5 hp
10	240V/ 3ph	PKZMO-16E, Eaton Industries	230V/ 3ph, 5 hp
12	240V/ 1ph	PKZMO-40E, Eaton Industries	230 V/ 1ph, 7,5 hp
12	240V/ 3ph	PKZMO-25E, Eaton Industries	230V/ 3ph, 7,5 hp

480V devices:


Inverter model F5/F6	Drive input rating (#)	Self Protected Manual Motor Controller Type and manufacturer	Self Protected Manual Motor Controller rating
07	480V/ 3ph	PKZMO-10E, Eaton Industries	480Y/277V, 7,5 hp
09	480V/ 3ph	PKZMO-10E, Eaton Industries	480Y/277V, 7,5 hp
10	480V/ 3ph	PKZMO-12E, Eaton Industries	480Y/277V, 7,5 hp
12	480V/ 3ph	PKZM4-16E, Eaton Industries	480Y/277V, 10 hp
13	480V/ 3ph	PKZM4-25E, Eaton Industries	480Y/277V, 15 hp
14	480V/ 3ph	PKZM4-25E, Eaton Industries	480Y/277V, 15 hp

(#) all Drives series which use a Self Protected Motor Controller rated 480Y/277V are suitable for 480y/277V sources only.

Only for F6 housing D series:

"For Connector CN300 on Control Board:

Only use KEB Cable assembly Cat.No. 00H6L41-0xxx or 00H6L53-2xxx (where x = any digit) and use strain relief provisions as described below:"

Strain relief at housing D by use of mounting kit B0F5T88-0001 or -0002

Figure 16: Connection F6

C. Annex C

C.1 Changing the response threshold of the braking transistor

(not valid for control type "BASIC")

To avoid a premature switching of the brake transistor at an input rated voltage of 480 Vac, the response threshold must be controlled or adjusted according to the following graphic.

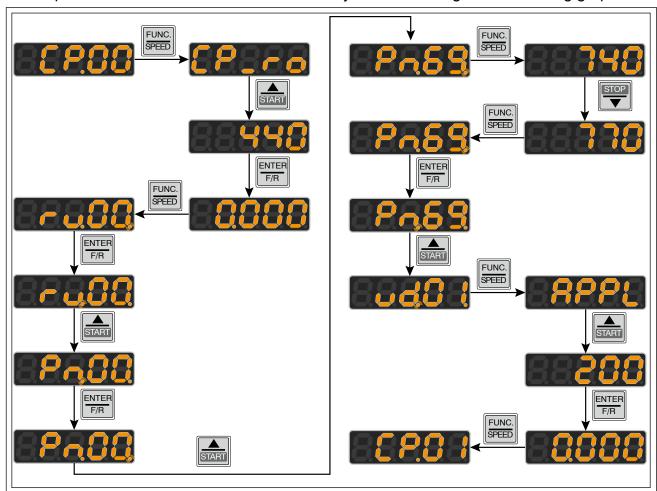


Figure 17: Changing the response threshold of the braking transistor

KEB Automation KG

Südstraße 38 • D-32683 Barntrup fon: +49 5263 401-0 • fax: +49 5263 401-116 net: www.keb.de • mail: info@keb.de

KEB worldwide...

KEB Antriebstechnik Austria GmbH

Ritzstraße 8 • A-4614 Marchtrenk fon: +43 7243 53586-0 • fax: +43 7243 53586-21 net: www.keb.at • mail: info@keb.at

KEB Antriebstechnik

Herenveld 2 • B-9500 Geraadsbergen fon: +32 5443 7860 • fax: +32 5443 7898 mail: vb.belgien@keb.de

KEB Power Transmission Technology (Shanghai) Co.,Ltd.

No. 435 Qianpu Road, Chedun Town, Songjiang District, CHN-Shanghai 201611, P.R. China fon: +86 21 37746688 • fax: +86 21 37746600 net: www.keb.de • mail: info@keb.cn

KEB Antriebstechnik Austria GmbH

Organizační složka
K. Weise 1675/5 • CZ-370 04 České Budějovice
fon: +420 387 699 111 • fax: +420 387 699 119
mail: info.keb@seznam.cz

KEB Antriebstechnik GmbH

Wildbacher Str. 5 • D-08289 Schneeberg fon: +49 3772 67-0 • fax: +49 3772 67-281 mail: info@keb-drive.de

KEB España

C/ Mitjer, Nave 8 - Pol. Ind. LA MASIA E-08798 Sant Cugat Sesgarrigues (Barcelona) fon: +34 93 897 0268 • fax: +34 93 899 2035 mail: vb.espana@keb.de

Société Française KEB

Z.I. de la Croix St. Nicolas • 14, rue Gustave Eiffel F-94510 LA QUEUE EN BRIE fon: +33 1 49620101 • fax: +33 1 45767495 net: www.keb.fr • mail: info@keb.fr

KEB (UK) Ltd.

Morris Close, Park Farm Industrial Estate GB-Wellingborough, NN8 6 XF fon: +44 1933 402220 • fax: +44 1933 400724 net: www.keb.co.uk • mail: info@keb.co.uk

KEB Italia S.r.l.

Via Newton, 2 • I-20019 Settimo Milanese (Milano) fon: +39 02 3353531 • fax: +39 02 33500790 net: www.keb.de • mail: kebitalia@keb.it

KEB Japan Ltd.

15–16, 2–Chome, Takanawa Minato-ku J-Tokyo 108-0074 fon: +81 33 445-8515 • fax: +81 33 445-8215 mail: info@keb.jp

KEB Korea Seoul

Room 1709, 415 Missy 2000 725 Su Seo Dong, Gang Nam Gu ROK-135-757 Seoul/South Korea fon: +82 2 6253 6771 • fax: +82 2 6253 6770 mail: vb.korea@keb.de

KEB RUS Ltd.

Lesnaya Str. House 30, Dzerzhinsky (MO) RUS-140091 Moscow region fon: +7 495 632 0217 • fax: +7 495 632 0217 net: www.keb.ru • mail: info@keb.ru

KEB America, Inc.

5100 Valley Industrial Blvd. South USA-Shakopee, MN 55379 fon: +1 952 224-1400 • fax: +1 952 224-1499

net: www.kebamerica.com • mail: info@kebamerica.com

More and latest addresses at http://www.keb.de

© KEB			
Mat.No.	00F50EB-KD00		
Rev.	1E		
Date	10/2016		