

COMBIVERT F6

GEBRAUCHSANLEITUNG | INSTALLATION F6 GEHÄUSE 6

Originalanleitung Dokument 20114694 DE 10

Vorwort

Die beschriebene Hard- und / oder Software sind Produkte der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

▲ GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

A WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

Weitere Symbole

- Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Hinweis auf weiterführende Dokumentation.

https://www.keb-automation.com/de/suche

Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit der EU-Konformitätserklärung und dem CE-Zeichen auf dem Gerätetypenschild, dass es den grundlegenden Sicherheitsanforderungen entspricht.

Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden.

Gewährleistung und Haftung

Die Gewährleistung und Haftung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den allgemeinen Verkaufsbedingungen zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen. https://www.keb-automation.com/de/agb

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über den bestimmungsgemäßen Gebrauch. Sie gelten jedoch nur als unverbindliche Hinweise und Änderungen sind insbesondere aufgrund von technischen Änderungen ausdrücklich vorbehalten. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter. Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der bestimmungsgemäßen Endverwendung des Produktes (Applikation) vom Kunden erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Dieses KEB-Produkt oder Teile davon können fremde Software, inkl. Freier und/oder Open Source Software enthalten. Sofern einschlägig, sind die Lizenzbestimmungen dieser Software in den Gebrauchsanleitungen enthalten. Die Gebrauchsanleitungen liegen Ihnen bereits vor, sind auf der Website von KEB zum Download frei verfügbar oder können bei dem jeweiligen KEB-Ansprechpartner gerne angefragt werden.

Andere Wort- und/oder Bildmarken sind Marken (™) oder eingetragene Marken (®) der jeweiligen Inhaber.

Inhaltsverzeichnis

	Vorwort	3
	Signalwörter und Auszeichnungen	3
	Weitere Symbole	3
	Gesetze und Richtlinien	4
	Gewährleistung und Haftung	4
	Unterstützung	4
	Urheberrecht	4
	Inhaltsverzeichnis	5
	Abbildungsverzeichnis	10
	Tabellenverzeichnis	12
	Glossar	
	Normen für Antriebsstromrichter	16
	Produktnormen, die direkt für den Antriebsstromrichter gelten:	16
	Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:	16
	Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:	17
1	Grundlegende Sicherheitshinweise	. 18
	1.1 Zielgruppe	
	1.2 Transport, Lagerung und sachgemäße Handhabung	
	1.3 Einbau und Aufstellung	
	1.4 Elektrischer Anschluss	20
	1.4.1 EMV-gerechte Installation	21
	1.4.2 Spannungsprüfung	21
	1.4.3 Isolationsmessung	21
	1.5 Inbetriebnahme und Betrieb	22
	1.6 Wartung	23
	1.7 Instandhaltung	24
	1.8 Entsorgung	25
2	Produktbeschreibung	. 26
	2.1 Bestimmungsgemäßer Gebrauch	
	2.1.1 Restgefahren	
	2.2 Nicht bestimmungsgemäßer Gebrauch	
	2.3 Produktmerkmale	
	2.4 Typenschlüssel	28
	2.5 Typenschild	30
	2.5.1 Konfigurierbare Optionen	

INHALTSVERZEICHNIS

3	Technische Daten	32
	3.1 Betriebsbedingungen	32
	3.1.1 Klimatische Umweltbedingungen	
	3.1.2 Mechanische Umweltbedingungen	33
	3.1.3 Chemisch/Mechanisch aktive Stoffe	33
	3.1.4 Elektrische Betriebsbedingungen	34
	3.1.4.1 Geräteeinstufung	34
	3.1.4.2 Elektromagnetische Verträglichkeit	34
	3.2 Gerätedaten der 230 V-Geräte	35
	3.2.1 Übersicht der 230 V-Geräte	35
	3.2.2 Spannungs- und Frequenzangaben für 230 V-Geräte	36
	3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V	37
	3.2.3 Ein- und Ausgangsströme / Überlast	37
	3.2.3.1 Überlastcharakteristik (OL) für 230 V-Geräte	38
	3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230 V-Geräte	40
	3.2.4 Verlustleistung bei Bemessungsbetrieb für 230 V-Geräte	43
	3.2.5 Absicherung der 230 V-Geräte	43
	3.3 Gerätedaten der 400 V-Geräte	44
	3.3.1 Übersicht der 400 V-Geräte	44
	3.3.2 Spannungs- und Frequenzangaben für 400 V-Geräte	45
	3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V	46
	3.3.3 Ein- und Ausgangsströme / Überlast der 400V-Geräte	46
	3.3.3.1 Überlastcharakteristik (OL)	47
	3.3.3.2 Frequenzabhängiger Maximalstrom (OL2)	49
	3.3.4 Übersicht der Gleichrichterdaten für 400 V-Geräte	54
	3.3.5 Verlustleistung bei Bemessungsbetrieb für 400 V-Geräte	54
	3.3.6 Absicherung der 400V-Geräte	55
	3.3.6.1 Absicherung der 400 V-Geräte bei AC-Versorgung	55
	3.3.6.2 Absicherung der 400 V-Geräte bei DC-Versorgung	56
	3.4 Allgemeine elektrische Daten	57
	3.4.1 Schaltfrequenz und Temperatur	57
	3.4.1.1 Schaltfrequenz und Temperatur der 230 V-Geräte	57
	3.4.1.2 Schaltfrequenz und Temperatur der 400 V-Geräte	57
	3.4.2 DC-Zwischenkreis / Bremstransistorfunktion	58
	3.4.2.1 DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte	59
	3.4.2.2 DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte	60
	3.4.3 Unterbaubremswiderstände	61
	3.4.4 Lüfter	61
	3.4.4.1 Schaltverhalten der Lüfter	62
	3.4.4.2 Schaltpunkte der Lüfter	62

4	EInbau	63
	4.1 Abmessungen und Gewichte	63
	4.1.1 Einbauversion Luftkühler	63
	4.1.2 Einbauversion Fluidkühler (Wasser) ohne Unterbaubremswiderstände	64
	4.1.3 Einbauversion Fluidkühler (Wasser) mit Unterbaubremswiderstände	65
	4.1.4 Durchsteckversion Luftkühler IP20, IP54-ready	66
	4.1.5 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready ohne Unterbaubremswiderstände	67
	4.1.6 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready mit Unterbaubremswider-stände	68
	4.1.7 Durchsteckversion Fluidkühler (Wasser / Öl) High-Performance IP20, IP54-ready	69
	4.2 Schaltschrankeinbau	70
	4.2.1 Befestigungshinweise	70
	4.2.2 Einbauabstände	71
	4.2.3 Montage von IP54-ready Geräten	72
	4.2.4 Schaltschranklüftung	73
	4.2.5 Luftströme der F6 Antriebsstromrichter	73
5	Installation und Anschluss	74
	5.1 Übersicht des COMBIVERT F6	74
	5.2 Anschluss des Leistungsteils	77
	5.2.1 Anschluss der Spannungsversorgung	77
	5.2.1.1 Klemmleiste X1A	78
	5.2.2 Schutz- und Funktionserde	79
	5.2.2.1 Schutzerdung	79
	5.2.2.2 Funktionserdung	79
	5.3 Netzanschluss	80
	5.3.1 Netzzuleitung	80
	5.3.2 AC-Netzanschluss	80
	5.3.2.1 AC-Versorgung 3-phasig	
	5.3.2.2 Hinweis zu harten Netzen	81
	5.3.3 DC-Netzanschluss	82
	5.3.3.1 Klemmleiste X1A DC-Anschluss	82
	5.3.3.2 DC-Versorgung	83
	5.3.4 Anschluss des Motors	84
	5.3.4.1 Verdrahtung des Motors	84
	5.3.4.2 Klemmleiste X1A Motoranschluss	85
	5.3.4.3 Auswahl der Motorleitung	86
	5.3.4.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung	86
	5.3.4.5 Motorleitungslänge bei Parallelbetrieb von Motoren	87
	5.3.4.6 Motorleitungsquerschnitt	87
	5.3.4.7 Verschaltung des Motors	87

INHALTSVERZEICHNIS

	5.3.4.8 Anschluss der Bremsenansteuerung und der Temperaturuberwachung (X1C)	88
	5.3.5 Anschluss und Verwendung von Bremswiderständen	90
	5.3.5.1 Klemmleiste X1A Anschluss Bremswiderstand	91
	5.3.5.2 Verwendung nicht eigensicherer Bremswiderstände	92
	5.3.6 DC-Verbund	93
	5.4 Zubehör	95
	5.4.1 Filter und Drosseln	95
	5.4.2 Dichtung für IP54-ready Geräte	
	5.4.3 Nebenbaubremswiderstände	95
6	Betrieb von flüssigkeitsgekühlten Geräten	96
	6.1 Wassergekühlte Geräte	96
	6.1.1 Kühlkörper und Betriebsdruck	96
	6.1.2 Materialien im Kühlkreislauf	96
	6.1.3 Anforderungen an das Kühlmittel	97
	6.1.4 Anschluss des Kühlsystems	99
	6.1.5 Kühlmitteltemperatur und Betauung	100
	6.1.5.1 Betauung	100
	6.1.5.2 Zuführung temperierter Kühlflüssigkeit	100
	6.1.6 Zulässiger Volumenstrom bei Wasserkühlung	101
	6.1.7 Kühlmittelerwärmung bei Wasser	102
	6.1.8 Typischer Druckverlust des Kühlkörpers bei Wasser	103
	6.2 Wassergekühlte Geräte mit High-Performance Kühlkörper	104
	6.2.1 Betriebsdruck für High-Performance Kühlkörper bei Wasserkühlung	104
	6.2.2 Materialien im Kühlkreislauf	
	6.2.3 Anforderungen an das Kühlmittel für High-Performance Kühlkörper	
	6.2.4 Anschluss des High-Performance Kühlkörpers	107
	6.2.5 Kühlmitteltemperatur und Betauung	108
	6.2.5.1 Betauung	108
	6.2.5.2 Zuführung temperierter Kühlflüssigkeit	108
	6.2.6 Zulässiger Volumenstrom für High-Performance Kühlkörper	110
	6.2.7 Kühlmittelerwärmung für High-Performance Kühlkörper	111
	6.2.8 Typischer Druckverlust des High-Performance Kühlkörpers bei Wasser	
	6.3 Ölgekühlte Geräte mit High-Performance Kühlkörper	
	6.3.1 Betriebsdruck für High-Performance Kühlkörper bei Ölkühlung	
	6.3.2 Anforderungen an das Öl	113
	6.3.3 Anschluss des Ölkühlsystems	
	6.3.4 Kühlmitteltemperatur und Betauung bei Öl	
	6.3.4.1 Betauung	115
	6.3.4.2 Zuführung temperiertes Öl	
	6.3.5 Zulässiger Volumenstrom bei Öl	116

7	Zertifizierung	117
	7.1 CE-Kennzeichnung	117
	7.2 UL-Zertifizierung	118
	7.3 Weitere Informationen und Dokumentation	120
8	Änderungshistorie	121

ABBILDUNGSVERZEICHNIS

Abbildungsverzeichnis

Abbildung 1:	Typenschild	30
Abbildung 2:	Konfigurierbare Optionen	31
Abbildung 3:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC-Level 180% (OL)	39
Abbildung 4:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 21er-Gerät	40
Abbildung 5:	Abschaltzeit t in Abhängigkeit der Überlast I/IN bei OC-Level 180% (OL)	48
Abbildung 6:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 23er-Gerät	49
Abbildung 7:	Blockschaltbild des Energieflusses	58
Abbildung 8:	Schaltverhalten der Lüfter Beispiel Kühlkörperlüfter	62
Abbildung 9:	Abmessungen Einbauversion Luftkühler	63
Abbildung 10:	Abmessungen Einbauversion Fluidkühler (Wasser) ohne Unterbaubremswiderstände	e64
Abbildung 11:	Abmessungen Einbauversion Fluidkühler (Wasser) mit Unterbaubremswiderstände	65
Abbildung 12:	Abmessungen Durchsteckversion Luftkühler IP20, IP54-ready	66
Abbildung 13:	Abmessungen Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready ohne Unterbaubremswiderstände	67
Abbildung 14:	Abmessungen Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready mit Unterbaubremswiderstände	68
Abbildung 15:	Abmessungen Durchsteckversion Fluidkühler (Wasser / Öl) High-Performance IP20, IP54-ready	69
Abbildung 16:	Einbauabstände	71
Abbildung 17:	Montage von IP54-ready Geräten	72
Abbildung 18:	Luftströme der Lüfter	73
Abbildung 19:	Schaltschranklüftung	73
Abbildung 20:	F6 Gehäuse 6 Draufsicht	74
Abbildung 21:	F6 Gehäuse 6 Vorderansicht	75
Abbildung 22:	F6 Gehäuse 6 Rückansicht mit Steuerkarte KOMPAKT	76
Abbildung 23:	Eingangsbeschaltung	77
Abbildung 24:	Klemmleiste X1A	78
Abbildung 25:	Anschluss für Schutzerde	79
Abbildung 26:	Anschluss der Netzversorgung 3-phasig	80
Abbildung 27:	Klemmleiste X1A DC-Anschluss	82
Abbildung 28:	Anschluss der DC-Netzversorgung	83
Abbildung 29:	Verdrahtung des Motors	84
Abbildung 30:	Klemmleiste X1A Motoranschluss	85
Abbildung 31:	Symmetrische Motorleitung	86
Abbildung 32:	Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT	88
Abbildung 33:	Klemmleiste X1C für Steuerkarte PRO	88
Abbildung 34:	Anschluss der Bremsenansteuerung	89
Abbildung 35:	Anschluss eines KTY-Sensors	89
Abbildung 36:	Klemmleiste X1A Anschluss Bremswiderstand	91
Abbildung 37:	DC-Verbund	94
Abbildung 38:	Offene Rohrenden zum Anschluss des Kühlsystems bei Wasserkühlern	99

ABBILDUNGSVERZEICHNIS

Abbildung 39:	Volumenstrom in Abhängigkeit von der Gesamtverlustleistung PD_ges und Temperaturdifferenz bei Wasser-Glykolgemisch	. 102
Abbildung 40:	Typischer Druckverlust in Abhängigkeit des Volumenstroms	. 103
Abbildung 41:	Anschluss des High-Performance Kühlers	. 107
Abbildung 42:	Volumenstrom in Abhängigkeit von der Gesamtverlustleistung PD_ges und Temperaturdifferenz bei Wasser-Glykolgemisch	. 111
Abbildung 43:	Typischer Druckverlust in Abhängigkeit des Volumenstroms für High-Performance Kühlkörper	. 112
Abbildung 44:	Anschluss des Ölkühlsystems	. 114

TABELLENVERZEICHNIS

Tabellenverzeichnis

Tabelle 1:	Typenschlüssel	29
Tabelle 2:	Klimatische Umweltbedingungen	32
Tabelle 3:	Mechanische Umweltbedingungen	33
Tabelle 4:	Chemisch/Mechanisch aktive Stoffe	33
Tabelle 5:	Geräteeinstufung	34
Tabelle 6:	Elektromagnetische Verträglichkeit	34
Tabelle 7:	Übersicht der 230V-Gerätedaten	36
Tabelle 8:	Eingangsspannungen und -frequenzen der 230 V-Geräte	36
Tabelle 9:	DC-Zwischenkreisspannung für 230 V-Geräte	36
Tabelle 10:	Ausgangsspannungen und -frequenzen der 230 V-Geräte	37
Tabelle 11:	Beispiel zur Berechnung der möglichen Motorspannung für 230 V	37
Tabelle 12:	Ein- und Ausgangsströme / Überlast -der 230 V-Geräte	37
Tabelle 13:	Frequenzabhängiger Maximalstrom für Gerätegröße 19	41
Tabelle 14:	Frequenzabhängiger Maximalstrom für Gerätegröße 20	42
Tabelle 15:	Frequenzabhängiger Maximalstrom für Gerätegröße 21	42
Tabelle 16:	Verlustleistung der 230 V-Geräte	43
Tabelle 17:	Absicherungen der 230 V / 240 V-Geräte	43
Tabelle 18:	Übersicht der 400 V-Gerätedaten	45
Tabelle 19:	Eingangsspannungen und -frequenzen der 400 V-Geräte	45
Tabelle 20:	DC-Zwischenkreisspannung für 400 V-Geräte	45
Tabelle 21:	Ausgangsspannungen und -frequenzen der 400 V-Geräte	46
Tabelle 22:	Beispiel zur Berechnung der möglichen Motorspannung für 400 V	46
Tabelle 23:	Ein- und Ausgangsströme / Überlast der 400 V-Geräte	46
Tabelle 24:	Frequenzabhängiger Maximalstrom für Gerätegröße 21	50
Tabelle 25:	Frequenzabhängiger Maximalstrom für Gerätegröße 22	51
Tabelle 26:	Frequenzabhängiger Maximalstrom für Gerätegröße 23 (2kHz)	51
Tabelle 27:	Frequenzabhängiger Maximalstrom für Gerätegröße 23 (4 kHz)	52
Tabelle 28:	Frequenzabhängiger Maximalstrom für Gerätegröße 23 (8 kHz)	52
Tabelle 29:	Frequenzabhängiger Maximalstrom für Gerätegröße 24 (2kHz)	53
Tabelle 30:	Frequenzabhängiger Maximalstrom für Gerätegröße 24 (4 kHz)	53
Tabelle 31:	Übersicht der Gleichrichterdaten	54
Tabelle 32:	Verlustleistung der 400 V-Geräte	54
Tabelle 33:	Absicherung der 400 V / 480 V-Geräte bei AC-Versorgung	55
Tabelle 34:	Absicherungen für 400 V / 480 V-Geräte	56
Tabelle 35:	Schaltfrequenz und Temperatur der 230 V-Geräte	57
Tabelle 36:	Schaltfrequenz und Temperatur der 400 V-Geräte	57
Tabelle 37:	DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte	59
Tabelle 38:	DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte	60
Tabelle 39:	Unterbaubremswiderstände	61
Tabelle 40:	Lüfter	61
Tabelle 41:	Schaltpunkte der Lüfter	62
Tabelle 42:	Befestigungshinweise für Einbauversion	70
Tabelle 43:	Befestigungshinweise für Durchsteckversion	70
Tabelle 44·	Kabelschuhabmessung X1A	78

TABELLENVERZEICHNIS

Tabelle 45:	Kabelschuhabmessung DC-Anschluss	82
Tabelle 46:	Kabelschuhabmessung Motoranschluss	85
Tabelle 47:	Kabelschuhabmessung Bremswiderstand	91
Tabelle 48:	Filter und Drosseln 230V-Geräte	95
Tabelle 49:	Filter und Drosseln 400V-Geräte	95
Tabelle 50:	Dichtung für IP54-ready Geräte	95
Tabelle 51:	Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff	97
Tabelle 52:	Anforderungen an das Kühlmittel	97
Tabelle 53:	Besondere Anforderungen bei offenen und halboffenen Kühlsystemen	98
Tabelle 54:	Taupunkttabelle	100
Tabelle 55:	Zulässiger Volumenstrom bei Wasserkühlung	101
Tabelle 56:	Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff	105
Tabelle 57:	Anforderungen an das Kühlmittel	105
Tabelle 58:	Besondere Anforderungen bei offenen und halboffenen Kühlsystemen	106
Tabelle 59:	Taupunkttabelle	108
Tabelle 60:	Zulässiger Volumenstrom High-Performance Kühlkörper	110
Tabelle 61:	Anforderungen an das Öl	113
Tabelle 62:	Besondere Anforderungen bei offenen und halboffenen Kühlsystemen beim Ölki	ühler. 113
Tabelle 63:	Taupunkttabelle	115
Tabelle 64:	Zulässiger Volumenstrom beim Ölkühler	116

Glossar

0V	Erdpotenzialfreier Massepunkt	EtherCAT	Echtzeit-Ethernet-Bussystem der Fa.
1ph	1-phasiges Netz		Beckhoff
3ph	3-phasiges Netz	Ethernet	Echtzeit-Bussystem - definiert Proto-
AC	Wechselstrom oder -spannung		kolle, Stecker, Kabeltypen
AFE	Ab 07/2019 ersetzt AIC die bisherige	FE _	Funktionserde
	Bezeichnung AFE	FSoE	Funktionale Sicherheit über Ethernet
AFE-Filter	Ab 07/2019 ersetzt AIC-Filter die	FU	Antriebsstromrichter
	bisherige Bezeichnung AFE-Filter	Gebernachbil-	Softwaregenerierter Geberausgang
AIC	Active Infeed Converter	dung	
AIC-Filter	Filter für Active Infeed Converter	GND	Bezugspotenzial, Masse
Applikation	Die Applikation ist die bestimmungs-	GTR7	Bremstransistor
	gemäße Verwendung des KEB-	Hersteller	Der Hersteller ist KEB, sofern nicht
	Produktes		anders bezeichnet (z.B. als Ma-
ASCL	Geberlose Regelung von Asynchron-		schinen-, Motoren-, Fahrzeug- oder
	motoren	115 534	Klebstoffhersteller)
Auto motor	Automatische Motoridentifikation;	HF-Filter	KEB spezifischer Ausdruck für einen
ident.	Einmessen von Widerstand und Induktivität		EMV-Filter (Beschreibung siehe EMV-Filter.)
AWG		Hiperface	Bidirektionale Geberschnittstelle der
AVVG	Amerikanische Kodierung für Leitungsquerschnitte	l liberiace	Fa. Sick-Stegmann
B2B	Business-to-business	НМІ	Visuelle Benutzerschnittstelle
BiSS	Open-Source-Echtzeitschnittstelle	1 11011	(Touchscreen)
ызэ	für Sensoren und Aktoren (DIN	HSP5	Schnelles, serielles Protokoll
	5008)	HTL	Inkrementelles Signal mit einer Aus-
CAN	Feldbussystem	''''	gangsspannung (bis 30V) -> TTL
CDM	Vollständiges Antriebsmodul inkl.	IEC	IEC xxxxx steht für eine Internatio-
CDIVI	Hilfsausrüstung (Schaltschrank)		nale Norm der International Electro-
COMBIVERT	KEB Antriebsstromrichter		technical Commission
COMBIVIS	KEB Inbetriebnahme- und Paramet-	IPxx	Schutzart (xx für Klasse)
COMBINIC	riersoftware	KEB-Produkt	Das KEB-Produkt ist das Produkt
DC	Gleichstrom oder -spannung		welches Gegenstand dieser Anlei-
DI	Demineralisiertes Wasser, auch als		tung ist
Δ.	deionisiertes (DI) Wasser bezeichnet	KTY	Silizium Temperatursensor (gepolt)
DIN	Deutsches Institut für Normung	Kunde	Der Kunde hat ein KEB-Produkt von
DS 402	CiA DS 402 - CAN-Geräteprofil für		KEB erworben und integriert das
DO 102	Antriebe		KEB-Produkt in sein Produkt (Kun-
ED	Einschaltdauer		den-Produkt) oder veräußert das
ELV	Schutzkleinspannung		KEB-Produkt weiter (Händler)
EMS	Energy Management System	MCM	Amerikanische Maßeinheit für große
EMV-Filter	EMV-Filter werden zur Unterdrü-		Leitungsquerschnitte
	ckung von leitungsgebundenen	Modulation	Bedeutet in der Antriebstechnik,
	Störungen in beiden Richtungen		dass die Leistungshalbleiter ange-
	zwischen Antriebsstromrichter und	NATTE	steuert werden
	Netz eingesetzt.	MTTF	Mittlere Lebensdauer bis zum Ausfall
EN	Europäische Norm		
EnDot	Ridiraktionala Cahareahnittetalla dar	I	

Bidirektionale Geberschnittstelle der

Der Endkunde ist der Verwender des

Fa. Heidenhain

Kunden-Produkts

EnDat

Endkunde

NHN	Normalhöhennull; bezogen auf die festgelegte Höhendefinition in Deutschland (DHHN2016). Die	STO	Sicherheitsfunktion "sicher abgeschaltetes Drehmoment" gemäß IEC 61800-5-2
	internationalen Angaben weichen i.d.R. nur wenige cm bis dm hiervon ab, sodass der angegebene Wert auf die regional geltende Definition übernommen werden kann.	TTL USB VARAN	Logik mit 5V Betriebsspannung Universell serieller Bus Echtzeit-Ethernet-Bussystem
Not-Aus	Abschalten der Spannungsversor- gung im Notfall		
Not-Halt	Stillsetzen eines Antriebs im Notfall (nicht spannungslos)		
ОС	Überstrom (Overcurrent)		
OH	Überhitzung		
	Überlast		
OL			
OSSD	Ausgangsschaltelement; Ausgangssignal, dass in regelmäßigen Abstände auf seine Abschaltbarkeit hin		
	geprüft wird. (Sicherheitstechnik)		
PDS	Leistungsantriebssystem inkl. Motor und Meßfühler		
PE	Schutzerde		
PELV	Sichere Schutzkleinspannung, ge-		
	erdet		
PFD	Begriff aus der Sicherheitstechnik (EN 61508-17) für die Größe der Fehlerwahrscheinlichkeit		
PFH	Begriff aus der Sicherheitstechnik (EN 61508-17) für die Größe der Fehlerwahrscheinlichkeit pro Stunde		
Pt100	Temperatursensor mit R0=100Ω		
Pt1000	Temperatursensor mit R0=1000Ω		
PTC	Kaltleiter zur Temperaturerfassung		
PWM	Pulsweitenmodulation (auch Puls-		
	breitenmodulation PBM)		
RJ45	Modulare Steckverbindung mit 8 Leitungen		
SCL	Geberlose Regelung von Synchron- motoren		
SELV	Sichere Schutzkleinspannung, unge- erdet		
SIL	Der Sicherheitsintegritätslevel ist eine Maßeinheit zur Quantifizierung der Risikoreduzierung. Begriff aus der Sicherheitstechnik (EN 61508		
SPS	-17) Speicherprogrammierbare Steue-		
	rung		
SS1	Sicherheitsfunktion "Sicherer Halt 1" gemäß IEC 61800-5-2		
SSI	Synchron-serielle Schnittstelle für Geber		
		1	

Normen für Antriebsstromrichter

Produktnormen, die direkt für den Antriebsstromrichter gelten:

EN 61800-2	Drehzahlveränderbare elektrische Antriebe Teil 2: Allgemeine Anforderungen - Festlegungen für die Bemessung von Niederspannungs-Wechselstrom-Antriebssystemen mit einstellbarer Frequenz (VDE 0160-102, IEC 61800-2)
EN 61800-3	Drehzahlveränderbare elektrische Antriebe. Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren (VDE 0160-103, IEC 61800-3)
EN 61800-5-1	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-1: Anforderungen an die Sicherheit – Elektrische, thermische und energetische Anforderungen (VDE 0160-105-1, IEC 61800-5-1)
EN 61800-5-2	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-2: Anforderungen an die Sicherheit – Funktionale Sicherheit (VDE 0160-105-2, UL61800-5-2, IEC 22G/264/CD)
UL61800-5-1	Amerikanische Version der IEC 61800-5-1 mit "National Deviations" für USA und Canada
EN 61800-9-2	Drehzahlveränderbare elektrische Antriebe - Teil 9-2: Ökodesign für Antriebssysteme, Motorstarter, Leistungselektronik und deren angetriebene Einrichtungen - Indikatoren für die Energieeffizienz von Antriebssystemen und Motorstartern

Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:

EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen - Grenzwerte und Messverfahren (IEC 55011/CISPR 11)
EN 60529	Schutzarten durch Gehäuse (IP-Code) (VDE 0470, IEC 60529)
EN 60664-1	Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen Teil 1: Grundsätze, Anforderungen und Prüfungen (IEC 60664-1)
EN 60721-3-1	Klassifizierung von Umgebungsbedingungen - Teil 3-1: Klassifizierung von Einflussgrößen in Gruppen und deren Grenzwerte - Hauptabschnitt 1: Langzeitlagerung (IEC 60721-3-1)
EN 60721-3-2	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinflussgrößen und deren Grenzwerte; Hauptabschnitt 2: Transport (IEC 60721-3-2)
EN 60721-3-3	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 3: Ortsfester Einsatz, wetterge- schützt (IEC 60721-3-3 1994)
EN61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems (IEC 61000-2-1)
EN 61000-2-4	Elektromagnetische Verträglichkeit (EMV) - Teil 2-4: Umgebungsbedingungen; Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in Industrieanlagen (IEC 61000-2-4)
EN 61000-4-2	Elektromagnetische Verträglichkeit (EMV) - Teil 4-2: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität (IEC 61000-4-2)
EN61000-4-3	Elektromagnetische Verträglichkeit (EMV) - Teil 4-3: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder (IEC 61000-4-3)
EN 61000-4-4	Elektromagnetische Verträglichkeit (EMV) - Teil 4-4: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst (IEC 61000-4-4)

EN 61000-4-5	Elektromagnetische Verträglichkeit (EMV) - Teil 4-5: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen Stoßspannungen (IEC 61000-4-5)
EN 61000-4-6	Elektromagnetische Verträglichkeit (EMV) - Teil 4-6: Prüf- und Messverfahren - Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder (IEC 61000-4-6)
EN 61000-4-34	Elektromagnetische Verträglichkeit (EMV) - Teil 4-34: Prüf- und Messver- fahren - Prüfungen der Störfestigkeit von Geräten und Einrichtungen mit einem Netzstrom > 16 A je Leiter gegen Spannungseinbrüche, Kurzzeitunterbre- chungen und Spannungsschwankungen (IEC 61000-4-34)
EN 61508-17	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme Teil 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme (VDE 0113-50, IEC 62061)
EN ISO 13849-1	Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze (ISO 13849-1)

Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:

DGUV Vorschrift 3	Elektrische Anlagen und Betriebsmittel
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
DIN EN 12502-15	Korrosionsschutz metallischer Werkstoffe - Teil 15
EN 1037	Sicherheit von Maschinen - Vermeidung von unerwartetem Anlauf; Deutsche Fassung EN 1037
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Typgeprüfte und partiell typgeprüfte Kombinationen (IEC 60439-1)
EN 60947-7-1	Niederspannungsschaltgeräte - Teil 7-1: Hilfseinrichtungen - Reihenklemmen für Kupferleiter (IEC 60947-7-1:2009)
EN 60947-8	Niederspannungsschaltgeräte - Teil 8: Auslösegeräte für den eingebauten thermischen Schutz (PTC) von rotierenden elektrischen Maschinen (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN 61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken (IEC 61373)
EN 61439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Allgemeine Festlegungen (IEC 121B/40/CDV:2016); Deutsche Fassung FprEN 61439-1:2016
VDE 0100	Errichten von Niederspannungsanlagen – Beachtung aller Teile (IEC 60364-x-x)
VGB S 455 P	Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen
DIN EN 60939-1	Passive Filter für die Unterdrückung von elektromagnetischen Störungen - Teil 1: Fachgrundspezifikation (IEC 60939-1:2005 + Corrigendum: 2005)

1 Grundlegende Sicherheitshinweise

Die Produkte sind nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Die Nichtbeachtung der Sicherheitshinweise durch den Kunden, Anwender oder sonstigen Dritten führt zum Verlust aller dadurch verursachten Ansprüche gegen den Hersteller.

ACHTUNG

Gefahren und Risiken durch Unkenntnis.

- ▶ Lesen Sie die Gebrauchsanleitung!
- ▶ Beachten Sie die Sicherheits- und Warnhinweise!
- ► Fragen Sie bei Unklarheiten nach!

1.1 Zielgruppe

Diese Gebrauchsanleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- Kenntnis und Verständnis der Sicherheitshinweise.
- · Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über VDE 0100.
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).

1.2 Transport, Lagerung und sachgemäße Handhabung

Der Transport ist durch entsprechend unterwiesene Personen unter Beachtung der in dieser Anleitung angegebenen Umweltbedingungen durchzuführen. Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen.

Transport von Antriebsstromrichtern mit einer Kantenlänge >75 cm

Der Transport per Gabelstapler ohne geeignete Hilfsmittel kann zu einer Durchbiegung des Kühlkörpers führen. Dies führt zur vorzeitigen Alterung bzw. Zerstörung interner Bauteile.

- ► Antriebsstromrichter auf geeigneten Paletten transportieren.
- Antriebsstromrichter nicht stapeln oder mit anderen schweren Gegenständen belasten.

ACHTUNG

Beschädigung der Kühlmittelanschlüsse

Abknicken der Rohre!

▶ Das Gerät niemals auf die Kühlmittelanschlüsse abstellen!

Produkt enthält elektrostatisch gefährdete Bauelemente.

- Berührung vermeiden.
- ► ESD-Schutzkleidung tragen.

Lagern Sie das Produkt nicht

- in der Umgebung von aggressiven und/oder leitfähigen Flüssigkeiten oder Gasen.
- in Bereichen mit direkter Sonneneinstrahlung.
- außerhalb der angegebenen Umweltbedingungen.

1.3 Einbau und Aufstellung

▲ GEFAHR

Nicht in explosionsgefährdeter Umgebung betreiben!

▶ Das Produkt ist nicht für den Einsatz in explosionsgefährdeter Umgebung vorgesehen.

A VORSICHT

Bauartbedingte Kanten und hohes Gewicht!

Quetschungen und Prellungen!

- ▶ Nie unter schwebende Lasten treten.
- Sicherheitsschuhe tragen.
- ▶ Produkt beim Einsatz von Hebewerkzeugen entsprechend sichern.

Um Schäden am und im Produkt vorzubeugen:

- Darauf achten, dass keine Bauelemente verbogen und/oder Isolationsabstände verändert werden.
- Bei mechanischen Defekten darf das Produkt nicht in Betrieb genommen werden. Die Einhaltung angewandter Normen ist nicht mehr gewährleistet.
- Es darf keine Feuchtigkeit oder Nebel in das Produkt eindringen.
- Das Eindringen von Staub ist zu vermeiden. Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- Einbaulage und Mindestabstände zu umliegenden Elementen beachten. Lüftungsöffnungen nicht verdecken.
- Produkt entsprechend der angegebenen Schutzart montieren.
- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile (Bohrspäne, Schrauben usw.) in das Produkt fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Geräteanschlüsse auf festen Sitz prüfen, um Übergangswiderstände und Funkenbildung zu vermeiden.
- · Produkt nicht begehen.
- Die Sicherheitshinweise sind aufzubewahren!

1.4 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät!

Lebensgefahr durch Stromschlag!

- ▶ Niemals am offenen Gerät arbeiten oder offen liegende Teile berühren.
- ▶ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten, gegen Wiedereinschalten sichern und Spannungsfreiheit an den Eingangsklemmen durch Messung feststellen.
- ► Warten bis alle Antriebe zum Stillstand gekommen sind, damit keine generatorische Energie erzeugt werden kann.
- ► Kondensatorentladezeit (5 Minuten) abwarten. Spannungsfreiheit an den DC-Klemmen durch Messung feststellen.
- ➤ Sofern Personenschutz gefordert ist, für Antriebsstromrichter geeignete Schutzvorrichtungen einbauen.
- ► Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken.
- ▶ Schutzleiter immer an Antriebsstromrichter und Motor anschließen.
- Zum Betrieb alle erforderlichen Abdeckungen und Schutzvorrichtungen anbringen.
- ► Schaltschrank im Betrieb geschlossen halten.
- ▶ Fehlerstrom: Dieses Produkt kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produktes nur ein RCD oder RCM vom Typ B zulässig.
- ► Antriebsstromrichter mit einem Ableitstrom > 3,5 mA Wechselstrom (10 mA Gleichstrom) sind für einen ortsfesten Anschluss bestimmt. Schutzleiter sind gemäß den örtlichen Bestimmungen für Ausrüstungen mit hohen Ableitströmen nach EN 61800-5-1, EN 60204-1 oder VDE 0100 auszulegen.

Wenn beim Errichten von Anlagen Personenschutz gefordert ist, müssen für Antriebsstromrichter geeignete Schutzvorrichtungen benutzt werden.

www.keb.de/fileadmin/media/Techinfo/dr/tn/ti_dr_tn-rcd-00008_de.pdf

Anlagen, in die Antriebsstromrichter eingebaut sind, müssen ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen gemäß den jeweils gültigen Sicherheitsbestimmungen, z.B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw. ausgerüstet werden. Diese Hinweise sind auch bei CE gekennzeichneten Antriebsstromrichtern stets zu beachten.

Für einen störungsfreien und sicheren Betrieb sind folgende Hinweise zu beachten:

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der angegebenen Minimal-/ Maximalwerte für die Anwendung durch den Anwender zu dimensionieren.
- Der Anschluss der Antriebsstromrichter ist nur an symmetrische Netze mit einer Spannung Phase (L1, L2, L3) gegen Nulleiter/Erde (N/PE) von maximal 300 V zulässig, USA UL: 480 / 277 V. Bei Versorgungsnetzen mit höheren Spannungen muss ein entsprechender Trenntransformator vorgeschaltet werden. Bei Nichtbeachtung gilt die Steuerung nicht mehr als PELV-Stromkreis.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit PELV die Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß EN 61800-5-1) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.

1.4.1 EMV-gerechte Installation

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Kunden.

Hinweise zur EMV-gerechten Installation sind hier zu finden.

1.4.2 Spannungsprüfung

Eine Prüfung mit AC-Spannung (gemäß *EN 60204-1* Kapitel 18.4) darf nicht durchgeführt werden, da eine Gefährdung für die Leistungshalbleiter im Antriebsstromrichter besteht.

Aufgrund der Funkentstörkondensatoren wird sich der Prüfgenerator sofort mit Stromfehler abschalten.

Nach *EN 60204-1* ist es zulässig, bereits getestete Komponenten abzuklemmen. Antriebsstromrichter der KEB Automation KG werden gemäß Produktnorm zu 100% spannungsgeprüft ab Werk geliefert.

1.4.3 Isolationsmessung

Eine Isolationsmessung (gemäß *EN 60204-1* Kapitel 18.3) mit DC 500 V ist zulässig, wenn alle Anschlüsse im Leistungsteil (netzgebundenes Potenzial) und alle Steueranschlüsse mit PE gebrückt sind. Der Isolationswiderstand des jeweiligen Produkts ist in den technischen Daten zu finden.

1.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

A WARNUNG

Softwareschutz und Programmierung!

Gefährdung durch ungewolltes Verhalten des Antriebes!

- ► Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichters prüfen, ob Parametrierung zur Applikation passt.
- ▶ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- ► Motoren gegen selbsttätigen Anlauf sichern.

A VORSICHT

Hohe Temperaturen an Kühlkörper und Kühlflüssigkeit!

Verbrennung der Haut!

- ▶ Heiße Oberflächen berührungssicher abdecken.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.
- ▶ Oberfläche und Kühlflüssigkeitsleitungen vor Berührung prüfen.
- ► Vor jeglichen Arbeiten Gerät abkühlen lassen.
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.
- · Nur für das Gerät zugelassenes Zubehör verwenden.
- Anschlusskontakte, Stromschienen oder Kabelenden nie berühren.

A VORSICHT

Hoher Schalldruckpegel während des Betriebs!

Hörschäden möglich!

Gehörschutz tragen!

ACHTUNG

Dauerbetrieb (S1) mit Auslastung > 60 % oder Motorbemessungsleistung ab 55 kW!

Vorzeitige Alterung der Elektrolytkondensatoren!

▶ Netzdrossel mit U_k = 4% einsetzen.

Sofern ein Antriebsstromrichter mit Elektrolytkondensatoren im Gleichspannungszwischenkreis länger als ein Jahr nicht in Betrieb war, beachten Sie folgende Hinweise.

www.keb.de/fileadmin/media/Techinfo/dr/tn/ti_dr_tn-format-capacitors-00009_de.pdf

Schalten am Ausgang

Bei Einzelantrieben ist das Schalten zwischen Motor und Antriebsstromrichter während des Betriebes zu vermeiden, da es zum Ansprechen der Schutzeinrichtungen führen kann. Ist das Schalten nicht zu vermeiden, muss die Funktion "Drehzahlsuche" aktiviert sein. Diese darf erst nach dem Schließen des Motorschützes eingeleitet werden (z.B. durch Schalten der Reglerfreigabe).

Bei Mehrmotorenantrieben ist das Zu- und Abschalten zulässig, wenn mindestens ein Motor während des Schaltvorganges zugeschaltet ist. Der Antriebsstromrichter ist auf die auftretenden Anlaufströme zu dimensionieren.

Wenn der Motor bei einem Neustart (Netz ein) des Antriebsstromrichters noch läuft (z.B. durch große Schwungmassen), muss die Funktion "Drehzahlsuche" aktiviert sein.

Schalten am Eingang

Bei Applikationen, die zyklisches Aus- und Einschalten des Antriebsstromrichters erfordern, muss nach dem letzten Einschalten eine Zeit von mindestens 5 min vergangen sein. Werden kürzere Taktzeiten benötigt, setzen Sie sich bitte mit der KEB Automation KG in Verbindung.

Kurzschlussfestigkeit

Die Antriebsstromrichter sind bedingt kurzschlussfest. Nach dem Zurücksetzen der internen Schutzeinrichtungen ist die bestimmungsgemäße Funktion gewährleistet.

Ausnahmen:

- Treten am Ausgang wiederholt Erd- oder Kurzschlüsse auf, kann dies zu einem Defekt am Gerät führen.
- Tritt ein Kurzschluss während des generatorischen Betriebes (zweiter bzw. vierter Quadrant, Rückspeisung in den Zwischenkreis) auf, kann dies zu einem Defekt am Gerät führen.

1.6 Wartung

Die folgenden Wartungsarbeiten sind nach Bedarf, mindestens jedoch einmal pro Jahr, durch autorisiertes und eingewiesenes Personal durchzuführen.

- ► Anlage auf lose Schrauben und Stecker überprüfen und ggf. festziehen.
- ► Antriebsstromrichter von Schmutz und Staubablagerungen befreien. Dabei besonders auf Kühlrippen und Schutzgitter von Ventilatoren achten.
- ▶ Ab- und Zuluftfilter vom Schaltschrank überprüfen bzw. reinigen.
- ► Funktion der Ventilatoren des Antriebsstromrichters überprüfen. Bei hörbaren Vibrationen oder Quietschen sind die Ventilatoren zu ersetzen.
- ▶ Bei flüssigkeitsgekühlten Antriebsstromrichtern ist eine Sichtprüfung des Kühlkreislaufs auf Dichtigkeit und Korrosion durchzuführen. Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

1.7 Instandhaltung

Bei Betriebsstörungen, ungewöhnlichen Geräuschen oder Gerüchen informieren Sie eine dafür zuständige Person!

▲ GEFAHR

Unbefugter Austausch, Reparatur und Modifikationen!

Unvorhersehbare Fehlfunktionen!

- ▶ Die Funktion des Antriebsstromrichters ist von seiner Parametrierung abhängig. Niemals ohne Kenntnis der Applikation austauschen.
- ► Modifikation oder Instandsetzung ist nur durch von der KEB Automation KG autorisiertem Personal zulässig.
- ► Nur originale Herstellerteile verwenden.
- Zuwiderhandlung hebt die Haftung für daraus entstehende Folgen auf

Im Fehlerfall wenden Sie sich an den Maschinenhersteller. Nur dieser kennt die Parametrierung des eingesetzten Antriebsstromrichters und kann ein entsprechendes Ersatzgerät liefern oder die Instandhaltung veranlassen.

1.8 Entsorgung

Elektronische Geräte der KEB Automation KG sind für die professionelle, gewerbliche Weiterverarbeitung bestimmt (sog. B2B-Geräte).

Hersteller von B2B-Geräten sind verpflichtet, Geräte, die nach dem 14.08.2018 hergestellt wurden, zurückzunehmen und zu verwerten. Diese Geräte dürfen grundsätzlich nicht an kommunalen Sammelstellen abgegeben werden.

Sofern keine abweichende Vereinbarung zwischen Kunde und KEB getroffen wurde oder keine abweichende zwingende gesetzliche Regelung besteht, können so gekennzeichnete KEB-Produkte zurückgegeben werden. Firma und Stichwort zur Rückgabestelle sind u.a. Liste zu entnehmen. Versandkosten gehen zu Lasten des Kunden. Die Geräte werden daraufhin fachgerecht verwertet und entsorgt.

In der folgenden Tabelle sind die Eintragsnummern länderspezifisch aufgeführt. KEB Adressen finden Sie auf unserer Webseite.

Rücknahme durch	WEEE-Registrierungsnr.		Stichwort:
Deutschland			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Frankreich			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Italien			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Österreich			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
Spanien			
KEB Automation KG	RII-AEE:	7427	Palabra clave "Retirada RAEE"
Tschechische Republik			
KEB Automation KG	RETELA:	09281/20-ECZ	Klíčové slovo "Zpětný odběr OEEZ"
Slowakei			
KEB Automation KG	ASEKOL:	RV22EEZ0000421	Klíčové slovo: "Spätný odber OEEZ"

Die Verpackung ist dem Papier- und Kartonage-Recycling zuzuführen.

2 Produktbeschreibung

Bei der Gerätereihe COMBIVERT F6 handelt es sich um Antriebsstromrichter mit Funktionaler Sicherheit, die für den Betrieb an synchronen und asynchronen Motoren optimiert sind.

Es stehen diverse Sicherheitsfunktionen für verschiedene Anwendungen zur Verfügung. Durch ein Feldbusmodul kann er an unterschiedlichen Feldbussystemen betrieben werden. Die Steuerkarte verfügt über ein systemübergreifendes Bedienkonzept.

Der COMBIVERT erfüllt die Anforderungen der Maschinenrichtlinie. Die möglichen Funktionen sind über eine Bauartprüfung zertifiziert.

Der COMBIVERT ist ein Produkt mit eingeschränkter Erhältlichkeit nach *EN 61800-3*. Dieses Produkt kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann es für den Betreiber erforderlich sein, entsprechende Maßnahmen durchzuführen.

Es sind die Maschinenrichtlinie, EMV-Richtlinie, Niederspannungsrichtline sowie weitere Richtlinien und Verordnungen zu beachten.

2.1 Bestimmungsgemäßer Gebrauch

Der COMBIVERT dient ausschließlich zur Steuerung und Regelung von Drehstrommotoren. Er ist zum Einbau in elektrische Anlagen oder Maschinen in der Industrie bestimmt.

Die technischen Daten sowie die Angaben zu Anschlussbedingungen sind dem Typenschild und der Gebrauchsanleitung zu entnehmen und unbedingt einzuhalten.

Die bei der KEB Automation KG eingesetzten Halbleiter und Bauteile sind für den Einsatz in industriellen Produkten entwickelt und ausgelegt.

Einschränkung

Wenn das Produkt in Maschinen eingesetzt wird, die unter Ausnahmebedingungen arbeiten, lebenswichtige Funktionen, lebenserhaltende Maßnahmen oder eine außergewöhnliche Sicherheitsstufe erfüllen, ist die erforderliche Zuverlässigkeit und Sicherheit durch den Maschinenbauer sicherzustellen und zu gewährleisten.

2.1.1 Restgefahren

Trotz bestimmungsgemäßen Gebrauch kann der Antriebsstromrichter im Fehlerfall, bei falscher Parametrierung, durch fehlerhaften Anschluss oder nicht fachmännische Eingriffe und Reparaturen unvorhersehbare Betriebszustände annehmen. Dies können sein:

- Falsche Drehrichtung
- · Zu hohe Motordrehzahl
- Motor läuft in die Begrenzung
- · Motor kann auch im Stillstand unter Spannung stehen
- Automatischer Anlauf

2.2 Nicht bestimmungsgemäßer Gebrauch

Der Betrieb anderer elektrischer Verbraucher ist untersagt und kann zur Zerstörung der Geräte führen. Der Betrieb unserer Produkte außerhalb der in den technischen Daten angegebenen Grenzwerte führt zum Verlust jeglicher Schadensersatzansprüche.

2.3 Produktmerkmale

Gehäuse

Diese Gebrauchsanleitung beschreibt die Leistungsteile folgender Geräte:

Gerätetyp: Antriebsstromrichter
Serie: COMBIVERT F6
Leistungsbereich: 45...90 kW / 400V
30...45 kW / 230V

6

Der COMBIVERT F6 zeichnet sich durch die folgenden Merkmale aus:

- Betrieb von Drehstromasynchronmotoren und Drehstromsynchronmotoren, jeweils in den Betriebsarten gesteuert oder geregelt mit und ohne Drehzahlrückführung
- Folgende Feldbussysteme werden unterstützt:
 EtherCAT, VARAN, PROFINET, POWERLINK oder CAN
- · Systemübergreifendes Bedienkonzept
- · Großer Betriebstemperaturbereich
- · Geringe Schaltverluste durch IGBT-Leistungsteil
- Geringe Geräuschentwicklung durch hohe Schaltfrequenzen
- · Verschiedene Kühlkörperkonzepte
- Temperaturgesteuerte Lüfter, leicht austauschbar
- Zum Schutz von Getrieben sind Momentengrenzen sowie S-Kurven einstellbar
- Generelle Schutzfunktionen der COMBIVERT Serie gegen Überstrom, Überspannung, Erdschluss und Übertemperatur
- Analoge Ein- und Ausgänge, digitale Ein- und Ausgänge, Relaisausgang (potentialfrei), Bremsenansteuerung und -versorgung, Motorschutz durch I²t, KTY- oder PTC-Eingang, zwei Geberschnittstellen, Diagnoseschnittstelle, Feldbusschnittstelle (abhängig von der Steuerkarte)
- Integrierte Sicherheitsfunktion nach EN 61800-5-2

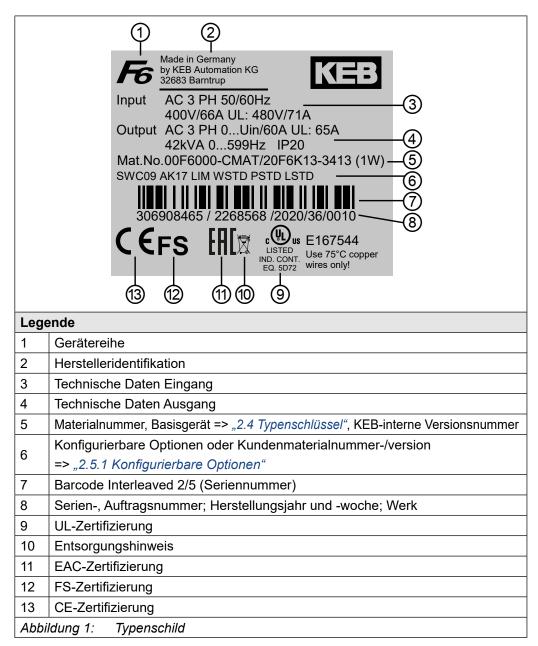
2.4 Typenschlüssel

x x F 6 x x x - x x x x	
1: Luftkühler, Einbauversion 2: Fluidkühler (Wasser), Einbauversion 3: Luftkühler, Durchsteckversion IP54-ready 4: Fluidkühler (Wasser), Durchsteckversion IP54-read) 6: Luftkühler, Durchsteckversion IP20 6: Fluidkühler (Wasser), Durchsteckversion IP54-read) 6: Unterbaubremswiderstände 7: Fluidkühler (Öl), Durchsteckversion IP54-ready, Unterbaubremswiderstände 9: Fluidkühler (Wasser), Einbauversion, Unterbaubremswiderstände A: Fluidkühler (Wasser), Einbauversion, High-Performance, Unterbaubremswiderstände B: Fluidkühler (Wasser), Durchsteckversion IP54-read) 6: Fluidkühler (Wasser), Durchsteckversion IP54-read) 7: Fluidkühler (Wasser), Einbauversion, High-Performance, Unterbaubremswiderstände 8: Fluidkühler (Wasser), Durchsteckversion IP54-read) 8: Fluidkühler, Einbauversion, Version 2 9: Luftkühler, Einbauversion, High-Performance 8: Fluidkühler (Wasser), Einbauversion, High-Performance 9: Luftkühler, Einbauversion, High-Performance 1: Luftkühler, Unrchsteckversion IP54-read, High-Performance 9: Luftkühler (Wasser), Durchsteckversion IP54-read, High-Performance 1: Luftkühler, Konvektion, Durchsteckversion IP54-read, High-Performance 1: Luftkühler, Konvektion, Durchsteckversion IP54-read	eady,
APPLIKATION 1: Multi Encoder Interface, CAN® 2), Real-Time Ether busmodul 3) B: Multi Encoder Interface, CAN® 2), Real-Time Ether busmodul 3, Alternative Klemme KOMPAKT 1: Multi Encoder Interface, CAN® 2), STO, EtherCAT® 2: Multi Encoder Interface, CAN® 2), STO, VARAN PRO 0: Kein Encoder, CAN® 2), Real-Time Ethernetschnittstell 1. Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3 Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3: Multi Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3: Multi Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3: Mul	T® 1) telle 3) ernet- ernet- telle 3), ernet-
weiter auf nächster S	Seite

x x F 6 x x x - x	xxx			
		0: 2kHz/125%/150%	8: 2kHz/180%/216%	
		1: 4kHz/125%/150%	9: 4kHz/180%/216%	
		2: 8kHz/125%/150%	A: 8kHz/180%/216%	
	Schaltfrequenz,	3: 16 kHz/125%/150%	B: 8kHz/HSD	
	Softwarestromgrenze,	4: 2kHz/150%/180%	C: 6kHz / HSD	
	Abschaltstrom	5: 4kHz/150%/180%	D: Sonderschaltfrequenz / Überlast	
		6: 8kHz/150%/180%	E: Sondergerät	
		7: 16 kHz/150%/180%		
		1: 3ph 230 V AC/DC mit Bro	emetransistor	
		2: 3ph 230 V AC/DC ohne I		
		3: 3ph 400 V AC/DC mit Bro		
		4: 3ph 400 V AC/DC ohne B		
	Cooperate /	. 3ph 400 V AC/DC inkl. G	TR7 / max. Gleichrichter /	
	Spannung/	A: 3ph 400 V AC/DC inkl. GTR7 / max. Gleichrichter / max. Vorladung		
	Anschlussart	B. 3ph 400 V AC/DC ohne GTR7 / max. Gleichrichter /		
		B. max. Vorladung		
		C: 3ph 400 V AC/DC GTR7-Variante 2		
		D. 3ph 400 V AC/DC GTR7-Variante 2 / max. Gleichrich-		
		ter / max. Vorladung		
	Gehäuse	29		
		1: Sicherheitsmodul Typ 1/	STO bei Steuerungstyp K	
	A 4 - 44	3: Sicherheitsmodul Typ 3		
	Ausstattung	4: Sicherheitsmodul Typ 4		
		5: Sicherheitsmodul Typ 5		
		A: APPLIKATION		
	Steuerungstyp	K: KOMPAKT		
		P: PRO		
	Baureihe	COMBIVERT F6		
	Gerätegröße	1033		
Tabelle 1: Typens	chlüssel			

¹⁾ Ether**CAT**

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Deutschland.


CANopen® ist eine eingetragene Marke der CAN in AUTOMATION - International Users and Manufacturers Group e.V.

³⁾ Das Real-Time Ethernetbusmodul / die Real-Time Ethernetschnittstelle enthält diverse Feldbussteuerungen welche sich per Software (Parameter fb68) einstellen lassen.

Der Typenschlüssel dient nicht als Bestellcode, sondern ausschließlich zur Identifikation!

2.5 Typenschild

2.5.1 Konfigurierbare Optionen

Merkmale	Merkmalswerte	Beschreibung		
Software	SWxxx 1)	Softwarestand des Antriebsstromrichters		
7.4.4.4.	Axxx 1)	Gewähltes Zubehör		
Zubehör	NAK	Kein Zubehör		
Ausgangsfrequenz-	LIM	Begrenzung auf 599 Hz		
freischaltung	ULO	> 599 Hz freigeschaltet		
	WSTD	Gewährleistung - Standard		
Gewährleistung	Wxxx 1)	Gewährleistungsverlängerung		
Darametriarung	PSTD	Parametrierung - Standard		
Parametrierung	Pxxx 1)	Parametrierung - Kundespezifisch		
Turanaahildlaga	LSTD	Logo - Standard		
Typenschildlogo	Lxxx 1)	Logo - Kundespezifisch		
Abbildung 2: Konfigurierbare Optionen				

[&]quot;,x" steht für einen variablen Wert.

3 Technische Daten

Sofern nicht anders gekennzeichnet, beziehen sich alle elektrischen Daten im folgenden Kapitel auf ein 3-phasiges Wechselspannungsnetz.

3.1 Betriebsbedingungen

3.1.1 Klimatische Umweltbedingungen

Lagerung		Norm	Klasse	Bemerkungen
Umgebungstemper	atur	EN 60721-3-1	1K4	-2555°C
Relative Luftfeuchte		EN 60721-3-1	1K3	595% (ohne Kondensation)
Lagerungshöhe		_	_	Max. 3000 m über NN
Transport		Norm	Klasse	Bemerkungen
Umgebungstemper	atur	EN 60721-3-2	2K3	-2570°C
Relative Luftfeucht	e	EN 60721-3-2	2K3	95 % bei 40 °C (ohne Kondensation)
Betrieb		Norm	Klasse	Bemerkungen
Umgebungstemper	atur	EN 60721-3-3	3K3	540°C (erweitert auf -1045°C)
12	Luft	_	_	540°C (erweitert auf -1045°C)
Kühlmitteleintritts- temperatur	Wasser 1)	_	_	540 °C (555°C High-Performance)
temperatur	Öl	_	_	4055°C
Relative Luftfeucht	е	EN 60721-3-3	3K3	585% (ohne Kondensation)
				Schutz gegen Fremdkörper > ø12,5 mm
				Kein Schutz gegen Wasser
Bau- und Schutzar	t	EN 60529	IP20	Nichtleitfähige Verschmutzung, gelegentli- che Betauung wenn PDS außer Betrieb ist.
	234 3.74 23.74			Antriebsstromrichter generell, ausgenommen Leistungsanschlüsse und Lüftereinheit (IPxxA)
				Max. 2000 m über NN
				Ab 1000 m ist eine Leistungsreduzierung von 1 % pro 100 m zu berücksichtigen.
Aufstellhöhe		_	_	Ab 2000 m hat die Steuerkarte zum Netz nur noch Basisisolation. Es sind zusätz- liche Maßnahmen bei der Verdrahtung der Steuerung vorzunehmen.
Tabelle 2: Klimatische Umweltbedingungen				

¹⁾ Hinweise zum Kühlmittel beachten => "6.1.3 Anforderungen an das Kühlmittel"

3.1.2 Mechanische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen
Cabuingungagran	EN 60721-3-1	1M2	Schwingungsamplitude 1,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-1		Beschleunigungsamplitude 5 m/s² (9200 Hz)
Schockgrenzwerte	EN 60721-3-1	1M2	40 m/s²; 22 ms
Transport	Norm	Klasse	Bemerkungen
			Schwingungsamplitude 3,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-2	2M1	Beschleunigungsamplitude 10 m/s² (9200 Hz)
			(Beschleunigungsamplitude 15 m/s² (200500 Hz)) 1)
Schockgrenzwerte	EN 60721-3-2	2M1	100 m/s²; 11 ms
Betrieb	Norm	Klasse	Bemerkungen
	EN 60704 2 2	2014	0.1
1	EN 60721 2 2	21/1/	Schwingungsamplitude 3,0 mm (29 Hz)
Sabuingungagranzwarta	EN 60721-3-3	3M4	Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte		3M4	
Schwingungsgrenzwerte	EN 60721-3-3 EN 61800-5-1	3M4 _	Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte Schockgrenzwerte		3M4 - 3M4	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz)
Schockgrenzwerte	EN 61800-5-1	_	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz) Beschleunigungsamplitude 10 m/s² (57150 Hz)
	EN 61800-5-1	_	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz) Beschleunigungsamplitude 10 m/s² (57150 Hz) 100 m/s²; 11 ms

¹⁾ Nicht getestet

3.1.3 Chemisch/Mechanisch aktive Stoffe

Lagerung		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-1	1C2	_
	Feststoffe	EN 00721-3-1	1S2	-
Transport		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-2	2C2	-
Kontamination	Feststoffe		2S2	_
Betrieb		Norm	Klasse	Bemerkungen
Kontamination -	Gase	EN 00704 0 0	3C2	-
	Feststoffe	EN 60721-3-3	3S2	-
Tabelle 4: Chemisch/Mechanisch aktive Stoffe				

3.1.4 Elektrische Betriebsbedingungen

3.1.4.1 Geräteeinstufung

Anforderung	Norm	Klasse	Bemerkungen
Überspannungskategorie	EN 61800-5-1	III	_
Verschmutzungsgrad	EN 60664-1	2	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist
Tabelle 5: Geräteeinstufung			

3.1.4.2 Elektromagnetische Verträglichkeit

Bei Geräten ohne internen Filter ist zur Einhaltung der folgenden Grenzwerte ein externer Filter erforderlich.

EMV-Störaussendung	Norm	Klasse	Bemerkungen	
Leitungsgeführte Störaussendung	EN 61800-3	C2 / C3	Der angegebene Wert wird nur in Verbindung mit einem Filter eingehalten. Angaben der Entstörung (Bemessungsschaltfrequenz, max. Motorleitungslänge) ist der entsprechenden Filteranleitung zu entnehmen.	
Abgestrahlte Störungen	EN 61800-3	C2	_	
Störfestigkeit	Norm	Pegel	Bemerkungen	
Statische Entladungen	EN 61000-4-2	8 kV 4 kV	AD (Luftentladung) CD (Kontaktentladung)	
Burst - Anschlüsse für pro- zessnahe Mess- und Regel- funktionen und Signalschnitt- stellen	EN 61000-4-4	2kV	_	
Burst - AC - Leistungsschnitt- stellen	EN 61000-4-4	4 kV	-	
Surge Leighungeschnittstellen	EN 61000-4-5	1kV	Phase-Phase	
Surge - Leistungsschnittstellen	EN 61000-4-5	2kV	Phase-Erde	
Leitungsgeführte Störfestig- keit, induziert durch hochfre- quente Felder	EN 61000-4-6	10 V	0,1580 MHz	
		10 V/m	80 MHz1 GHz	
Elektromagnetische Felder	EN 61000-4-3	3 V/m	1,42 GHz	
		1 V/m	22,7 GHz	
Spannungsschwankungen/	EN 61000-2-1		-15 %+10 %	
-einbrüche	EN 61000-4-34	_	Klasse 3	
Frequenzänderungen	EN 61000-2-4	_	≤ 2 %	
Spannungsabweichungen	EN 61000-2-4	_	±10%	
Spannungsunsymmetrien	EN 61000-2-4	_	≤ 3 %	
Tabelle 6: Elektromagnetische Verträglichkeit				

3.2 Gerätedaten der 230 V-Geräte

3.2.1 Übersicht der 230 V-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			19	20	21
Gehäuse				6	
Ausgangsbemessungsscheinleistung		Sout / kVA	46	58	70
Max. Motorbemessungsleistung	1)	Pmot / kW	30	37	45
Eingangsbemessungsspannung		Un / V		230 (UL: 240)	
Eingangsspannungsbereich		Uin / V	170264		
Netzphasen			3		
Netzfrequenz		f _N / Hz	50 / 60 ±2		
Eingangsbemessungsstrom @ UN = 230 V		Iin / A	126	156	189
Eingangsbemessungsstrom @ UN = 240 V		lin_UL / A	126	156	189
Isolationswiderstand @ <i>Udc</i> = 500 V		Riso / MΩ		> 20	
Ausgangsspannung		Uout / V		0 <i>U</i> in	
Ausgangsfrequenz	2)	fout / Hz		0599	
Ausgangsphasen				3	
Ausgangsbemessungsstrom		I I. A	445	4.45	475
@ Un = 230 V		In / A	115	145	175
Ausgangsbemessungsstrom		In	115	145	175
@ Un = 240 V		In_ul / A	115	145	175
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %	150	150	150
Softwarestromgrenze	3)		150	150	150
Abschaltstrom	3)	loc / %	180	180	180
Bemessungsschaltfrequenz		fsn / kHz	8	4	2
Max. Schaltfrequenz	5)	fs_max / kHz	16	16	16
Verlustleistung bei Bemessungsbetrieb	1)	P _D / W	1168	1230	1389
Überlaststrom über Zeit	3)	IOL / %	=> "3.3.3.1	Überlastcharak	teristik (OL)"
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	180 / 180	180 / 180	149 / 180
Maximalstrom 0Hz/50Hz bei fs=4kHz		lout_max / %	180 / 180	159 / 180	132 / 180
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	158 / 180	125 / 180	103 / 180
Maximalstrom 0Hz/50Hz bei fs=16kHz		lout_max / %	103 / 180	66 / 157	55 / 180
				weiter auf	nächster Seite

GERÄTEDATEN DER 230V-GERÄTE

Gerätegröße			19	20	21	
Gehäuse				6		
Max. Bremsstrom		IB_max / A	140	168	168	
Min. Bremswiderstandswert		RB_min / Ω	3	2,5	2,5	
Bremstransistor	6)		Max. Spieldauer: 120s; Max ED: 50 %			
Schutzfunktion für Bremstransistor			Kurzs	schlussüberwad	hung	
Schutzfunktion Bremswiderstand	8)		Feedbacksignalauswertung und Stromabschal-			
(Error GTR7 always on)			tung			
Max. Motorleitungslänge geschirmt	9)	// m	TBD	50	50	
Tabelle 7: Übersicht der 230V-Gerätedate	n					

Bemessungsbetrieb entspricht $U_N = 230V$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

- ³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom IN.
- 4) Einschränkungen beachten "3.3.3.1 Überlastcharakteristik (OL)".
- ⁵⁾ Eine genaue Beschreibung des Derating "3.4.1 Schaltfrequenz und Temperatur".
- ⁶⁾ Nur als wassergekühltes Gerät erhältlich.
- 7) Nur als ölgekühltes Gerät erhältlich.
- ⁸⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.
- ⁹⁾ Die max. Leitungslänge ist abhängig von diversen Faktoren. Weitere Hinweise sind der entsprechenden Filteranleitung zu entnehmen.

3.2.2 Spannungs- und Frequenzangaben für 230 V-Geräte

Eingangsspannungen und -frequenzen						
Eingangsbemessungsspannung	Un / V	230				
Nominal-Netzspannung (USA)	<i>U</i> n_ul / V	240				
Eingangsspannungsbereich	UIN / V	170264				
Netzphasen		3				
Netzfrequenz	f _N / Hz	50/60				
Netzfrequenztoleranz	f _{Nt} / Hz	± 2				
Tabelle 8: Eingangsspannungen und -frequenzen der 230 V-Geräte						

DC-Zwischenkreisspannung		
Zwischenkreis Bemessungsspannung @ Un = 230 V	U _{N_dc} / V	325
Zwischenkreis Bemessungsspannung @ Un_uL = 240 V	U _{N_UL_dc} / V	339
Zwischenkreis Arbeitsspannungsbereich	Udc / V	240373
Tabelle 9: DC-Zwischenkreisspannung für 230 V-Geräte		

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.
Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

Ausgangsspannungen und -frequenzen							
Ausgangsspannung bei AC-Versorgung	1) Uout / V	0 <i>U</i> in					
Ausgangsfrequenz	2) fout / Hz	0599					
Ausgangsphasen		3					
Tabelle 10: Ausgangsspannungen und -frequenzen der 230 V-Geräte							

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren (=> "3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V").

3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 230 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel					
Netzdrossel <i>U</i> _k	4						
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und					
Antriebsstromrichter geregelt	8	Motordrossel an einem weichen Netz:					
Motordrossel Uk	1	230 V-Netzspannung (100%) - 25,3V reduzierte Spannung (11%) = 204,7 V-Motorspannung					
Weiches Netz	2						
Tabelle 11: Beispiel zur Berechnung der möglichen Motorspannung für 230 V							

3.2.3 Ein- und Ausgangsströme / Überlast

Gerätegröße			19	20	21		
Eingangsbemessungsstrom @ UN = 230 V	1)	lin / A	126	156	189		
Eingangsbemessungsstrom @ UN_UL = 240 V	1)	lin_UL / A	126	156	189		
Ausgangsbemessungsstrom @ <i>U</i> _N = 230 V		In / A	115	145	175		
Ausgangsbemessungsstrom @ UN_UL = 240 V		IN_UL / A	115	145	175		
Ausgangsbemessungsüberlast (60 s)	2)	160s / %	150	150	150		
Überlaststrom	2)	IOL / %	=> "3.3.3.1 (Jberlastcharak	teristik (OL)"		
Softwarestromgrenze	2) 3)		150	150	150		
Abschaltstrom	2)	loc / %	180	180	180		
Tabelle 12: Ein- und Ausgangsströme / Überlast -der 230 V-Geräte							

¹⁾ Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.
Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

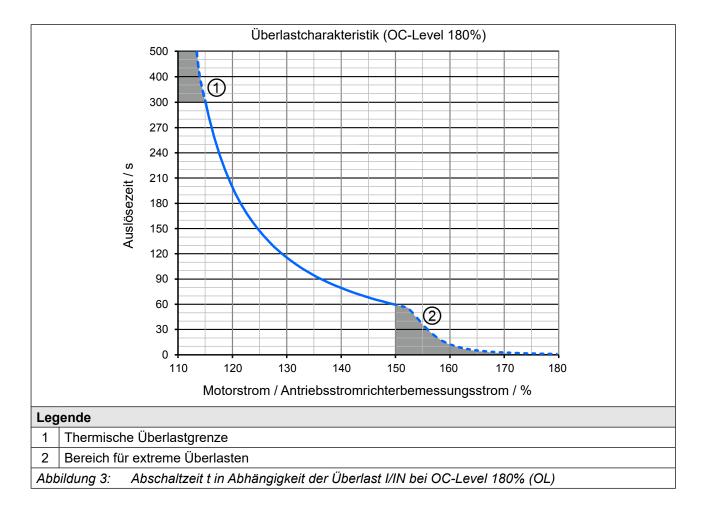
Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

²⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

GERÄTEDATEN DER 230V-GERÄTE

3.2.3.1 Überlastcharakteristik (OL) für 230 V-Geräte

Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 150% für 60s betrieben werden.


Bei der OL-Überlastfunktion handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=>,,Abbildung 3: Abschaltzeit t in Abhängigkeit der Überlast I/ IN bei OC-Level 180% (OL)") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

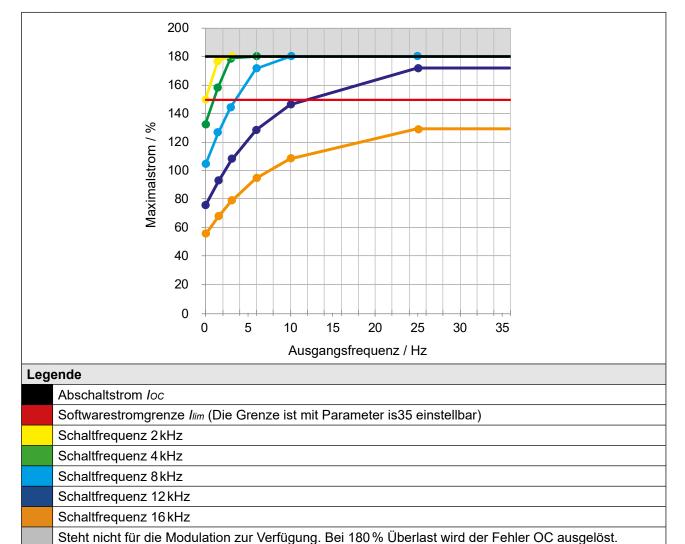
- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden

- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

Nach Ablauf einer Abkühlzeit kann dieser nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast im Bereich nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.


3.2.3.2 Frequenzabhängiger Maximalstrom (OL2) für 230 V-Geräte

Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gelten folgende Regeln:

- Für die Bemessungsschaltfrequenz gilt: Bei 0 Hz Ausgangsfrequenz kann der Antriebsstromrichter mindestens den Ausgangsbemessungsstrom stellen.
- Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

Die folgende Kennlinie gibt den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0Hz, 1,5Hz, 3Hz, 6Hz, 10Hz und 25Hz an. Es wird beispielhaft die Gerätegröße 21 dargestellt.

Der frequenzabhängie Maximalstrom $lout_{max}$ bezieht sich prozentual auf den Ausgangsbemessungsstrom l_{N} .

Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp. 21er-Gerät

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Abbildung 4:

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom

Gerätegröße					19				
Bemessungsschaltfrequenz				8 kHz					
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25	
		2 kHz	180	180	180	180	180	180	
Eraguanzahhängigar Mayimalatram @ fa	1 . / 0/	4 kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)	lout_max / %	8 kHz	158	180	180	180	180	180	
Basic Time Feriou – 62,5 µs (Farameter 1822–0)		16 kHz	103	117	129	147	163	180	
		1,75 kHz	180	180	180	180	180	180	
turnus and helicard Marchaelataran Of	lout_max / %	3,5 kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs		7 kHz	169	180	180	180	180	180	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	113	127	140	160	177	180	
		1,5 kHz	180	180	180	180	180	180	
Eraguanzahhängigar Mayimalatram @ fa	1 . / 0/	3 kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 83,3 µs (Parameter is 22=2)	lout_max / %	6 kHz	180	180	180	180	180	180	
Basic Time Feriou – 65,5 µs (Farameter 1822–2)		12 kHz	123	127	151	172	180	180	
		1,25 kHz	180	180	180	180	180	180	
Eraguanzahhängigar Mayimalatra 3 f-	1 . 10/	2,5 kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	180	180	180	180	180	180	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	140	159	175	180	180	180	
Tabelle 13: Frequenzabhängiger Maximalstron	n für Geräte	größe 19							

GERÄTEDATEN DER 230V-GERÄTE

Gerätegröße					20				
Bemessungsschaltfrequenz				4 kHz					
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25	
		2kHz	180	180	180	180	180	180	
	1 / 0/	4 kHz	159	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8 kHz	125	152	175	180	180	180	
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	66	81	95	115	131	157	
		1,75 kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	165	180	180	180	180	180	
		7 kHz	133	161	180	180	180	180	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	79	96	112	134	154	180	
		1,5 kHz	180	180	180	180	180	180	
Francisco Mayimalatram @ f	1 / 0/	3kHz	170	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6 kHz	142	171	180	180	180	180	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	91	111	129	155	177	180	
		1,25 kHz	180	180	180	180	180	180	
For any and the first of the Manifest states and the first states and th	1.0/	2,5 kHz	175	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	151	180	180	180	180	180	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	108	131	152	180	180	180	
Tabelle 14: Frequenzabhängiger Maximalstron	n für Geräte	größe 20	•		•		•		

Gerätegröße					21				
Bemessungsschaltfrequenz				2 kHz					
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25	
		2kHz	149	177	180	180	180	180	
Eroguanahhängigar Mayimalatram @ fa	1 / 0/	4 kHz	132	158	179	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8kHz	103	126	145	171	180	180	
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	55	67	78	95	109	130	
		1,75 kHz	149	177	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	136	163	180	180	180	180	
		7 kHz	111	134	153	162	180	180	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	65	80	93	107	146	172	
		1,5 kHz	149	177	180	180	180	180	
	1	3kHz	141	167	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	118	142	162	180	180	180	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	75	92	107	129	146	172	
		1,25 kHz	149	177	180	180	180	180	
	1 . 10/	2,5 kHz	145	172	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	125	150	170	180	180	180	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	89	109	126	150	170	180	
Tabelle 15: Frequenzabhängiger Maximalstron	n für Geräte	größe 21	,			•		,	

3.2.4 Verlustleistung bei Bemessungsbetrieb für 230 V-Geräte

Gerätegröße		19	20	21
Bemessungsschaltfrequenz	fsn / kHz	8	4	2
Verlustleistung bei Bemessungsbetrieb	1) <i>P</i> _D / W	1168	1250	1427
Tabelle 16: Verlustleistung der 230 V-Gerä	ite			

¹⁾ Bemessungsbetrieb entspricht Un = 230 V; fsn; In; fn = 50 Hz (typischer Wert)

3.2.5 Absicherung der 230 V-Geräte

	Max. Größe der Sicherung / A									
Geräte- größe	<i>U</i> _N = 230 V gG (IEC)	<i>U</i> _N = 240V class "J"	<i>U</i> _N = 240V							
	SCCR 30 kA	SCCR 10 kA	SCCR 65 kA 1) Typ 2)							
			160	SIBA 20 1xy20.#						
19	160	175	175	COOPER BUSSMANN 170M1xx#						
			175	LITTELFUSE L70QS#						
			200	SIBA 20 1xy 20.#						
20	200	200	200	COOPER BUSSMANN 170M1xy#						
			200	LITTELFUSE L70QS#						
			250	SIBA 20 1xy 20.#						
21	250	250	250	COOPER BUSSMANN 170M1xx#						
			250	LITTELFUSE L70QS#						
Tabelle 1	7: Absicherungen de	r 230 V / 240 V-Gerä	te							

¹⁾ Es dürfen nur Sicherungen innerhalb der beschriebenen Modellreihe oder Serie verwendet werden.

²⁾ "x" steht für verschiedene Indikatoren. "y" steht für verschiedene Verbindungsvarianten. "#" steht für die Amperezahl oder Kennnummer.

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30 kA eff. geeignet.

3.3 Gerätedaten der 400 V-Geräte

3.3.1 Übersicht der 400 V-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei anderer Polzahl muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden. Bei Spezial- oder Mittelfrequenzmotoren setzen Sie sich bitte mit KEB in Verbindung.

Gerätegröße			21	22		23		2	4
Gehäuse				•		6			
Ausgangsbemessungsscheinleistung		Sout / kVA	62	80		104		12	25
Max. Motorbemessungsleistung	1)	Pmot / kW	45 55 75				9	0	
Eingangsbemessungsspannung		Un / V			40	0 (UL: 4	80)		
Eingangsspannungsbereich		Uin / V			2	280550)		
Netzphasen						3			
Netzfrequenz		f _N / Hz			5	50 / 60 ±	2		
Eingangsbemessungsstrom @ U _N = 400V		lin / A	99	126		158		18	39
Eingangsbemessungsstrom @ U _N = 480V		lin_UL / A	85	106		128		16	62
Isolationswiderstand @ Udc = 500V		Riso / MΩ				> 20			
Ausgangsspannung		Uout / V	0 <i>Uin</i>						
Ausgangsfrequenz	2)	fout / Hz				0599			
Ausgangsphasen						3			
Ausgangsbemessungsstrom @ U _N = 400V		In / A	90	115		150		18	30
Ausgangsbemessungsstrom @ U _N = 480V		IN_UL / A	77 96 124 156			56			
	3) 4)	160s / %		I	l	150		<u>I</u>	
Softwarestromgrenze	3)	Ilim / %				150			
Abschaltstrom	3)	loc / %				180			
Bemessungsschaltfrequenz		fsn / kHz	8	4	2	4	8 6)	2	4 7)
Max. Schaltfrequenz	5)	fs_max / kHz			I	16	l	I.	
Verlustleistung bei Bemessungs- betrieb	1)	Po / W	1356	1194	1320	1650	2231	1580	1887
Überlaststrom über Zeit	3)	IOL / %		=> "3.3	.3.1 Übe	rlastcha	rakterist	ik (OL)"	
Maximalstrom 0Hz/50Hz bei fs=2kHz		lout_max / %	180/ 180	180 / 180	154 <i>/</i> 180	154/ 180	180/ 180	129/ 180	141/ 180
Maximalstrom 0Hz/50Hz bei fs=4kHz		lout_max / %	180/ 180	157/ 180	121/ 180	121/ 180	173/ 180	101/ 180	112/ 180
Maximalstrom 0Hz/50Hz bei fs=8kHz		lout_max / %	133/ 180	104/ 180	80 / 157	79 <i>/</i> 180	120/ 180	66/ 151	74 / 174
Maximalstrom 0Hz/50Hz bei fs=16 kHz		lout_max / %	55/ 133	43/ 104	33 / 80	35/ 81	58 / 138	28/ 67	35/ 83
						V	veiter au	f nächst	er Seite

Gerätegröße			22	23	24		
Gehäuse	6						
Max. Bremsstrom	IB_max / A	140 / 168 10)			140 / 168 10)		168
Min. Bremswiderstandswert	RB_min / Ω	5 10) / 6			5		
Bremstransistor	8)	Max. Spieldauer: 120s; Max ED: 50 %					
Schutzfunktion für Bremstransistor		Kurzschlussüberwachung					
Schutzfunktion Bremswiderstand	9)	Feedbacksignalauswertung und Stromabsch			•		
(Error GTR7 always on)				(nur bei AC-Netzanschluss	P)		
Max. Motorleitungslänge geschirmt	¹¹⁾ // m	50					
Tabelle 18: Übersicht der 400 V-Gerätedaten							

Bemessungsbetrieb entspricht $U_N = 400V$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

- ³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.
- ⁴⁾ Einschränkungen beachten "3.3.3.1 Überlastcharakteristik (OL)".
- ⁵⁾ Eine genaue Beschreibung des Derating "3.4.1 Schaltfrequenz und Temperatur".
- ⁶⁾ Nur als wassergekühltes Gerät erhältlich.
- 7) Nur als ölgekühltes Gerät erhältlich.
- ⁸⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.
- ⁹⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung. Bei DC-Spannungsversorgung erfolgt keine Stromabschaltung.
- ¹⁰⁾ Nur bei Fluidkühlern (Wasser) mit Unterbaubremswiderständen.
- Die max. Leitungslänge ist abhängig von diversen Faktoren. Weitere Hinweise sind der entsprechenden Filteranleitung zu entnehmen.

3.3.2 Spannungs- und Frequenzangaben für 400 V-Geräte

Eingangsspannungen und -frequenzen					
Eingangsbemessungsspannung	Un / V	400			
Nominal-Netzspannung (USA)	UN_UL / V	480			
Eingangsspannungsbereich	UIN / V	280550			
Netzphasen		3			
Netzfrequenz	f _N / Hz	50/60			
Netzfrequenztoleranz	f _{Nt} / Hz	± 2			
Tabelle 19: Eingangsspannungen und -frequenzen der 400 V-Geräte					

DC-Zwischenkreisspannung					
Zwischenkreis Bemessungsspannung @ UN = 400 V UN_dc / V 565					
Zwischenkreis Bemessungsspannung @ UN_UL = 480 V	UN_UL_dc / V	680			
Zwischenkreis Arbeitsspannungsbereich	Udc / V	390780			
Tabelle 20: DC-Zwischenkreisspannung für 400 V-Geräte					

²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.
Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

GERÄTEDATEN DER 400 V-GERÄTE

Ausgangsspannungen und -frequenzen		
Ausgangsspannung bei AC-Versorgung	1) Uout / V	0 <i>U</i> in
Ausgangsfrequenz	2) fout / Hz	0599
Ausgangsphasen		3
Tabelle 21: Ausgangsspannungen und -frequenze	n der 400 V-Geräte	

Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren => "3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V".

3.3.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel
Netzdrossel <i>U</i> _k	4	
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und Mo-
Antriebsstromrichter geregelt	8	tordrossel an einem weichen Netz:
Motordrossel Uk	1	400 V-Netzspannung (100%) - 44V reduzierte Span- nung (11 %) = 356 V-Motorspannung
Weiches Netz	2	many (11 70) 2001 Motoropamiany
Tabelle 22: Beispiel zur Berechi	nung der möglichen i	Motorspannung für 400 V

3.3.3 Ein- und Ausgangsströme / Überlast der 400V-Geräte

Gerätegröße			21	22	23	24
Eingangsbemessungsstrom @ UN = 400 V	1)	Iin / A	99	126	158	189
Eingangsbemessungsstrom @ UN_UL = 480 V	1)	Iin_UL / A	85	106	128	162
Eingangsbemessungsstrom DC @ UN = 565 V		lin_dc / A	121	155	190	228
Eingangsbemessungsstrom DC @ U _{N_UL} = 680 V		lin_UL_dc / A	104	129	157	198
Ausgangsbemessungsstrom @ U _N = 400 V		In / A	90	115	150	180
Ausgangsbemessungsstrom @ UN_UL = 480 V		IN_UL / A	77	96	124	156
Ausgangsbemessungsüberlast (60s)	2)	160s / %	150	150	150	150
Überlaststrom	2)	IOL / %	=> "3.3.3	.1 Überlas	tcharakteri	stik (OL)"
Softwarestromgrenze	2) 3)	Iim %	150	150	150	150
Abschaltstrom	2)	loc / %	180	180	180	180
Tabelle 23: Ein- und Ausgangsströme / Überlas	t der	400 V-Geräte				

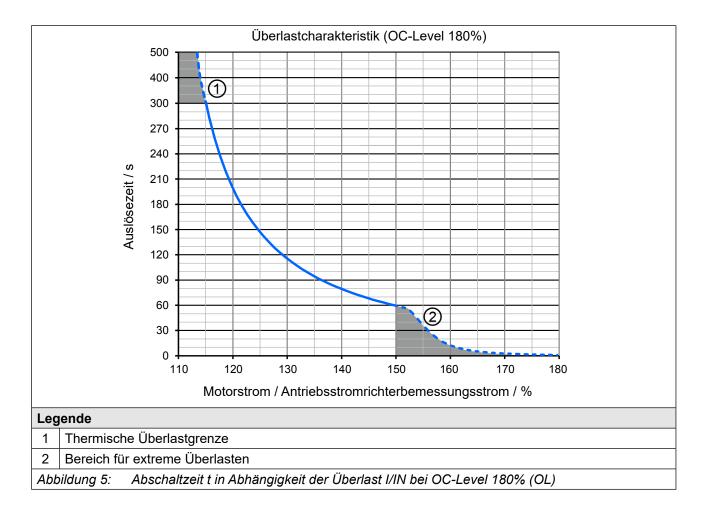
Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt. Achtung! Geräte mit einer maximalen Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

²⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

³⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

3.3.3.1 Überlastcharakteristik (OL)


Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 150 % für 60 s betrieben werden.

Bei der OL-Überlastfunktion handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=>,,Abbildung 5: Abschaltzeit t in Abhängigkeit der Überlast I/ IN bei OC-Level 180% (OL)") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

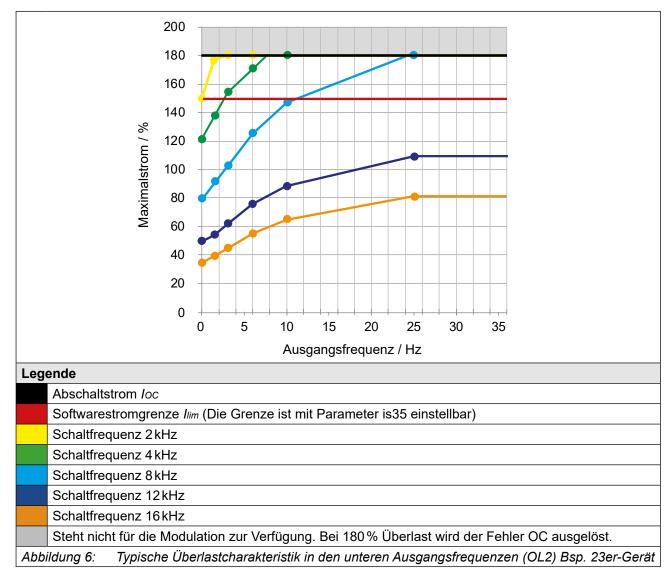
- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden => "3.3.3.2 Frequenzabhängiger Maximalstrom (OL2)".

- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- · Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

Nach Ablauf einer Abkühlzeit kann dieser nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast im Bereich nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.


3.3.3.2 Frequenzabhängiger Maximalstrom (OL2)

Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gelten folgende Regeln:

- Für die Bemessungsschaltfrequenz gilt: Bei 0 Hz Ausgangsfrequenz kann der Antriebsstromrichter mindestens den Ausgangsbemessungsstrom stellen.
- Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

Die folgende Kennlinie gibt den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0Hz, 1,5Hz, 3Hz, 6Hz, 10Hz und 25Hz an. Es wird beispielhaft die Gerätegröße 23 dargestellt.

Der frequenzabhängie Maximalstrom $lout_{max}$ bezieht sich prozentual auf den Ausgangsbemessungsstrom l_{N} .

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom

Gerätegröße			21						
Bemessungsschaltfrequenz					8 k	Hz			
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25	
		2kHz	180	180	180	180	180	180	
Fraguenzahhängiger Meyimeletrem @ fe	1 . / 0/	4 kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)	-	8 kHz	133	158	175	180	180	180	
Basic Time Feriou – 62,5 µs (Farameter 1822–0)		16kHz	55	71	83	99	110	133	
		1,75 kHz	180	180	180	180	180	180	
Francisco Marinalatron & f	lout_max / %	3,5 kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs		7 kHz	150	175	180	180	180	180	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	71	89	101	118	132	159	
		1,5 kHz	180	180	180	180	180	180	
Fraguenzahhängiger Meyimeletrem @ fe	1 . / 0/	3kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 83,3 µs (Parameter is 22=2)	Iout_max / %	6 kHz	167	180	180	180	180	180	
Basic Time Feriou – 65,5 µs (Farameter 1822–2)		12kHz	87	108	120	138	155	180	
		1,25 kHz	180	180	180	180	180	180	
Francisco Marinalatron & f	1 / 0/	2,5 kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5 kHz	180	180	180	180	180	180	
Basic Time Period = 100 μs (Parameter is22=3)	-	10 kHz	110	133	147	168	180	180	
Tabelle 24: Frequenzabhängiger Maximalstron	n für Geräte	größe 21							

Gerätegröße			22						
Bemessungsschaltfrequenz					4 k	Hz			
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25	
		2kHz	180	180	180	180	180	180	
	1	4 kHz	157	177	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	_	8kHz	104	124	137	155	173	180	
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	43	56	64	77	86	104	
		1,75 kHz	180	180	180	180	180	180	
For any or the War of the Marsian state of the Co.	lout_max / %	3,5 kHz	168	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs		7kHz	118	137	151	172	180	180	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	56	70	79	93	104	124	
		1,5 kHz	180	180	180	180	180	180	
For any of the state of the sta		3 kHz	179	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	131	150	166	180	180	180	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	68	84	94	108	121	144	
		1,25 kHz	180	180	180	180	180	180	
For any of the state of the sta		2,5 kHz	180	180	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	144	163	180	180	180	180	
Basic Time Period = 100 μs (Parameter is22=3)		10 kHz	86	104	115	132	147	175	
Tabelle 25: Frequenzabhängiger Maximalstron	n für Geräte	größe 22							

Gerätegröße					2	3		
Bemessungsschaltfrequenz					2 k	Hz		
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25
		2kHz	154	169	180	180	180	180
Fraguanzahhängigar Mavimalatram @ fa	1 1 0/-	4 kHz	121	130	149	168	180	180
Frequenzabhängiger Maximalstrom @ fs	Iout_max / %	8kHz	80	95	105	119	133	157
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	33	43	49	59	66	80
		1,75 kHz	154	169	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	129	144	158	177	180	180
		7 kHz	90	105	116	132	146	172
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	43	54	61	71	79	95
	1	1,5 kHz	154	169	180	180	180	180
Fraguenzahhängiger Meyimeletrem @ fe	1	3 kHz	137	153	167	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	100	115	127	144	159	180
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	52	65	72	83	93	111
		1,25 kHz	154	169	180	180	180	180
Fraguenzahhängiger Meyimeletrem @ fe	1	2,5 kHz	146	161	176	180	180	180
Frequenzabhängiger Maximalstrom @ fs	Iout_max / %	5kHz	111	126	138	156	172	180
Basic Time Period = 100 μs (Parameter is22=3)	-	10 kHz	66	80	88	101	113	134
Tabelle 26: Frequenzabhängiger Maximalstron	n für Geräte	größe 23 (2	kHz)					

GERÄTEDATEN DER 400 V-GERÄTE

Gerätegröße			23						
Bemessungsschaltfrequenz					4 k	Hz			
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25	
		2 kHz	154	171	180	180	180	180	
Francisco Mayimalatram @ fa	1	4 kHz	121	134	154	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	_	8 kHz	79	88	102	125	147	180	
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	35	39	45	55	65	81	
		1,75 kHz	155	171	180	180	180	180	
Francisco Manifestation Of	1.0/	3,5 kHz	130	143	164	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	7 kHz	90	100	115	141	164	180	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	43	48	55	68	80	100	
		1,5 kHz	155	171	180	180	180	180	
Francisco Manifestation & f	1.0/	3 kHz	138	152	174	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6 kHz	100	111	128	156	180	180	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	51	57	65	81	96	119	
		1,25 kHz	155	171	180	180	180	180	
Francisco Manino alatra con O f	1	2,5 kHz	146	162	180	180	180	180	
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	111	123	141	171	180	180	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	65	72	84	103	122	151	
Tabelle 27: Frequenzabhängiger Maximalstror	n für Geräte	größe 23 (4)	kHz)						

Gerätegröße					2	3		
Bemessungsschaltfrequenz					8 k	Hz		
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25
		2kHz	180	180	180	180	180	180
Eroguanzahhängigar Mayimalatram @ fa	1 . / 0/	4 kHz	173	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	_	8 kHz	120	133	153	180	180	180
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	58	64	75	93	110	138
		1,75 kHz	180	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	3,5 kHz	180	180	180	180	180	180
		7 kHz	133	147	169	180	180	180
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	70	77	90	111	132	164
		1,5 kHz	180	180	180	180	180	180
	1 / 0/	3 kHz	180	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	147	162	180	180	180	180
Basic Time Period = 83,3 µs (Parameter is22=2)		12kHz	81	90	105	130	153	180
		1,25 kHz	180	180	180	180	180	180
Fun annual and his a sign of Manifest plates are the	1 / 0/	2,5 kHz	180	180	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	160	176	180	180	180	180
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	101	111	129	159	180	180
Tabelle 28: Frequenzabhängiger Maximalstron	n für Geräte	größe 23 (81	kHz)	,	,			

Gerätegröße	,				2	4		
Bemessungsschaltfrequenz					2 k	Hz		
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25
		2kHz	129	142	161	180	180	180
Fun annual and his a sign of Manifest plates and 6	1.0/	4 kHz	101	112	128	156	179	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	8kHz	66	73	85	104	123	152
Basic Time Period = 62,5 µs (Parameter is22=0)	_	16 kHz	29	32	37	46	54	68
		1,75 kHz	129	142	161	180	180	180
For any or the War single Marriage Later and O. C.		3,5 kHz	108	119	137	165	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	7kHz	75	83	96	117	137	167
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	36	40	46	57	67	84
		1,5 kHz	129	142	161	180	180	180
For any or the War share Marshare Later and O. f.		3 kHz	115	127	145	174	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6 kHz	84	93	107	130	151	180
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	43	47	54	68	80	99
		1,25 kHz	129	142	161	180	180	180
For any of the state of the sta		2,5 kHz	122	135	153	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	5kHz	92	102	118	143	165	180
Basic Time Period = 100 μs (Parameter is22=3)		10 kHz	54	60	70	86	101	126
Tabelle 29: Frequenzabhängiger Maximalstron	n für Geräte	größe 24 (2)	kHz)					

Gerätegröße					2	4		
Bemessungsschaltfrequenz					4 k	Hz		
Ausgangsfrequenz		fout / Hz	0	1,5	3	6	10	25
		2kHz	142	169	180	180	180	180
Fraguanzahhängigar Mavimalatram @ fa	1 1 0/-	4 kHz	112	136	156	180	180	180
Frequenzabhängiger Maximalstrom @ fs	Iout_max / %	8 kHz	74	92	107	129	147	174
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	35	43	49	61	70	84
		1,75 kHz	142	169	180	180	180	180
	lout_max / % -	3,5 kHz	120	144	165	180	180	180
Frequenzabhängiger Maximalstrom @ fs		7 kHz	84	103	119	143	163	180
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	42	52	60	74	85	102
	1	1,5 kHz	142	169	180	180	180	180
Fraguenzahhängiger Meyimeletrem @ fe	1	3 kHz	127	153	174	180	180	180
Frequenzabhängiger Maximalstrom @ fs	lout_max / %	6kHz	93	114	131	157	178	180
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	49	61	71	87	99	119
		1,25 kHz	142	169	180	180	180	180
Fraguenzahhängiger Meyimeletrem @ fe	1	2,5 kHz	134	161	180	180	180	180
Frequenzabhängiger Maximalstrom @ fs	Iout_max / %	5kHz	103	125	144	171	180	180
Basic Time Period = 100 μs (Parameter is22=3)		10 kHz	62	76	89	108	123	147
Tabelle 30: Frequenzabhängiger Maximalstron	n für Geräte	größe 24 (4	kHz)					

GERÄTEDATEN DER 400 V-GERÄTE

3.3.4 Übersicht der Gleichrichterdaten für 400 V-Geräte

Gerätegröße			21	22	23	24
Gleichrichterbemessungsleistung		Prect / kW	50	61	82	99
Gleichrichterdauerleistung	1)	Prect_cont / kW	61	61	99	99
Eingangsdauerstrom @ U _N = 400 V	1)	lin_cont / A	126	126	189	189
Eingangsdauerstrom @ Un_uL = 480 V	1)	lin_UL_cont / A	106	106	162	162
Ausgangsbemessungsstrom DC @ UN dc = 565V		lout_dc / A	121	155	190	228
Ausgangsdauerstrom DC @ U _{N_dc} = 565 V	1)	lout_dc_cont / A	155	155	228	228
Ausgangsbemessungsstrom DC		lout_UL_dc / A	104	129	157	198
@ Un_ul_dc = 680V						
Ausgangsdauerstrom DC @ Un_uL_dc = 680 V	1)	lout_UL_dc_cont / A	129	129	198	198
Tabelle 31: Übersicht der Gleichrichterdaten						

Der Dauerbetrieb ist eine Belastung über den Bemessungsbetrieb hinaus. Der Dauerbetrieb tritt nur auf, wenn der interne Gleichrichter verwendet wird, um weitere Antriebsstromrichter über die DC-Klemmen zu versorgen => "5.3.6 DC-Verbund". Im Dauerbetrieb kann abhängig von den Betriebsbedingungen des internen Wechselrichters der OH-Fehler ausgelöst werden.

3.3.5 Verlustleistung bei Bemessungsbetrieb für 400 V-Geräte

Gerätegröße		21	22	23		24		
Bemessungsschaltfrequenz	fsn / kHz	8	4	2	4	8	2	4
Verlustleistung bei Bemessungsbetrieb	1) <i>P</i> D / W	1356	1194	1320	1650	2231	1580	1887
Verlustleistung bei Bemessungsbetrieb DC	P _{D_dc} / W	1250	1050	1050	1390	2000	1370	1530
Tabelle 32: Verlustleistung der 400 V-Gerät	'e							

¹⁾ Bemessungsbetrieb entspricht UN = 400 V; fsN; IN; fN = 50 Hz (typischer Wert)

²⁾ Bemessungsbetrieb DC entspricht $U_{N_dc} = 565 V$; In ; fn = 50 Hz (typischer Wert)

3.3.6 Absicherung der 400V-Geräte

3.3.6.1 Absicherung der 400 V-Geräte bei AC-Versorgung

		Max. Gr	öße der Sicherur	ng / A		
Geräte- größe	<i>U</i> _N = 400 V gG (IEC)	<i>U</i> _N = 480 V class "J"	Un = 480 V			
	SCCR 30 kA	SCCR 10 kA	SCCR 100 kA 1) Typ 2)			
			125	SIBA 20 xy9 20.#		
21	125	110	125	COOPER BUSSMANN 170M1xy#		
			125	LITTELFUSE L70QS#		
			160	SIBA 20 1xy 20.#		
22	160	150	160	COOPER BUSSMANN 170M1xy#		
			175	LITTELFUSE L70QS#		
			180	SIBA 20 1xy 20.#		
23	200	175	200	COOPER BUSSMANN 170M1xy#		
			200	LITTELFUSE L70QS#		
			200	SIBA 20 1xy 20.#		
24	250	200	200	COOPER BUSSMANN 170M1xy#		
			200	LITTELFUSE L70QS#		
Tabelle 33	3: Absicherung der 4	00 V / 480 V-Geräte	bei AC-Versorgun	g		

¹⁾ Es dürfen nur Sicherungen innerhalb der beschriebenen Modellreihe oder Serie verwendet werden.

²⁾ "x" steht für verschiedene Indikatoren. "y" steht für verschiedene Verbindungsvarianten. "#" steht für die Amperezahl oder Kennnummer.

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30 kA eff. geeignet.

GERÄTEDATEN DER 400 V-GERÄTE

3.3.6.2 Absicherung der 400 V-Geräte bei DC-Versorgung

Geräte-		e Größe der ung / A	7.1%
größe	$U_{N_dc} = 565V$	<i>U</i> N_UL_dc = 680V	Zulässige Sicherungstypen 1)
	SCCR 50 kA	SCCR 50 kA	
21	160	150	
			SIBA 20 557 34.250 ²⁾
22	225	175	SIBA 20 568 34.315 ²⁾
			SIBA 20 031 34.315
23	250	225	Bussmann 170M1422
23	250	225	Bussmann 170M4245
			Littelfuse L70QS500
24	315	300	
Tabelle 34	: Absicherungen fü	l ür 400 V / 480 V-Gerä	l te

¹⁾ Sicherungen des gleichen Typs mit geringeren Bemessungsströmen können verwendet werden, wenn sie für die Anwendung geeignet sind.

ACHTUNG

Bemessungsspannung der Sicherung beachten!

▶ Die Bemessungsspannung der Sicherung muss mindestens der maximalen DC-Versorgungsspannung des Antriebsstromrichters entsprechen.

²⁾ Sicherung ohne UL-Zertifizierung.

3.4 Allgemeine elektrische Daten

3.4.1 Schaltfrequenz und Temperatur

Die Antriebsstromrichterkühlung ist so ausgelegt, dass bei Bemessungsbedingungen die Kühlkörperübertemperaturschwelle nicht überschritten wird. Eine Schaltfrequenz größer der Bemessungsschaltfrequenz erzeugt auch höhere Verluste und damit eine höhere Kühlkörpererwärmung.

Erreicht die Kühlkörpertemperatur eine kritische Schwelle (*TDR*), kann die Schaltfrequenz automatisch schrittweise reduziert werden. Damit wird verhindert, dass der Antriebsstromrichter wegen Übertemperatur des Kühlkörpers abschaltet. Unterschreitet die Kühlkörpertemperatur die Schwelle *TUR* wird die Schaltfrequenz wieder auf den Sollwert angehoben. Bei der Temperatur *TEM* wird die Schaltfrequenz sofort auf Bemessungsschaltfrequenz reduziert. Damit diese Funktion greift, muss "Derating" aktiviert sein.

3.4.1.1 Schaltfrequenz und Temperatur der 230 V-Geräte

Gerätegröße		19	20	21
Bemessungsschaltfrequenz	1) f sn / kHz	8	4	2
Max. Schaltfrequenz	1) f s_max / k Hz	16	16	16
Min. Schaltfrequenz	1) f s_min / k Hz	1,25	1,25	1,25
Max. Kühlkörpertemperatur	Ths / °C	90	95	95
Temperatur zur Schaltfrequenzreduzierung	T _{DR} / °C	84	85	85
Temperatur zur Schaltfrequenzerhöhung	Tur / °C	70	75	75
Temperatur zur Umschaltung auf Bemessungsschaltfrequenz	Teм / °С	87	90	90
Tabelle 35: Schaltfrequenz und Temperatur	der 230 V-Geräte	9		

¹⁾ Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

3.4.1.2 Schaltfrequenz und Temperatur der 400 V-Geräte

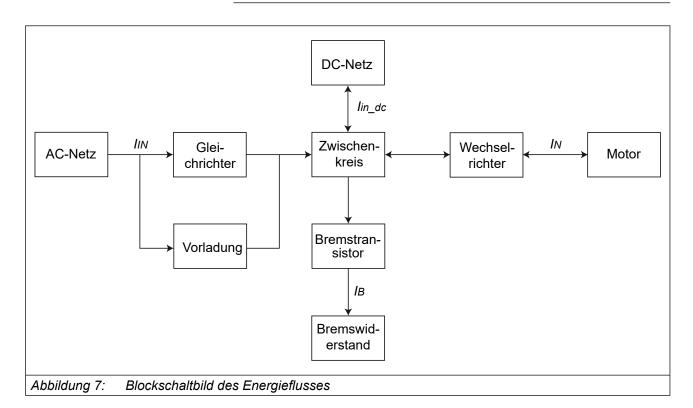
Gerätegröße		21	22		23		2	4	
Bemessungsschaltfrequenz	1)	fsn / kHz	8	4	2	4	8	2	4
Max. Schaltfrequenz	1)	fs_max / kHz	16	16	16	16	16	16	16
Min. Schaltfrequenz	1)	fs_min / kHz	1,25	1,25	1,25	1,25	1,25	1,25	1,25
Max. Kühlkörpertemperatur		Ths / °C	90	90	90	95	67	95	87
Temperatur zur Schaltfrequenzreduzierung		TDR / °C	84	84	84	85	57	85	77
Temperatur zur Schaltfrequenzerhöhung		Tur / °C	70	70	70	75	50	75	67
Temperatur zur Umschaltung auf Bemessungsschaltfrequenz		Тем / °C	87	87	87	90	62	90	82
Tabelle 36: Schaltfrequenz und Temperatur	der	· 400 V-Geräte)						

¹⁾ Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

3.4.2 DC-Zwischenkreis / Bremstransistorfunktion

Aktivierung der Bremstransistorfunktion.

Um den Bremstransistor verwenden zu können, muss die Funktion mit dem Parameter "is 30 braking transistor function" aktiviert werden.


Für weitere Informationen => F6 Programmierhandbuch.

ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters

▶ Der minimale Bremswiderstandswert darf nicht unterschritten werden!

ACHTUNG

Zerstörung des Antriebsstromrichters!

Tritt der Fehler "ERROR GTR7 always ON" auf, wird die Stromaufnahme über die Netzeingangsbrücke der AC-Versorgung intern weggeschaltet.

- ▶ Bei Auftreten des Fehlers "ERROR GTR7 always ON" ist der Antriebsstromrichter defekt und muss spätestens nach 16 Stunden spannungsfrei geschaltet werden!
- ▶ Bei DC-Netzanschluss und der Verwendung von nicht-eigensicheren Bremswiderständen oder Unterbaubremswiderständen muss der Antriebsstromrichter spätestens nach 1 Sekunde spannungsfrei geschaltet werden.

3.4.2.1 DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte

Gerätegröße			19	20	21
Zwischenkreis Bemessungsspannung @ UN = 230 V		U _{N_dc} / V	325		
Zwischenkreis Bemessungsspannung @ Un_uL = 240 V		UN_dc_UL / V		339	
Zwischenkreis Arbeitsspannungsbereich		Uin_dc / V		240373	
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V		216	
DC-Abschaltpegel "Fehler! Überspannung"		Uop / V	400		
DC-Schaltpegel Bremstransistor	1)	U _B / V	380		
Max. Bremsstrom		IB_max / A	140	168	168
Min. Bremswiderstandswert		RB_min / Ω	3	2,5	2,5
Bremstransistor				Spieldauer: Isx. ED: 50	
Schutzfunktion für Bremstransistor			Kurzsc	hlussüberwa	achung
Schutzfunktion Bremswiderstand	3)		Feedback	signalauswe	ertung und
(Error GTR7 always on)			Str	omabschaltu	ıng
Zwischenkreiskapazität		C / µF	11700	15600	18600
Tabelle 37: DC-Zwischenkreis / Bremstransistorfunktion der 230 V-Geräte					

¹⁾ Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.

³⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

⁴⁾ Nur bei Fluidkühlern (Wasser) mit Unterbaubremswiderständen.

ALLGEMEINE ELEKTRISCHE DATEN

3.4.2.2 DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte

Gerätegröße		21	22	23	24	
Zwischenkreis Bemessungsspannung @ UN = 400V	U _{N_dc} / V		565			
Zwischenkreis Bemessungsspannung @ UN_UL = 480V	U N_dc_UL / V		68	30		
Zwischenkreis Arbeitsspannungsbereich	Uin_dc / V		390780			
DC-Abschaltpegel "Fehler! Unterspannung"	Uup / V		24	40		
DC-Abschaltpegel "Fehler! Überspannung"	Uop / V		84	40		
DC-Schaltpegel Bremstransistor	<i>U</i> _B / V		780			
Max. Bremsstrom	I _{B_max} / A	1	40 / 168	4)	168	
Min. Bremswiderstandswert	R_{B_min} / Ω		5 4) / 6		5	
Bremstransistor 2)	Ма	•	lauer: 12 D: 50%	0s;	
Schutzfunktion für Bremstransistor		Kurz	Kurzschlussüberwachung			
Schutzfunktion Bremswiderstand	1	Feedba	acksignal	auswertu	ng und	
(Error GTR7 always on)			Stromab	schaltung	1	
Zwischenkreiskapazität	C / µF	3300	3900	5200	6200	
Max. vorladbare Gesamtkapazität @ Un = 400 V	Cpc_max / µF	11400	11400	17100	17100	
Max. vorladbare Gesamtkapazität @ Un_uL = 480 V	Cpc_max_UL / µF	7900	7900	11800	11800	
Tabelle 38: DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte						

Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.

³⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung. Bei DC-Spannungsversorgung erfolgt keine Stromabschaltung.

⁴⁾ Nur bei Fluidkühlern (Wasser) mit Unterbaubremswiderständen.

3.4.3 Unterbaubremswiderstände

Technische Daten der Unterbaubremswiderstände		
Bremswiderstandswert	R/Ω	5,33
Bemessungsleistung	Po / W	1095
Periodisches Energieaufnahmevermögen bezogen auf 120s	Eperiodic / kJ	105
Einschaltdauer bezogen auf 120s @ <i>U_dc</i> = 780V	ED/s	0,9
Einmaliges Energieaufnahmevermögen	Esingle / kJ	150
Einschaltdauer Einzelimpuls @ U_dc = 780V	ED/s	1,3
Überlastschutzfunktion Unterbaubremswiderstand (E.brOH)	1)	Abschaltung Bremstransistor und Wechselrichter
Tabelle 39: Unterbaubremswiderstände		

Die Überlastschutzfunktion berechnet die Drahttemperatur des Unterbaubremswiderstands. Überschreitet die Drahttemperatur den "brOH error level" werden Bremstransistor und Wechselrichter abgeschaltet.

Für weitere Informationen zu den Unterbaubremswiderständen => F6 Programmierhandbuch Kapitel "Unterbaubremswiderstands-Schutz".

ACHTUNG

Verlustleistung der Unterbaubremswiderstände beachten

Im Bremsbetrieb mit Unterbaubremswiderständen erhöht sich die abzuführende Leistung des Kühlkörpers.

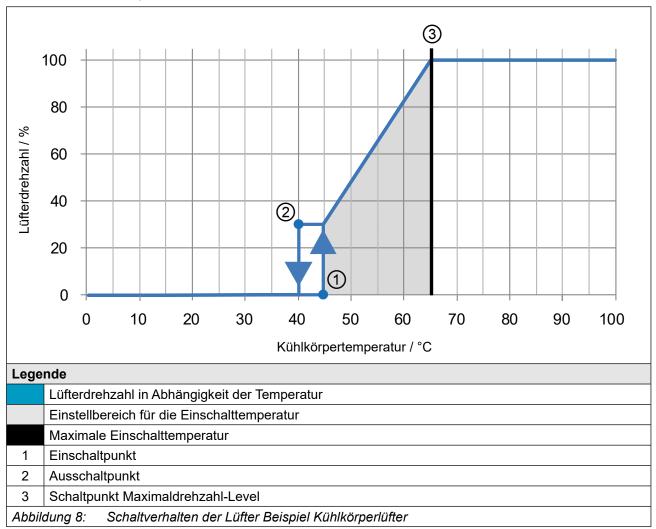
Verlustleistung der Bremswiderstände bei der Auslegung des Kühlsystems beachten.

3.4.4 Lüfter

Gerätegröße		19 20 21 22 23 2				24		
Innonroumlüfter	Anzahl	1						
Innenraumlüfter Drehzahlvariabel		ja						
Anzahl		2						
Kühlkörperlüfter Drehzahlvariabel		ja						
Tabelle 40: Lüfter								

Die Lüfter sind drehzahlvariabel. Sie werden automatisch, je nach Einstellung der Temperaturgrenzen in der Software, auf hohe oder niedrige Drehzahl gesteuert.

ACHTUNG


Zerstörung der Lüfter!

► Es dürfen keine Fremdkörper in die Lüfter eindringen!

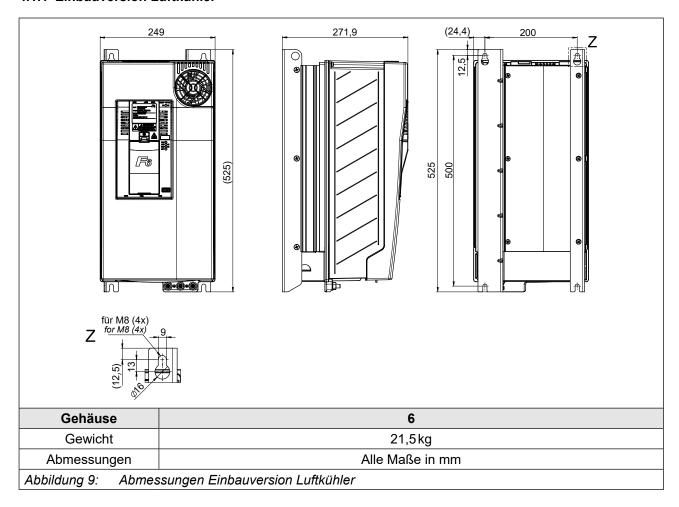
ALLGEMEINE ELEKTRISCHE DATEN

3.4.4.1 Schaltverhalten der Lüfter

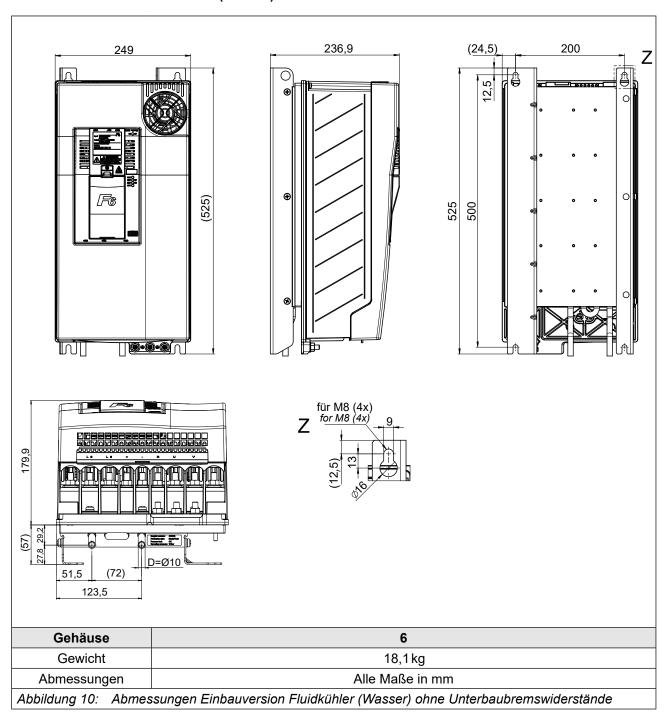
Die Temperaturüberwachung steuert die Lüfter mit verschiedenen Ein- und Ausschaltpunkten.

3.4.4.2 Schaltpunkte der Lüfter

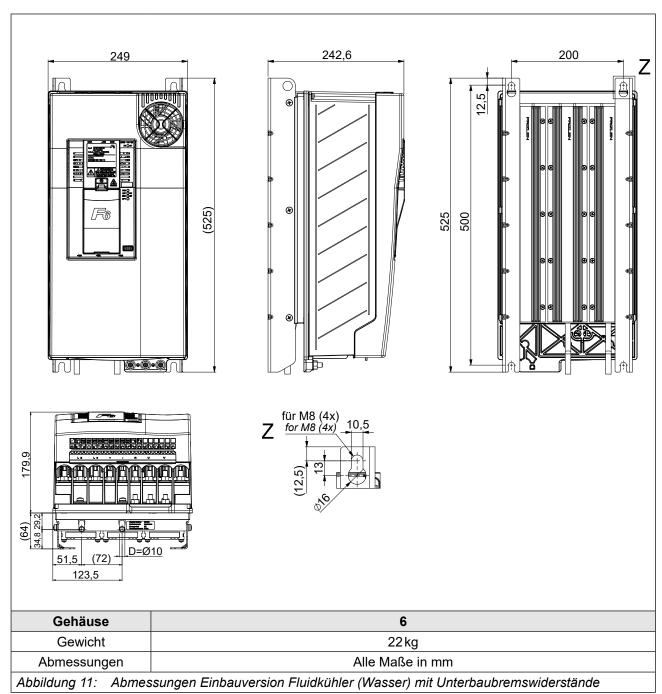
Der Schaltpunkt für die Einschalttemperatur und das Maximaldrehzahl-Level der Lüfter sind einstellbar. In der folgenden Tabelle sind die Standardwerte angegeben.


Lüfter		Kühlkörper	Innenraum
Einschalttemperatur	T/°C	45	45
Maximaldrehzahl-Level	T/°C	65	55
Tabelle 41: Schaltpunkte	der Lüfte	r	

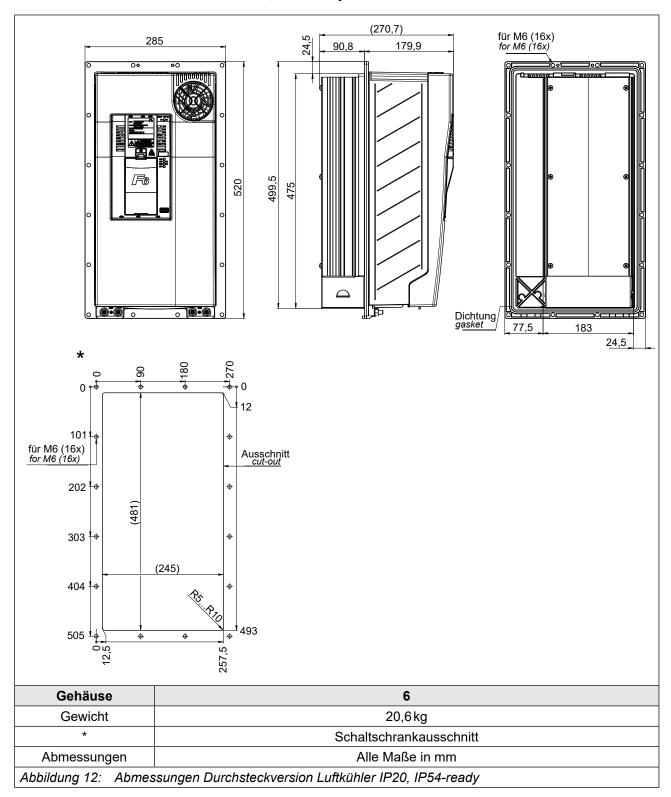
4 Einbau


4.1 Abmessungen und Gewichte

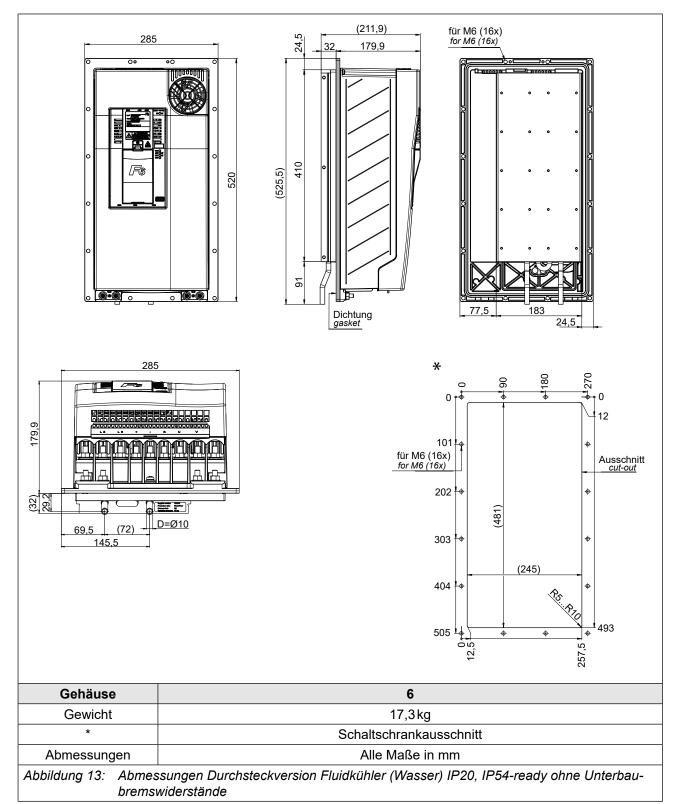
4.1.1 Einbauversion Luftkühler


ABMESSUNGEN UND GEWICHTE

4.1.2 Einbauversion Fluidkühler (Wasser) ohne Unterbaubremswiderstände


4.1.3 Einbauversion Fluidkühler (Wasser) mit Unterbaubremswiderstände

65


ABMESSUNGEN UND GEWICHTE

4.1.4 Durchsteckversion Luftkühler IP20, IP54-ready

4.1.5 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready ohne Unterbaubremswiderstände

67

4.1.6 Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready mit Unterbaubremswiderstände

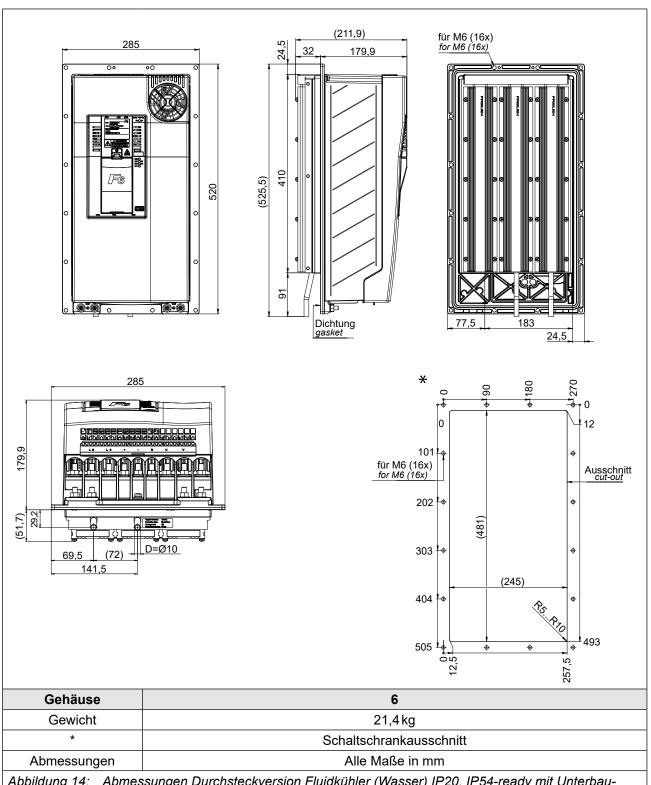
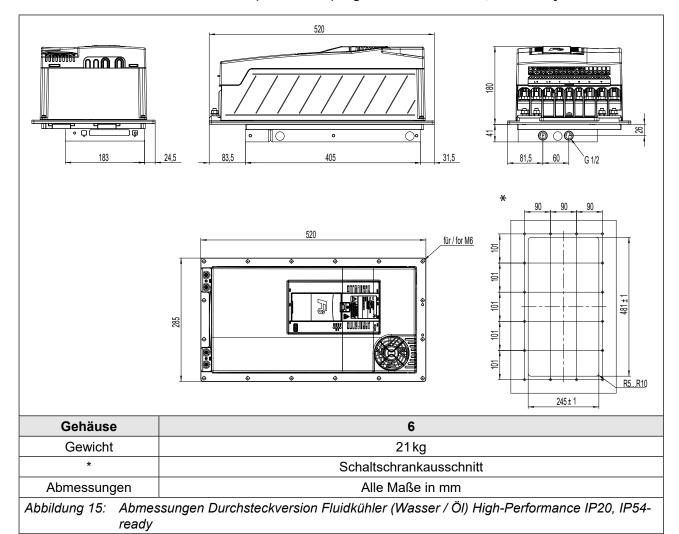



Abbildung 14: Abmessungen Durchsteckversion Fluidkühler (Wasser) IP20, IP54-ready mit Unterbaubremswiderstände

4.1.7 Durchsteckversion Fluidkühler (Wasser / Öl) High-Performance IP20, IP54-ready

4.2 Schaltschrankeinbau

4.2.1 Befestigungshinweise

Zur Montage der Antriebsstromrichter wurden folgende Befestigungsmaterialien mit der entsprechenden Güte von KEB getestet.

Benötigtes Material	Anzugsdrehmoment
Sochokontochroubo ISO 4017 Mg 0 0	22 Nm
Sechskantschraube ISO 4017 - M8 - 8.8	194 lb inch
Flache Scheibe ISO 7090 - 8 - 200 HV	_
Tabelle 42: Befestigungshinweise für Einbauversion	

Benötigtes Material	Anzugsdrehmoment
Sashakantashrauha ISO 4017 MG 0 0	9Nm
Sechskantschraube ISO 4017 - M6 - 8.8	80 lb inch
Flache Scheibe ISO 7090 - 6 - 200 HV	_
Tabelle 43: Befestigungshinweise für Durchsteckversion	

ACHTUNG

Verwendung von anderem Befestigungsmaterial

➤ Das alternativ gewählte Befestigungsmaterial muss die oben genannten Werkstoffkennwerte (Güte) und Anzugsdrehmomente einhalten!

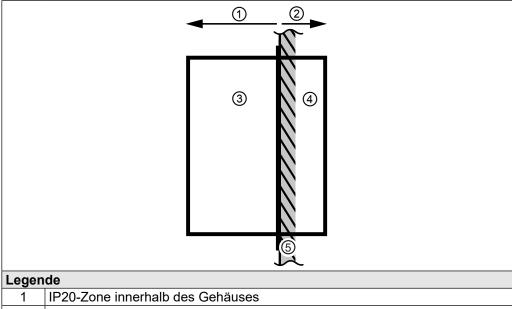
Die Verwendung anderer Befestigungsmaterialien erfolgt außerhalb der Kontrollmöglichkeiten von KEB und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

4.2.2 Einbauabstände

Verlustleistung zur Schaltschrankauslegung "3.3.5 Verlustleistung bei Bemessungsbetrieb für 400 V-Geräte". Abhängig von der Betriebsart / Auslastung kann hier ein geringerer Wert angesetzt werden.

Montage des Antriebsstromrichters

Für einen betriebssicheren Betrieb, muss der Antriebsstromrichter ohne Abstand auf einer glatten, geschlossenen, metallisch blanken Montageplatte montiert werden.


Einbauabstände
A E C B

Maß	Abstand in mm	Abstand in inch
Α	150	6
В	100	4
С	30	1,2
D	0	0
Е	0	0
F 1)	50	2

¹⁾ Abstand zu vorgelagerten Bedienelementen in der Schaltschranktür.

Abbildung 16: Einbauabstände

4.2.3 Montage von IP54-ready Geräten

Legende		
1	IP20-Zone innerhalb des Gehäuses	
2	IP54-Zone außerhalb des Gehäuses	
3	Antriebsstromrichter (Leistungsteil und Steuerung)	
4	Antriebsstromrichter (Kühlkörper)	
5	Gehäuse (z.B. Schaltschrankwand)	
Abbildung 17: Montage von IP54-ready Geräten		

IP54-Zone: Kühlkörper außerhalb des Gehäuses

Die Schutzart IP54 kann ausschließlich im ordnungsgemäß eingebauten Zustand erreicht werden.

Für eine ordnungsgemäße Montage muss eine geeignete IP54-Dichtung (=> "5.4.2 Dichtung für IP54-ready Geräte") zwischen Kühlkörper und Gehäuse (z.B. Schaltschrankwand) verbaut werden.

Nach dem Einbau muss die Dichtigkeit überprüft werden. Die Trennung zum Gehäuse entspricht bei ordnungsgemäßer Montage der Schutzart IP54.

Bei luftgekühlten Geräten müssen die Lüfter jedoch vor ungünstigen Umgebungseinflüssen geschützt werden.

Dazu zählen brennbare, ölige oder gefährliche Dämpfe oder Gase, korrosive Chemikalien, grobe Fremdkörper und übermäßiger Staub. Dies betrifft besonders den Zugang des Kühlkörpers von oben (Luftaustritt). Eisbildung ist unzulässig.

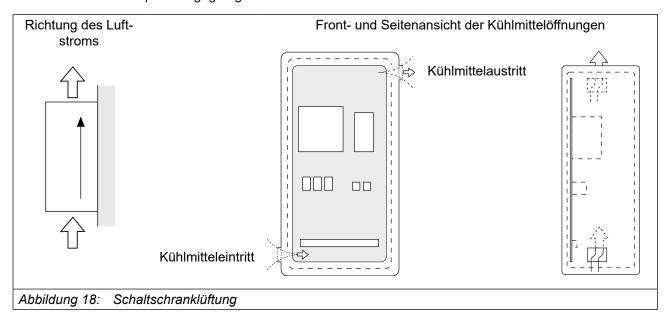
UL: Gerätekühlkörper ist als NEMA Type 1 eingestuft.

IP20-Zone: Gerät innerhalb des Gehäuses

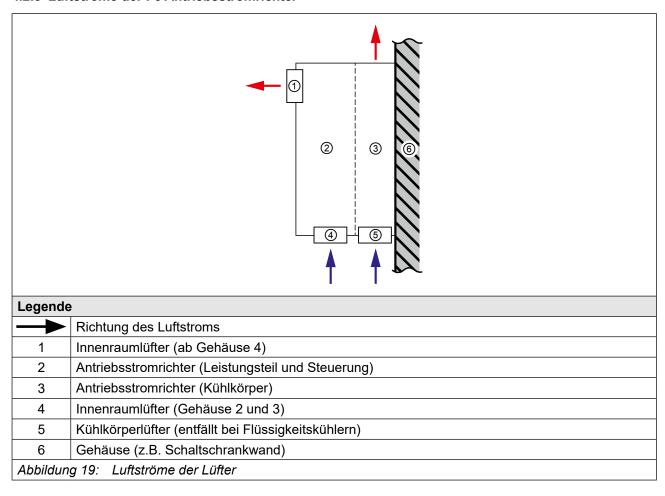
Dieser Teil ist zum Einbau in ein für die angestrebte Schutzart geeignetes Gehäuse (z.B. Schaltschrank) vorgesehen.

Die Leistungsanschlüsse sind ausgenommen => "3.1.1 Klimatische Umweltbedingungen".

ACHTUNG

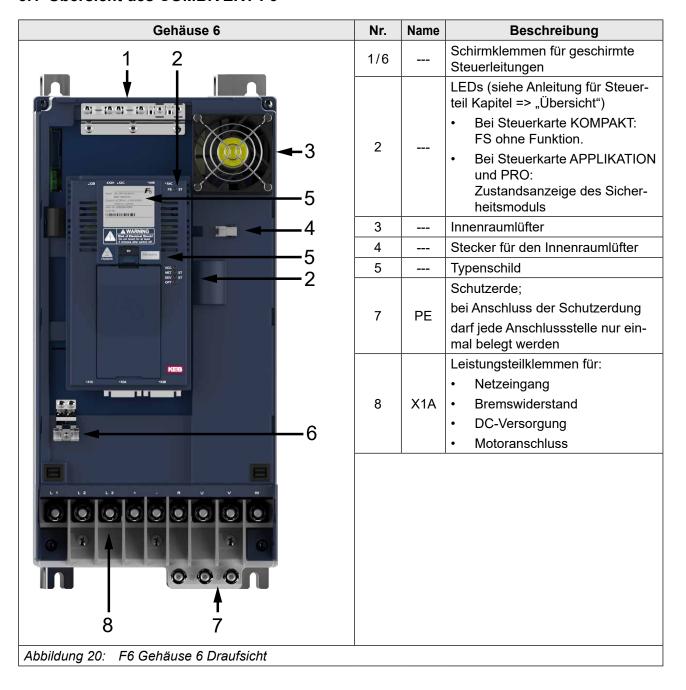

Defekt durch dauerhaftes Spritzwasser!

▶ Das Gerät niemals dauerhaftem Spritzwasser (z.B. direkte Regeneinwirkung) aussetzen!

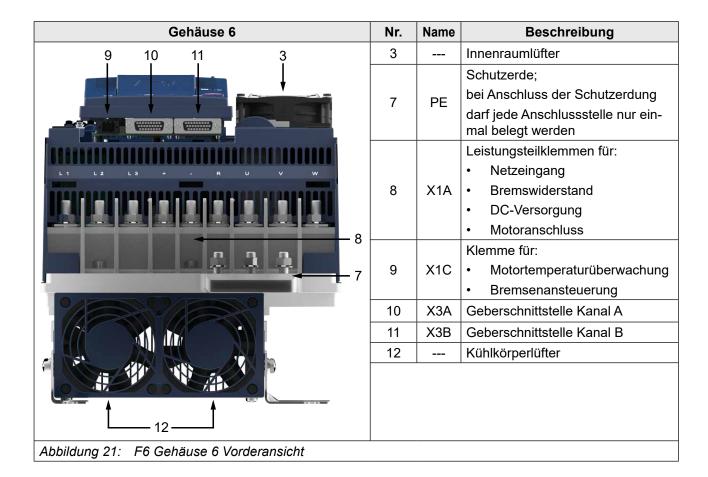


4.2.4 Schaltschranklüftung

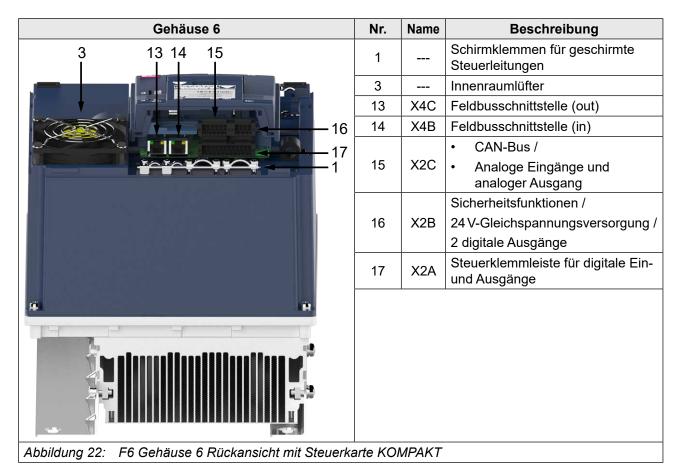
Wenn konstruktionsbedingt nicht auf eine Innenraumlüftung des Schaltschrankes verzichtet werden kann, muss durch entsprechende Filter der Ansaugung von Fremdkörpern entgegen gewirkt werden.



4.2.5 Luftströme der F6 Antriebsstromrichter



5 Installation und Anschluss


5.1 Übersicht des COMBIVERT F6

ÜBERSICHT DES COMBIVERT F6

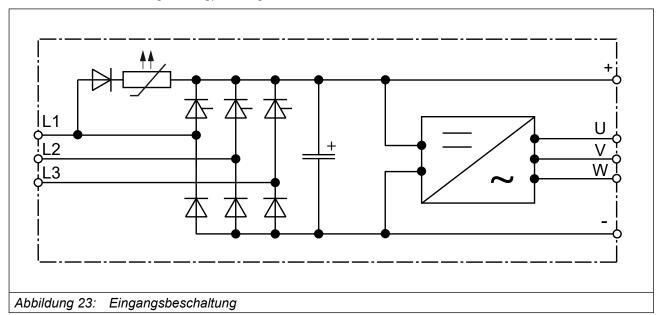
Weitere Informationen sind in der jeweiligen Steuerkartenanleitung zu finden.

Gebrauchsanleitung COMBIVERT F6 Steuerkarte KOMPAKT www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-k-inst-20144795_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte APPLIKATION www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte PRO www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_de.pdf

5.2 Anschluss des Leistungsteils


ACHTUNG

Zerstörung des Antriebsstromrichters!

▶ Niemals Netzeingang und Motorausgang vertauschen!

5.2.1 Anschluss der Spannungsversorgung

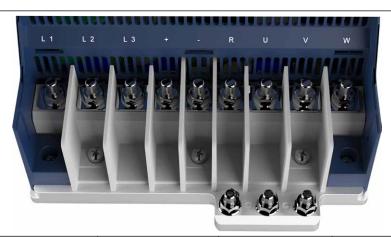
Der COMBIVERT F6 kann über die Klemmen L1, L2 und L3 (AC-Spannungsversorgung) oder über die Klemmen + und - (DC-Spannungsversorgung mit Einschaltstrombegrenzung) versorgt werden.

ACHTUNG

Bei AC-Spannungsversorgung minimale Wartezeit zwischen zwei Einschaltvorgängen beachten!

Zyklisches Aus- und Einschalten des Antriebsstromrichters führt zu temporärer Hochohmigkeit des PTC-Vorladewiderstandes. Nach Abkühlung des PTC-Vorladewiderstandes ist eine erneute Inbetriebnahme ohne Einschränkung möglich. Die Wartezeit zwischen zwei Einschaltvorgängen ist von der externen Kapazität, der AC-Netzspannung und der Umgebungstemperatur abhängig.

- ► Ohne externe Kapazität: 5 min
- ▶ Mit externer Kapazität (weitere Antriebsstromrichter): Bis zu 20 min.


ACHTUNG

Keine Einschaltstrombegrenzung bei DC-Spannungsversorgung!

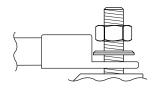
▶ Bei DC-Spannungsversorgung muss eine externe Einschaltstrombegrenzung vorgesehen werden.

ANSCHLUSS DES LEISTUNGSTEILS

5.2.1.1 Klemmleiste X1A

Name	Funktion	Klemmenan- schluss	Anzugsdrehmo- ment	Kabelschuh- abmessung Typ	Max. Anzahl der Leiter 1)	
L1	Netzanschluss					
L2	3-phasig			1		
L3	5-priasig					
+	DC-Klemmen	O mana Ctabbalaan	1015 NM		Für IEC: 2	
-	DC-Memmen	8 mm Stehbolzen für		2	T di ILO. 2	
R	Anschluss für Bremswiderstand (zwischen + und R)	M8-Kabelschuhe			Für UL: 2	
U						
V	Motoranschluss			1		
W						
Abbildu	Abbildung 24: Klemmleiste X1A					

¹⁾ Ab 50mm² nur ein Leiter zulässig


Kabelschuhabmessur	ng	Typ 1	Typ 2		
Max. Breite	I/mm	24	19		
Max. Schaftlänge	I/mm	46	46		
Max. Durchmesser	I/mm	19	19		
Tabelle 44: Kabelschuhabmessung X1A					

Alternativ zu einer 95 mm² Leitung können auch 2 parallele 35 mm² Leitungen verlegt werden.

ACHTUNG

Kurzschluss durch zu geringe Luft- und Kriechstrecken!

► Beim Anschluss von 95 mm² Leitungen muss die Pressung der Kabelschuhe nach oben zeigen!

5.2.2 Schutz- und Funktionserde

Schutz- und Funktionserde dürfen nicht an derselben Klemme angeschlossen werden.

5.2.2.1 Schutzerdung

Die Schutzerde (PE) dient der elektrischen Sicherheit insbesondere dem Personenschutz im Fehlerfall.

Elektrischer Schlag durch Falschdimensionierung!

▶ Erdungsquerschnitt ist entsprechend VDE 0100 zu wählen!

Name	Funktion	Anschlusstyp	Anzugsdrehmoment
	Anschluss für Schutzerde	M8-Gewindestift mit Mutter für M8-Kabelschuhe	1015 Nm 88132 lb inch
Abbildung 25: A	Anschluss für Schutzerde		

Fehlerhafte Montage der Schutzerde

Als Anschluss für die Schutzerde dürfen nur die M8-Gewindestifte mit Mutter verwendet werden!

5.2.2.2 Funktionserdung

Eine Funktionserdung kann zusätzlich notwendig sein, wenn aus EMV-Gründen weitere Potentialausgleiche zwischen Geräten oder Teilen der Anlage zu schaffen sind.

Wird der Antriebsstromrichter EMV-technisch verdrahtet, ist eine zusätzliche Funktionserde (FE) nicht erforderlich.

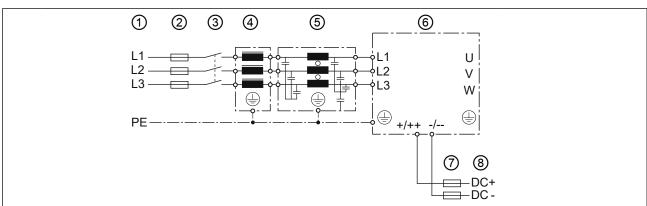
Die Funktionserde darf nicht grün/gelb verdrahtet werden!

Gebrauchsanleitung EMV- und Sicherheitshinweise. www.keb.de/fileadmin/media/Manuals/dr/emv/0000ndb0000.pdf

5.3 Netzanschluss

5.3.1 Netzzuleitung

Der Leiterquerschnitt der Netzzuleitung wird von folgenden Faktoren bestimmt:


- Eingangsstrom des Antriebsstromrichters
- Verwendeter Leitungstyp
- Verlegeart und Umgebungstemperaturen
- Den vor Ort gültigen Elektrovorschriften

Der Projektierer ist für die Auslegung verantwortlich.

5.3.2 AC-Netzanschluss

5.3.2.1 AC-Versorgung 3-phasig

Nr.	Тур	Beschreibung				
	Netzphasen	3-phasig				
		TN, TT	IT			
1	Netzform	Die Bemessungsspannung zwischen einem Außenleiter und dem Erdpot tial (bzw. dem Sternpunkt im IT - Netz) darf maximal 300 V, USA UL: 480 / 277 V betragen.				
		(Beim IT - Netz muss eine kurzfristige Abschaltung sichergestellt sein).				
	Personenschutz	RCMA mit Trenner oder RCD Typ B Isolationswä				
2	Netzsicherungen	Siehe Hinweis im Kapitel "Absicherung der Antriebsstromrichter".				
3	Netzschütz	-				
4	Netzdrossel	Siehe Hinweise im Kapitel "Filter und D	Prosseln".			
5	HF-Filter für TN-, TT-Netze	Zur Einhaltung der Grenzwerte gemäß <i>EN 61800-3</i> erforderlich.				
	HF-Filter für IT-Netze					
6	Antriebsstromrichter	COMBIVERT F6				
7	DC-Sicherungen	Siehe Hinweis im Kapitel "Absicherung der Antriebsstromrichter".				
8	DC-Versorgung	Vom Antriebsstromrichter erzeugte DC-Versorgung zum Anschluss weiterer Antriebsstromrichter => "5.3.6 DC-Verbund"				

5.3.2.2 Hinweis zu harten Netzen

Bei Antriebsstromrichtern mit Spannungszwischenkreis hängt die Lebensdauer von der Höhe der DC-Spannung, der Umgebungstemperatur sowie von der Strombelastung der Elektrolytkondensatoren im Zwischenkreis ab. Durch den Einsatz von Netzdrosseln kann die Lebensdauer der Kondensatoren, speziell bei Dauerbelastung (S1-Betrieb) des Antriebes, bzw. beim Anschluss an "harte" Netze, wesentlich erhöht werden.

Der Begriff "hartes" Netz sagt aus, dass die Knotenpunktleistung (SNet) des Netzes im Vergleich zur Ausgangsbemessungsscheinleistung des Antriebsstromrichter (Sout) sehr groß ist (>>200).

Eine Auflistung von Filtern und Drosseln => "5.4.1 Filter und Drosseln".

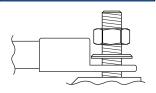
5.3.3 DC-Netzanschluss

ACHTUNG

DC-Betrieb

▶ Die DC-Spannungsversorgung von 230V-Geräten ist nur nach Rücksprache mit KEB zulässig!

5.3.3.1 Klemmleiste X1A DC-Anschluss


Name	Funktion	Klemmenan- schluss	Anzugsdrehmo- ment	Kabelschuh- abmessung Typ	Max. Anzahl der Leiter 1)
+	DC-Klemmen	8 mm Stehbolzen	1015 Nm	2	Für IEC: 2
-	DC-Kleffiffleff	für M8-Kabelschuhe	88132 lb inch	2	Für UL: 2
Abbildung 27: Klemmleiste X1A DC-Anschluss					

¹⁾ Ab 50mm² nur ein Leiter zulässig

Kabelschuhabmessun	g	Typ 2		
Max. Breite	I/mm	19		
Max. Schaftlänge	I/mm	46		
Max. Durchmesser	I/mm	19		
Tabelle 45: Kabelschuhabmessung DC-Anschluss				

ACHTUNG

Kurzschluss durch zu geringe Luft- und Kriechstrecken!

► Beim Anschluss von 95 mm² Leitungen muss die Pressung der Kabelschuhe nach oben zeigen!

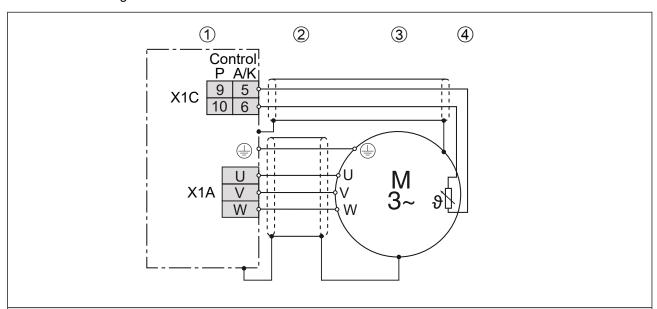


5.3.3.2 DC-Versorgung

ACHTUNG

Zerstörung des Antriebsstromrichters!

► Niemals "+ / ++" und "- / --" vertauschen!



Nr.	Тур	Beschreibung
1	DC-Versorgung	2-phasig
2	DC-Netzsicherungen	Siehe Hinweis im Kapitel "Absicherung DC-Versorgung".
3	HF-Filter	Zur Einhaltung der Grenzwerte gemäß EN 61800-3 erforderlich.
4	Antriebsstromrichter	COMBIVERT F6
A		

Abbildung 28: Anschluss der DC-Netzversorgung

5.3.4 Anschluss des Motors

5.3.4.1 Verdrahtung des Motors

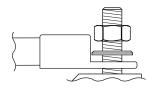
Le			

- 1 KEB COMBIVERT
- Motorleitung, Schirm beidseitig und großflächig auf den metallisch blanken Rahmen oder die Montageplatte auflegen (ggf. Lack entfernen)
- 3 Drehstrommotor
- 4 | Temperaturüberwachung (optional) => Gebrauchsanleitung "Steuerteil"

Abbildung 29: Verdrahtung des Motors

5.3.4.2 Klemmleiste X1A Motoranschluss

Name	Funktion	Klemmenan- schluss	Anzugsdrehmo- ment	Kabelschuh- abmessung Typ	Max. Anzahl der Leiter 1)
U		8 mm Stehbolzen	10. 15 Nm		Für IEC: 2
V	Motoranschluss	für	1015 Nm 88132 lb inch	1	
W		M8-Kabelschuhe	00 132 ID ITICIT		Für UL: 2

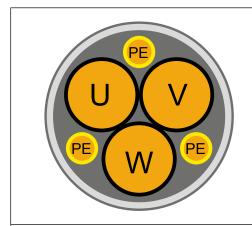

Abbildung 30: Klemmleiste X1A Motoranschluss

¹⁾ Ab 50mm² nur ein Leiter zulässig

Kabelschuhabmessun	g	Typ 1		
Max. Breite	I/mm	24		
Max. Schaftlänge	I/mm	46		
Max. Durchmesser	I/mm	19		
Tabelle 46: Kabelschuhabmessung Motoranschluss				

ACHTUNG

Kurzschluss durch zu geringe Luft- und Kriechstrecken!



► Beim Anschluss von 95 mm² Leitungen muss die Pressung der Kabelschuhe nach oben zeigen!

5.3.4.3 Auswahl der Motorleitung

Bei kleinen Leistungen in Verbindung mit langen Motorleitungslängen spielt die richtige Verdrahtung sowie die Motorleitung selbst eine wichtige Rolle. Kapazitätsarme Leitungen (Empfehlung: Phase/Phase <65 pF/m, Phase/Schirm <120 pF/m) am Antriebsstromrichterausgang haben folgende Auswirkungen:

- Ermöglichen größere Motorleitungslängen => "5.3.4.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung"
- Bessere EMV-Eigenschaften (Reduktion der Gleichtakt Ausgangsströme gegen Erde)

Bei großen Motorleistungen (ab 30 kW) müssen geschirmte Motorleitungen mit symmetrischem Aufbau verwendet werden. Bei diesen Leitungen ist der Schutzleiter gedrittelt und gleichmäßig zwischen den Phasenleitungen angeordnet. Sofern die örtlichen Bestimmungen dies zulassen, kann eine Leitung ohne Schutzleiter verwendet werden. Dieser muss dann extern verlegt werden. Bestimmte Leitungen lassen auch den Schirm zur Verwendung als Schutzleiter zu. Hierzu sind die Angaben des Leitungsherstellers zu beachten!

Abbildung 31: Symmetrische Motorleitung

5.3.4.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung

Die maximale Motorleitungslänge ist abhängig von der Kapazität der Motorleitung sowie von der einzuhaltenden Störaussendung. Hier sind externe Maßnahmen zu ergreifen (z.B. der Einsatz eines Netzfilters).

Durch den Einsatz von Motordrosseln oder Motorfiltern lässt sich die Leitungslänge erheblich verlängern. KEB empfiehlt den Einsatz ab einer Leitungslänge von 50 m.

Weitere Informationen zur Motorleitungslänge sind der entsprechenden Filteranleitung zu entnehmen.

5.3.4.5 Motorleitungslänge bei Parallelbetrieb von Motoren

Die resultierende Motorleitungslänge bei Parallelbetrieb von Motoren, bzw. bei Parallelverlegung durch Mehraderanschluss ergibt sich aus folgender Formel:

Resultierende Motorleitungslänge = ∑Einzelleitungslängen x √Anzahl der Motorleitungen

5.3.4.6 Motorleitungsquerschnitt

Der Motorleitungsquerschnitt ist abhängig

- von der Form des Ausgangsstroms (z.B. Oberwellengehalt).
- vom realen Effektivwert des Motorstroms.
- · von der Leitungslänge.
- vom Typ der verwendeten Leitung.
- von Umgebungsbedingungen wie Bündelung und Temperatur.

5.3.4.7 Verschaltung des Motors

ACHTUNG

Fehlerhaftes Verhalten des Motors!

► Generell sind immer die Anschlusshinweise des Motorenherstellers gültig!

ACHTUNG

Motor vor Spannungsspitzen schützen!

▶ Antriebsstromrichter schalten am Ausgang mit einem hohen dU/dt. Insbesondere bei langen Motorleitungen (>15 m) können dadurch Spannungsspitzen am Motor auftreten, die dessen Isolationssystem gefährden. Zum Schutz des Motors kann eine Motordrossel, ein dU/ dt-Filter oder ein Sinusfilter unter Berücksichtigung der Betriebsart eingesetzt werden.

5.3.4.8 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)

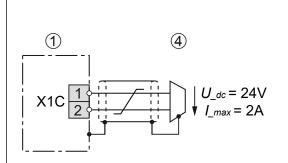
Im COMBIVERT ist eine umschaltbare Temperaturauswertung implementiert.

Es stehen verschiedene Betriebsarten der Auswertung zur Verfügung. Diese sind abhängig von der Steuerkarte => Gebrauchsanleitung "Steuerteil".

Die gewünschte Betriebsart ist per Software einstellbar (dr33). Wird die Auswertung nicht benötigt, muss sie per Software (mit Parameter pn12 = 7) deaktiviert werden => Programmierhandbuch.

X1C	PIN	Name	Beschreibung
	1	BR+	Bremsenansteuerung / Ausgang +
	2	BR-	Bremsenansteuerung / Ausgang -
	3	reserviert	_
2 4 6	4	reserviert	_
	5	TA1	Temperaturerfassung / Ausgang +
	6	TA2	Temperaturerfassung / Ausgang -
1 3 5			
Abbildung 32: Klemmleiste	' (1C für	Steuerkarte APPLIK	(ATION und KOMPAKT

X1C	PIN	Name	Beschreibung
	1	BR+	Bremsenansteuerung / Ausgang +
	2	BR-	Bremsenansteuerung / Ausgang -
	3	VO	Zur Versorgung der Rückmeldeeingänge
	4	24Vout	Zur versorgung der Ruckmeideelingange
2 4 6 8 10	5	DIBR1	Rückmeldeeingang 1 für Bremse oder Relais
	6	DIBR2	Rückmeldeeingang 2 für Bremse oder Relais
	7	reserviert	_
	8	reserviert	_
	9	TA1	Temperaturerfassung / Eingang +
	10	TA2	Temperaturerfassung / Eingang -
Abbildung 33: Klemmleiste X	(1C für	Steuerkarte PRO	


ACHTUNG

Störungen durch falsche Leitungen oder Verlegung!

Fehlfunktionen der Steuerung durch kapazitive oder induktive Einkopplung.

- ► Leitungen vom Motortemperatursensor (auch geschirmt) nicht zusammen mit Steuerleitungen verlegen.
- ▶ Leitungen vom Motortemperatursensor innerhalb der Motorleitungen nur mit doppelter Abschirmung zulässig!

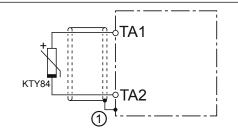
Bei Steuerkarte APPLIKATION und KOMPAKT:

Die Spannung zur Ansteuerung einer Bremse ist von der internen Spannungsversorgung entkoppelt. Die Bremse funktioniert nur bei externer Versorgung.

Bei Steuerkarte PRO:

Die Bremse kann sowohl mit interner als auch externer Spannung versorgt werden. Spannungstoleranzen und Ausgangsströme unterscheiden sich bei interner oder externer Spannungsversorgung.

Spezifikation in der jeweiligen


=> Gebrauchsanleitung "Steuerteil" beachten.

. | _

COMBIVERT

4 Bremse

Abbildung 34: Anschluss der Bremsenansteuerung

KTY-Sensoren sind gepolte Halbleiter und müssen in Durchlassrichtung betrieben werden!

Die Anode an TA1 und die Kathode an TA2 anschließen! Nichtbeachtung führt zu Fehlmessungen im oberen Temperaturbereich. Ein Schutz der Motorwicklung ist dann nicht mehr gewährleistet.

1 Anschluss über Schirmauflageblech (falls nicht vorhanden, auf der Montageplatte auflegen).

Abbildung 35: Anschluss eines KTY-Sensors

ACHTUNG

Kein Schutz der Motorwicklung bei falschem Anschluss!

- ► KTY-Sensoren in Durchlassrichtung betreiben.
- ► KTY-Sensoren nicht mit anderen Erfassungen kombinieren.

Weitere Hinweise zur Verdrahtung der Temperaturüberwachung und der Bremsenansteuerung sind in der jeweiligen Steuerteilanleitung zu beachten.

5.3.5 Anschluss und Verwendung von Bremswiderständen

A VORSICHT

Brandgefahr beim Einsatz von Bremswiderständen!

▶ Die Brandgefahr kann durch den Einsatz von "eigensicheren Bremswiderständen" bzw. durch Nutzung geeigneter Überwachungsfunktionen / -schaltungen deutlich verringert werden.

ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters!

► Der minimale Bremswiderstandswert darf nicht unterschritten werden => "3.3 Gerätedaten der 400 V-Geräte"

A VORSICHT

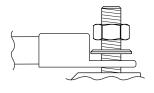
Heiße Oberflächen durch Belastung des Bremswiderstands!

Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Oberfläche vor Berührung prüfen.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.

5.3.5.1 Klemmleiste X1A Anschluss Bremswiderstand

Name	Funktion	Klemmenan- schluss	Anzugsdrehmo- ment	Kabelschuh- abmessung Typ	Max. Anzahl der Leiter 1)
+	Anschluss für Bremswider-	8 mm Stehbolzen für	1015 Nm	2	Für IEC: 2
R	stand (zwischen + und R)	M8-Kabelschuhe	88132 lb inch	2	Für UL: 2


Abbildung 36: Klemmleiste X1A Anschluss Bremswiderstand

¹⁾ Ab 50mm² nur ein Leiter zulässig

Kabelschuhabmessun	g	Typ 2		
Max. Breite	I/mm	19		
Max. Schaftlänge	I/mm	46		
Max. Durchmesser	I/mm	19		
Tabelle 47: Kabelschuhabmessung Bremswiderstand				

ACHTUNG

Kurzschluss durch zu geringe Luft- und Kriechstrecken!

▶ Beim Anschluss von 95 mm² Leitungen muss die Pressung der Kabelschuhe nach oben zeigen!

5.3.5.2 Verwendung nicht eigensicherer Bremswiderstände

WARNUNG

Verwendung nicht eigensicherer Bremswiderstände

Brand- oder Rauchentwicklung bei Überlastung oder Fehler!

- ▶ Nur Bremswiderstände mit Temperatursensor verwenden.
- ► Temperatursensor auswerten.
- ► Fehler am Antriebsstromrichter auslösen (z.B. externer Eingang).
- ► Eingangsspannung wegschalten (z.B. Eingangsschütz).
- ► Anschlussbeispiele für nicht eigensichere Bremswiderstände
- ► => Gebrauchsanleitung "Installation Bremswiderstände"

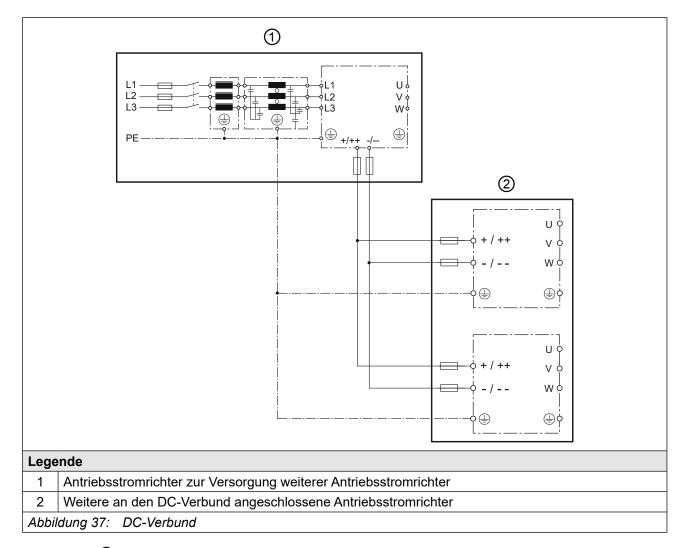
Verwendung nicht eigensicherer Bremswiderstände mit erweiterter Temperaturüberwachung

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_brakingresistors-20116737_de.pdf

Kapitel "Anschluss eines Bremswiderstands mit erweiterter Temperaturüberwachung".

5.3.6 DC-Verbund

In einem DC-Verbund werden die Zwischenkreise mehrerer Antriebsstromrichter gekoppelt. Der Energieaustausch wird so untereinander ermöglicht und die Energieeffizienz der Anwendung wird erhöht.


Dieser Antriebsstromrichter kann als Teil eines DC-Verbundes entweder über die DC-Klemmen versorgt werden => "5.3.3 DC-Netzanschluss" oder über die DC-Klemmen weitere Antriebsstromrichter versorgen => "5.3.2 AC-Netzanschluss".

KEB hat die Vielzahl der möglichen DC-Verbunde nicht gegen die EMV-Produktnorm DIN EN IEC 61800-3 getestet. Die CE-Konformität des DC-Verbundes liegt im Verantwortungsbereich des Anwenders.

Folgende zusätzliche Sicherheitshinweise müssen bei der Verwendung dieses Antriebsstromrichters in einem DC-Verbund beachtet werden:

- Dieser Antriebsstromrichter darf ausschließlich zusammen mit anderen F6 und S6 Antriebsstromrichtern der 400V-Klasse im DC-Verbund betrieben werden.
- Dieser Antriebsstromrichter muss in einem Gehäuse verbaut sein.
- Dieser Antriebsstromrichter muss an den DC-Klemmen mit Sicherungen geschützt werden => "3.3.6.2 Absicherung der 400 V-Geräte bei DC-Versorgung".
- Nach Auslösung einer Sicherung im DC-Verbund, infolge eines Kurzschlusses, sollten aufgrund der Gefahr einer Vorschädigung alle Sicherungen im DC-Verbund ausgetauscht werden.
- Die Parametrierung der Eingangsphasenausfallerkennung muss angepasst werden => F6 Programmierhandbuch.

<u>1 Bei Verwendung dieses Antriebsstromrichters zur Versorgung weiterer Antriebsstromrichter über die DC-Klemmen muss zusätzlich folgendes beachtet werden:</u>

- Die max. vorladbare Gesamtkapazität (interne Kapazität + externe Kapazität) darf nicht überschritten werden => "Tabelle 38: DC-Zwischenkreis / Bremstransistorfunktion der 400 V-Geräte".
- Die min. Wartezeit zwischen zwei Vorladevorgängen muss eingehalten werden => "5.2.1 Anschluss der Spannungsversorgung".
- Während der Vorladung dürfen über die DC-Klemmen versorgte Antriebsstromrichter nicht belastet werden.
- Die Überlastung des Gleichrichters muss durch den Anwender verhindert werden => "3.3.4 Übersicht der Gleichrichterdaten für 400 V-Geräte".

② Bei Versorgung dieses Antriebsstromrichters über die DC-Klemmen muss zusätzlich folgendes beachtet werden:

• Die Vorladung des Antriebsstromrichters muss durch den versorgenden Antriebsstromrichter oder ein externes Vorlademodul erfolgen.

5.4 Zubehör

5.4.1 Filter und Drosseln

Spannungsklasse	Antriebsstromricht- ergröße	HF-Filter	Netzdrossel 50 Hz / 4% Uk		
	19	22E6T60-3000	19Z1B03-1000		
230V	20	24E6T60-3000	20Z1B03-1000		
	21	24E6T60-3000	21Z1B03-1000		
Tabelle 48: Filter und Drosseln 230V-Geräte					

Spannungsklasse	Antriebsstromricht- ergröße	HF-Filter	Netzdrossel 50 Hz / 4% Uk			
	21	22E6T60-3000	21Z1B04-1000			
400V	22	22E6T60-3000	22Z1B04-1000			
	23	24E6T60-3000	23Z1B04-1000			
	24	24E6T60-3000	24Z1B04-1000			
Tabelle 49: Filter und Drosseln 400V-Geräte						

ACHTUNG

Überhitzung der Unterbaufilter!

▶ Die Verwendung von Unterbaufiltern bei Antriebsstromrichtern mit der Materialnummer xxF6xxx-xxx9 (Fluidkühler Wasser, Einbauversion, Unterbaubremswiderstände) führt zu Überhitzung und ist nicht zulässig!

Die angegebenen Filter und Drosseln sind für Bemessungsbetrieb ausgelegt.

5.4.2 Dichtung für IP54-ready Geräte

Bezeichnung	Materialnummer			
Dichtung IP54	60F6T45-0004			
Tabelle 50: Dichtung für IP54-ready Geräte				

5.4.3 Nebenbaubremswiderstände

Technische Daten und Auslegung zu eigensicheren Bremswiderständen

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_de.pdf

Technische Daten und Auslegung zu nichteigensicheren Bremswiderständen

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf

6 Betrieb von flüssigkeitsgekühlten Geräten

6.1 Wassergekühlte Geräte

Bei Applikationen in denen prozessbedingt Kühlflüssigkeit vorhanden ist, bietet sich die Anwendung von wassergekühlten KEB COMBIVERT Antriebsstromrichtern an. Bei der Verwendung sind jedoch nachfolgende Hinweise unbedingt zu beachten.

6.1.1 Kühlkörper und Betriebsdruck

Bauart	Material	max. Betriebsdruck	Anschluss
Aluminium Kühlkörper mit Edelstahlrohren	Edelstahl 1.4404	10bar	=> "6.1.4 Anschluss des Kühlsystems"

ACHTUNG

Verformung des Kühlkörpers!

- ▶ Um eine Verformung des Kühlkörpers und die damit verbundenen Folgeschäden zu vermeiden, darf der jeweils angegebene maximale Betriebsdruck auch von Druckspitzen kurzzeitig nicht überschritten werden.
- ► Es ist die Druckgeräterichtlinie 2014/68/EU über Druckgeräte zu beachten!

6.1.2 Materialien im Kühlkreislauf

Für die Verschraubungen und auch im Kühlkreis befindliche metallische Gegenstände, die mit der Kühlflüssigkeit (Elektrolyt) in Kontakt stehen, ist ein Material zu wählen, welches eine geringe Spannungsdifferenz zum Kühlkörper bildet, damit keine Kontakt-korrosion und/ oder Lochfraß entsteht (elektrochemische Spannungsreihe, siehe folgende Tabelle). Der spezifische Einsatzfall ist in Abstimmung des gesamten Kühlkreislaufes vom Kunden selbst zu prüfen und hinsichtlich der Verwendbarkeit der eingesetzten Materialien entsprechend einzustufen. Bei Schläuchen und Dichtungen ist darauf zu achten, dass halogenfreie Materialien verwendet werden.

Eine Haftung für entstandene Schäden durch falsch eingesetzte Materialien und daraus resultierender Korrosion kann nicht übernommen werden!

Material	gebildetes lon	Normpotenzial	Material	gebildetes lon	Normpotenzial
Lithium	Li+	-3,04 V	Nickel	Ni2+	-0,25 V
Kalium	K+	-2,93 V	Zinn	Sn2+	-0,14 V
Calcium	Ca2+	-2,87 V	Blei	Pb3+	-0,13 V
Natrium	Na+	-2,71 V	Eisen	Fe3+	-0,037 V
Magnesium	Mg2+	-2,38 V	Wasserstoff	2H+	0,00 V
Titan	Ti2+	-1,75V	Edelstahl (1.4404)	diverse	0,20,4 V
Aluminium	Al3+	-1,67 V	Kupfer	Cu2+	0,34 V
Mangan	Mn2+	-1,05V	Kohlenstoff	C2+	0,74 V
Zink	Zn2+	-0,76 V	Silber	Ag+	0,80V
			-	weiter	auf nächster Seite

Material	gebildetes Ion	Normpotenzial	Material	gebildetes Ion	Normpotenzial		
Chrom	Cr3+	-0,71 V	Platin	Pt2+	1,20 V		
Eisen	Fe2+	-0,44 V	Gold	Au3+	1,42 V		
Cadmium	Cd2+	-0,40 V	Gold	Au+	1,69 V		
Cobald Co2+ -0,28V							
Tabelle 51: Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff							

6.1.3 Anforderungen an das Kühlmittel

Die Anforderungen an das Kühlmittel hängen von den Umgebungsbedingungen, sowie vom verwendeten Kühlsystem ab.

Generelle Anforderungen an das Kühlmittel:

Anforderung	Beschreibung
Normen	Korrosionsschutz nach <i>DIN EN 12502-15</i> , Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen nach <i>VGB S 455 P</i>
VGB Kühlwasserrichtlinie	Die VGB Kühlwasserrichtlinie (<i>VGB S 455 P</i>) enthält Hinweise über gebräuchliche Verfahrenstechniken der Kühlung. Inbesondere werden die Wechselwirkungen zwischen dem Kühlwasser und den Komponenten des Kühlsystems beschrieben.
Abrasivstoffe	Abrasivstoffe, wie sie in Scheuermitteln (Quarzsand) verwendet werden, setzen den Kühlkreislauf zu.
Hartes Wasser	Kühlwasser darf keine Wassersteinablagerungen oder lockere Ausscheidungen verursachen. Die Gesamthärte sollte zwischen 720 °dH liegen, die Karbonhärte bei 310 °dH.
Weiches Wasser	Weiches Wasser (<7°dH) greift die Werkstoffe an.
Frostschutz	Bei Applikationen, bei denen der Kühlkörper oder die Kühlflüssigkeit Temperaturen unter 0°C ausgesetzt ist, muss ein entsprechendes Frostschutzmittel eingesetzt werden. Zur besseren Verträglichkeit mit anderen Additiven am Besten Produkte von einem Hersteller verwenden.
	KEB empfiehlt das Frostschutzmittel Antifrogen N von der Firma Clariant mit einem maximalen Volumenanteil von 52 %.
Korrosionsschutz	Als Korrosionsschutz können Additive eingesetzt werden. In Verbindung mit Frostschutz muss der Frostschutz eine Konzentration von 2025 Vol% haben, um eine Veränderung der Additive zu verhindern.
	Alternativ kann ein Frostschutz / Glykol mit einer Konzentration von 20% max. Vol 52% eingesetzt werden. Wird ein Frostschutz verwendet muss das Wasser nicht zusätzlich mit Additiven versehen werden.
Tabelle 52: Anforderui	ngen an das Kühlmittel

WASSERGEKÜHLTE GERÄTE

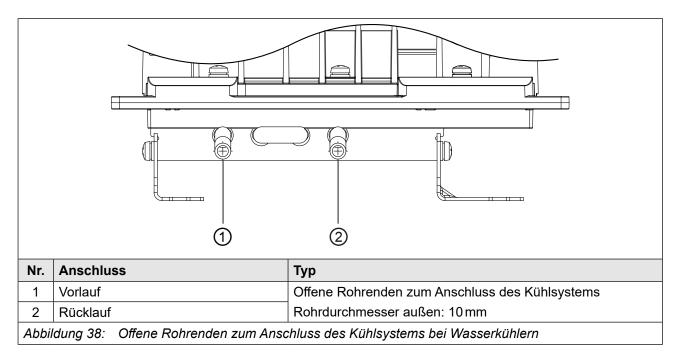
Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Anforderung	Beschreibung			
Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Wasserfilter entgegen gewirkt werden.			
Salzkonzentration	Bei halboffenen Systemen kann durch Verdunstung der Salzgehalt ansteigen. Dadurch wird das Wasser korrosiver. Zufügen von Frischwasser und Entnahme von Nutzwasser wirkt dem entgegen.			
Algen und Schleimbak- terien	Durch die erhöhte Wassertemperatur und der Kontakt mit Luftsauerstoff können sich Algen und Schleimbakterien bilden. Diese setzten die Filter zu und behindern somit den Wasserfluss. Biozid-haltige Additive können dies verhindern. Insbesondere bei längerem Stillstand des Kühlkreislaufs ist hier vorzubeugen.			
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.			
Tabelle 53: Besondere Anforderungen bei offenen und halboffenen Kühlsystemen				

ACHTUNG

Verlust der Garantieansprüche!

➤ Schäden am Gerät, die durch verstopfte, korrodierte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Gewährleistungsansprüche.


6.1.4 Anschluss des Kühlsystems

Die Anbindung an das Kühlsystem kann als geschlossener oder offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung der Kühlflüssigkeit sehr gering ist. Vorzugsweise sollte auch eine Überwachung des pH-Wertes der Kühlflüssigkeit installiert werden.

Beim erforderlichen Potenzialausgleich ist auf einen entsprechenden Leiterquerschnitt zu achten, um elektrochemische Vorgänge möglichst gering zu halten.

=> "6.1.2 Materialien im Kühlkreislauf"

Weitere Elemente im Kühlkreislauf wie Pumpe, Absperrventile, Entlüftung usw. sind entsprechend dem Kühlsystem sowie den örtlichen Gegebenheiten zuzufügen.

Zum Anschluss des Kühlsystems empfiehlt KEB den Einsatz von Funktionsmuttern z.B. des Herstellers "Parker", Typ FMxxL71 (xx = Rohrdurchmesser).

Um den Volumenstrom im Kühlsystem zu überwachen empfiehlt KEB den Einsatz eines Volumenstromwächters.

6.1.5 Kühlmitteltemperatur und Betauung

Die Vorlauftemperatur sollte in Abhängigkeit vom Volumenstrom so gewählt werden, dass bei Bemessungsbetrieb die Kühlkörpertemperatur immer 10 K unter dem Übertemperaturpegel (OH) liegt. Dadurch wird ein sporadisches Abschalten vermieden.

Die maximale Kühlkörpertemperatur ist dem Kapitel => "3.4.1 Schaltfrequenz und Temperatur" zu entnehmen.

6.1.5.1 Betauung

Eine Temperaturdifferenz zwischen Antriebsstromrichter und Umgebungstemperatur kann bei hoher Luftfeuchtigkeit zu Betauung führen.

Betauung stellt eine Gefahr für den Antriebsstromrichter dar. Durch entstehende Kurzschlüsse kann der Antriebsstromrichter zerstört werden.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

▶ Der Anwender muss sicherstellen, dass jegliche Betauung vermieden wird!

6.1.5.2 Zuführung temperierter Kühlflüssigkeit

- Die Zuführung optimal temperierter Kühlflüssigkeit ist möglich durch die Verwendung von Heizungen im Kühlkreislauf zur Steuerung der Kühlflüssigkeitstemperatur.
- Die folgende Taupunkttabelle zeigt die Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

Luftfeuchtigkeit / %	10	20	30	40	50	60	70	80	90
Umgebungs-									
temperatur / °C									
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6
0	-26	-19	-14	-11	-8	-6	-4	-3	-2
5	-23	-15	-11	-7	-5	-2	0	2	3
10	-19	-11	-7	-3	0	1	4	6	8
15	-18	-7	-3	1	4	7	9	11	13
20	-12	-4	1	5	9	12	14	16	18
25	-8	0	5	10	13	16	19	21	23
30	-6	3	10	14	18	21	24	26	28
35	-2	8	14	18	22	25	28	31	33
40	1	11	18	22	27	31	33	36	38
45	4	15	22	27	32	36	38	41	43
	Kühlmitteleintrittstemperatur / °C								
Tabelle 54: Taupunkttabelle									

Informationen zum Kühlflüssigkeitsmanagement sind im folgenden Dokument aufgeführt

www.keb.de/fileadmin/media/Techinfo/dr/an/ti_dr_an-liquid-cooling-00004_de.pdf

ACHTUNG

Zerstörung des Kühlkörpers bei Lagerung/ Transport von wassergekühlten Geräten!

Folgende Punkte bei Lagerung von wassergekühlten Geräten beachten:

- ► Kühlkreislauf vollständig entleeren
- ► Kühlkreislauf mit Druckluft ausblasen

ACHTUNG

Zerstörung des Antriebsstromrichters durch Betauung!

► Nur NC-Ventile verwenden!

6.1.6 Zulässiger Volumenstrom bei Wasserkühlung

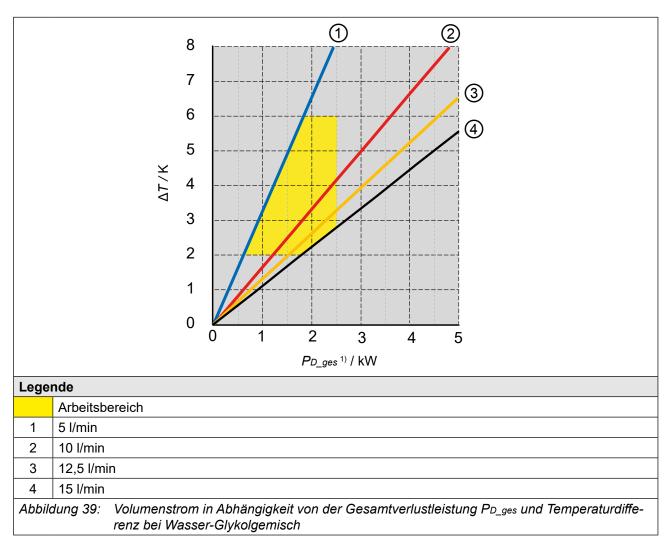
Es muss der Volumenstrom der folgenden Tabelle eingehalten werden.

Zulässiger Volumenstron	1				
Min. Volumenstrom	Q_min / I/min	5			
Max. Volumenstrom	Q_ _{max} / I/min	15			
Tabelle 55: Zulässiger Volumenstrom bei Wasserkühlung					

Der Volumenstrom ist abhängig von der Gesamtverlustleistung.

=> "6.1.7 Kühlmittelerwärmung bei Wasser"

ACHTUNG


Zerstörung des Kühlkörpers durch Erosion!

▶ Der maximal zulässige Volumenstrom darf nicht überschritten werden.

WASSERGEKÜHLTE GERÄTE

6.1.7 Kühlmittelerwärmung bei Wasser

Volumenstrom in Abhängigkeit von der Gesamtverlustleistung und Temperaturdifferenz zwischen Vorlauf und Rücklauf.

¹⁾ P_{D_ges} kann durch Überlast, höhere Schaltfrequenz oder Unterbaubremswiderstände höher als die Verlustleistung P_D bei Bemessungsbetrieb ausfallen.

6.1.8 Typischer Druckverlust des Kühlkörpers bei Wasser

- Der unten dargestellte Kurvenverlauf gilt für 25°C Vorlauftemperatur und einem Glykolanteil von 52 %.
- · Werden höhere Vorlauftemperaturen gefahren sinkt der Druckverlust im System.
- Dies gilt auch für Kühlmedien wie Wasser oder ein anderes Glykolgemisch
- Empfohlen wird ein Glykolgemisch von Clariant in einem Verhältnis von 52 % oder 33 %.

6.2 Wassergekühlte Geräte mit High-Performance Kühlkörper

Bei der Verwendung sind nachfolgende Hinweise unbedingt zu beachten.

6.2.1 Betriebsdruck für High-Performance Kühlkörper bei Wasserkühlung

Bauart	Material	max. Betriebsdruck	Anschluss
Aluminium Kühlkörper (High Performance)	Aluminium		=> "6.2.4 Anschluss des High-Performance Kühl- körpers"

ACHTUNG

Verformung des Kühlkörpers!

- ► Um eine Verformung des Kühlkörpers und die damit verbundenen Folgeschäden zu vermeiden, darf der jeweils angegebene maximale Betriebsdruck auch von Druckspitzen kurzzeitig nicht überschritten werden.
- ► Es ist die Druckgeräterichtlinie 2014/68/EU über Druckgeräte zu beachten!

6.2.2 Materialien im Kühlkreislauf

Für die Verschraubungen und auch im Kühlkreis befindliche metallische Gegenstände, die mit der Kühlflüssigkeit (Elektrolyt) in Kontakt stehen, ist ein Material zu wählen, welches eine geringe Spannungsdifferenz zum Kühlkörper bildet, damit keine Kontaktkorrosion und/ oder Lochfraß entsteht (elektrochemische Spannungsreihe, siehe folgende Tabelle). Der spezifische Einsatzfall ist in Abstimmung des gesamten Kühlkreislaufes vom Kunden selbst zu prüfen und hinsichtlich der Verwendbarkeit der eingesetzten Materialien entsprechend einzustufen. Bei Schläuchen und Dichtungen ist darauf zu achten, dass halogenfreie Materialien verwendet werden.

Eine Haftung für entstandene Schäden durch falsch eingesetzte Materialien und daraus resultierender Korrosion kann nicht übernommen werden!

Material	gebildetes lon	Normpotenzial	Material	gebildetes lon	Normpotenzial		
Lithium	Li+	-3,04 V	Nickel	Ni2+	-0,25 V		
Kalium	K+	-2,93 V	Zinn	Sn2+	-0,14 V		
Calcium	Ca2+	-2,87 V	Blei	Pb3+	-0,13 V		
Natrium	Na+	-2,71 V	Eisen	Fe3+	-0,037V		
Magnesium	Mg2+	-2,38 V	Wasserstoff	2H+	0,00 V		
Titan	Ti2+	-1,75V	Edelstahl (1.4404)	diverse	0,20,4V		
Aluminium	Al3+	-1,67 V	Kupfer	Cu2+	0,34 V		
Mangan	Mn2+	-1,05 V	Kohlenstoff	C2+	0,74 V		
Zink	Zn2+	-0,76 V	Silber	Ag+	0,80 V		
Chrom	Cr3+	-0,71 V	Platin	Pt2+	1,20 V		
Eisen	Fe2+	-0,44 V	Gold	Au3+	1,42 V		
weiter auf nächster Seite							

Material	gebildetes lon	Normpotenzial	Material	gebildetes Ion	Normpotenzial	
Cadmium	Cd2+	-0,40 V	Gold	Au+	1,69 V	
Cobald	Co2+	-0,28 V				
Tabelle 56: Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff						

6.2.3 Anforderungen an das Kühlmittel für High-Performance Kühlkörper

Die Anforderungen an das Kühlmittel hängen von den Umgebungsbedingungen, sowie vom verwendeten Kühlsystem ab.

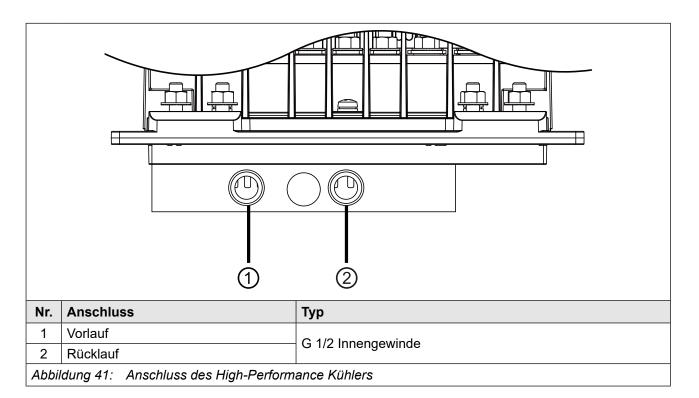
Generelle Anforderungen an das Kühlmittel:

Anforderung	Beschreibung
Normen	Korrosionsschutz nach <i>DIN EN 12502-15</i> , Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen nach <i>VGB S 455 P</i> .
VGB Kühlwasserrichtlinie	Die VGB Kühlwasserrichtlinie (<i>VGB S 455 P</i>) enthält Hinweise über gebräuchliche Verfahrenstechniken der Kühlung. Inbesondere werden die Wechselwirkungen zwischen dem Kühlwasser und den Komponenten des Kühlsystems beschrieben.
Abrasivstoffe	Abrasivstoffe, wie sie in Scheuermitteln (Quarzsand) verwendet werden, setzen den Kühlkreislauf zu.
Hartes Wasser	Kühlwasser darf keine Wassersteinablagerungen oder lockere Ausscheidungen verursachen. Die Gesamthärte sollte zwischen 720 °dH liegen, die Karbonhärte bei 310 °dH.
Weiches Wasser	Weiches Wasser (<7°dH) greift die Werkstoffe an.
Frostschutz	Bei Applikationen, bei denen der Kühlkörper oder die Kühlflüssigkeit Temperaturen unter 0°C ausgesetzt ist, muss ein entsprechendes Frostschutzmittel eingesetzt werden. Zur besseren Verträglichkeit mit anderen Additiven am Besten Produkte von einem Hersteller verwenden.
	KEB empfiehlt das Frostschutzmittel Antifrogen N von der Firma Clariant mit einem maximalen Volumenanteil von 52 %.
Korrosionsschutz	Als Korrosionsschutz können Additive eingesetzt werden. In Verbindung mit Frostschutz muss der Frostschutz eine Konzentration von 2025 Vol% haben, um eine Veränderung der Additive zu verhindern.
	Alternativ kann ein Frostschutz / Glykol mit einer Konzentration von 20% max. Vol 52% eingesetzt werden. Wird ein Frostschutz verwendet muss das Wasser nicht zusätzlich mit Additiven versehen werden.
Tabelle 57: Anforderu	ngen an das Kühlmittel

WASSERGEKÜHLTE GERÄTE MIT HIGH-PERFORMANCE KÜHLKÖRPER

Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Anforderung	Beschreibung				
Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Wasserfilter entgegen gewirkt werden.				
Salzkonzentration	Bei halboffenen Systemen kann durch Verdunstung der Salzgehalt ansteigen. Dadurch wird das Wasser korrosiver. Zufügen von Frischwasser und Entnahme von Nutzwasser wirkt dem entgegen.				
Algen und Schleimbak- terien	Durch die erhöhte Wassertemperatur und der Kontakt mit Luftsauerstoff können sich Algen und Schleimbakterien bilden. Diese setzten die Filter zu und behindern somit den Wasserfluss. Biozid-haltige Additive können dies verhindern. Insbesondere bei längerem Stillstand des Kühlkreislaufs ist hier vorzubeugen.				
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.				
Tabelle 58: Besondere Anforderungen bei offenen und halboffenen Kühlsystemen					


Schäden am Gerät, die durch verstopfte, korrodierte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Gewährleistungsansprüche.

6.2.4 Anschluss des High-Performance Kühlkörpers

Die Anbindung an das Kühlsystem kann als geschlossener oder offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung der Kühlflüssigkeit sehr gering ist.

Weitere Elemente im Kühlkreislauf wie Pumpe, Absperrventile, Entlüftung usw. sind entsprechend dem Kühlsystem sowie den örtlichen Gegebenheiten zuzufügen.

Um den Volumenstrom im Kühlsystem zu überwachen empfiehlt KEB den Einsatz eines Volumenstromwächters.

ACHTUNG

Zu hohe Strömungsgeschwindigkeit im Kühler!

▶ Der Innendurchmesser der Schlauchtülle muss mindestens 12mm betragen.

WASSERGEKÜHLTE GERÄTE MIT HIGH-PERFORMANCE KÜHLKÖRPER

6.2.5 Kühlmitteltemperatur und Betauung

Die Vorlauftemperatur sollte in Abhängigkeit vom Volumenstrom so gewählt werden, dass bei Bemessungsbetrieb die Kühlkörpertemperatur immer 10 K unter dem Übertemperaturpegel (OH) liegt. Dadurch wird ein sporadisches Abschalten vermieden.

Die maximale Kühlkörpertemperatur ist dem Kapitel => "3.4.1 Schaltfrequenz und Temperatur" zu entnehmen.

6.2.5.1 Betauung

Eine Temperaturdifferenz zwischen Antriebsstromrichter und Umgebungstemperatur kann bei hoher Luftfeuchtigkeit zu Betauung führen.

Betauung stellt eine Gefahr für den Antriebsstromrichter dar. Durch entstehende Kurzschlüsse kann der Antriebsstromrichter zerstört werden.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

► Der Anwender muss sicherstellen, dass jegliche Betauung vermieden wird!

6.2.5.2 Zuführung temperierter Kühlflüssigkeit

- Die Zuführung optimal temperierter Kühlflüssigkeit ist möglich durch die Verwendung von Heizungen im Kühlkreislauf zur Steuerung der Kühlflüssigkeitstemperatur.
- Die folgende Taupunkttabelle zeigt die Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

Luftfeuchtigkeit / %	10	20	30	40	50	60	70	80	90
Umgebungs-									
temperatur / °C									
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6
0	-26	-19	-14	-11	-8	-6	-4	-3	-2
5	-23	-15	-11	-7	-5	-2	0	2	3
10	-19	-11	-7	-3	0	1	4	6	8
15	-18	-7	-3	1	4	7	9	11	13
20	-12	-4	1	5	9	12	14	16	18
25	-8	0	5	10	13	16	19	21	23
30	-6	3	10	14	18	21	24	26	28
35	-2	8	14	18	22	25	28	31	33
40	1	11	18	22	27	31	33	36	38
45	4	15	22	27	32	36	38	41	43
	Kühlmitteleintrittstemperatur / °C								
Tabelle 59: Taupunkttabelle									

Informationen zum Kühlflüssigkeitsmanagement sind im folgenden Dokument aufgeführt

www.keb.de/fileadmin/media/Techinfo/dr/an/ti_dr_an-liquid-cooling-00004_de.pdf

ACHTUNG

Zerstörung des Kühlkörpers bei Lagerung/ Transport von wassergekühlten Geräten!

Folgende Punkte bei Lagerung von wassergekühlten Geräten beachten:

- ► Kühlkreislauf vollständig entleeren
- ► Kühlkreislauf mit Druckluft ausblasen

ACHTUNG

Zerstörung des Antriebsstromrichters durch Betauung!

► Nur NC-Ventile verwenden!

WASSERGEKÜHLTE GERÄTE MIT HIGH-PERFORMANCE KÜHLKÖRPER

6.2.6 Zulässiger Volumenstrom für High-Performance Kühlkörper

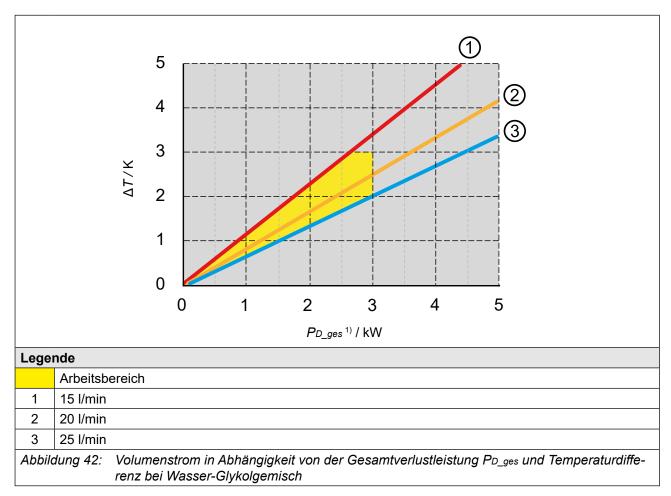
Es muss der Volumenstrom der folgenden Tabelle eingehalten werden.

Zulässiger Volumenstro	m		
Min. Volumenstrom	Q_min / I/min	15	
Max. Volumenstrom	Q_ _{max} / I/min	25	
Tabelle 60: Zulässiger Volumenstrom High-Performance Kühlkörper			

Der Volumenstrom ist abhängig von der Gesamtverlustleistung.

=> "6.2.7 Kühlmittelerwärmung für High-Performance Kühlkörper"

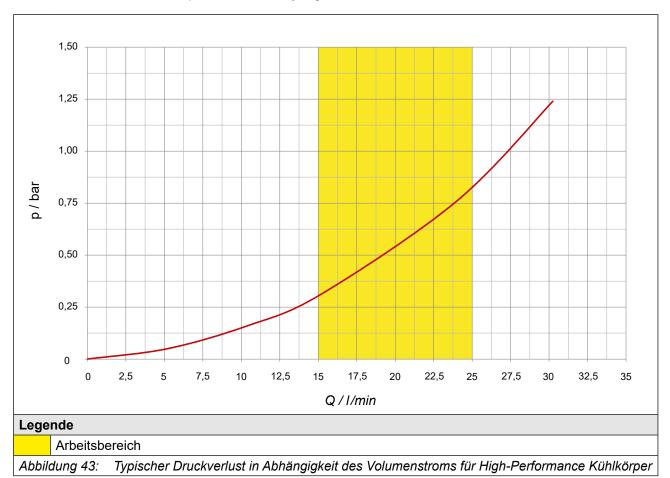
ACHTUNG


Zerstörung des Kühlkörpers durch Erosion!

▶ Der maximal zulässige Volumenstrom darf nicht überschritten werden

6.2.7 Kühlmittelerwärmung für High-Performance Kühlkörper

Volumenstrom in Abhängigkeit von der Gesamtverlustleistung und Temperaturdifferenz zwischen Vorlauf und Rücklauf.



¹⁾ P_{D_ges} kann durch Überlast, höhere Schaltfrequenz oder Unterbaubremswiderstände höher als die Verlustleistung P_D bei Bemessungsbetrieb ausfallen.

WASSERGEKÜHLTE GERÄTE MIT HIGH-PERFORMANCE KÜHLKÖRPER

6.2.8 Typischer Druckverlust des High-Performance Kühlkörpers bei Wasser

- Der unten dargestellte Kurvenverlauf gilt für 40 °C Vorlauftemperatur und einem Glykolanteil von 52 %.
- Werden höhere Vorlauftemperaturen gefahren sinkt der Druckverlust im System.
- Dies gilt auch für Kühlmedien wie Wasser oder ein anderes Glykolgemisch
- Empfohlen wird ein Glykolgemisch von Clariant in einem Verhältnis von 52 % oder 33 %.

112

6.3 Ölgekühlte Geräte mit High-Performance Kühlkörper

Bei der Verwendung sind nachfolgende Hinweise unbedingt zu beachten.

6.3.1 Betriebsdruck für High-Performance Kühlkörper bei Ölkühlung

Bauart	Material	max. Betriebsdruck	Anschluss		
Aluminium Kühlkörper	Aluminium 3.3206	10 bar	=> "6.3.3 Anschluss des		
(High Performance)	Aluminium 3.3200	เบมสเ	Ölkühlsystems"		

ACHTUNG

Verformung des Kühlkörpers!

- ▶ Um eine Verformung des Kühlkörpers und die damit verbundenen Folgeschäden zu vermeiden, darf der jeweils angegebene maximale Betriebsdruck auch von Druckspitzen kurzzeitig nicht überschritten werden.
- ► Es ist die Druckgeräterichtlinie 2014/68/EU über Druckgeräte zu beachten!

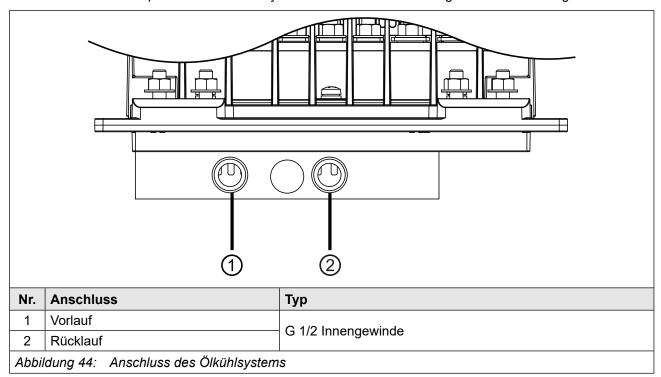
6.3.2 Anforderungen an das Öl

Generelle Anforderungen an das Öl:

Anforderung	Beschreibung	
Eigenschaft des Öl	Hydrauliköl HLP 46 (ISO VG 46)	
Öle mit entsprechenden Eigenschaften	Mobil DTE 25	
	Shell Tellus Oil 46	
	Castrol Hyspin ZZ 46	
	Oder vergleichbare Öle	
Tabelle 61: Anforderungen an das Öl		

Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Anforderung	Beschreibung	
Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Filter entgegen gewirkt werden.	
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.	
Tabelle 62: Besondere Anforderungen bei offenen und halboffenen Kühlsystemen beim Ölkühler		


Schäden am Gerät, die durch verstopfte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Gewährleistungsansprüche.

ÖLGEKÜHLTE GERÄTE MIT HIGH-PERFORMANCE KÜHLKÖRPER

6.3.3 Anschluss des Ölkühlsystems

Die Anbindung an das Ölkühlsystem kann als geschlossener oder offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung des Öls sehr gering ist.

Weitere Elemente im Kühlkreislauf wie Pumpe, Absperrventile, Entlüftung usw. sind entsprechend dem Kühlsystem sowie den örtlichen Gegebenheiten zuzufügen.

Um den Volumenstrom im Kühlsystem zu überwachen empfiehlt KEB den Einsatz eines Volumenstromwächters.

ACHTUNG

Zu hohe Strömungsgeschwindigkeit im Kühler!

▶ Der Innendurchmesser der Schlauchtülle muss mindestens 12mm betragen.

6.3.4 Kühlmitteltemperatur und Betauung bei Öl

Die Vorlauftemperatur sollte in Abhängigkeit vom Volumenstrom so gewählt werden, dass bei Bemessungsbetrieb die Kühlkörpertemperatur immer 10 K unter dem Übertemperaturpegel (OH) liegt. Dadurch wird ein sporadisches Abschalten vermieden.

Die maximale Kühlkörpertemperatur ist dem Kapitel => "3.4.1 Schaltfrequenz und Temperatur" zu entnehmen.

6.3.4.1 Betauung

Eine Temperaturdifferenz zwischen Antriebsstromrichter und Umgebungstemperatur kann bei hoher Luftfeuchtigkeit zu Betauung führen.

Betauung stellt eine Gefahr für den Antriebsstromrichter dar. Durch entstehende Kurzschlüsse kann der Antriebsstromrichter zerstört werden.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

Der Anwender muss sicherstellen, dass jegliche Betauung vermieden wird!

6.3.4.2 Zuführung temperiertes Öl

- Die Zuführung optimal temperierter Kühlflüssigkeit ist möglich durch die Verwendung von Heizungen im Kühlkreislauf zur Steuerung der Kühlflüssigkeitstemperatur.
- Die folgende Taupunkttabelle zeigt die Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

Luftfeuchtigkeit / %	10	20	30	40	50	60	70	80	90	100
Umgebungs- temperatur / °C										
-25	-45	-40	-36	-34	-32	-30	-29	-27	-26	-25
-20	-42	-36	-32	-29	-27	-25	-24	-22	-21	-20
-15	-37	-31	-27	-24	-22	-20	-18	-16	-15	-15
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11	-10
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6	-5
0	-26	-19	-14	-11	-8	-6	-4	-3	-2	0
5	-23	-15	-11	-7	-5	-2	0	2	3	5
10	-19	-11	-7	-3	0	1	4	6	8	9
15	-18	-7	-3	1	4	7	9	11	13	15
20	-12	-4	1	5	9	12	14	16	18	20
25	-8	0	5	10	13	16	19	21	23	25
30	-6	3	10	14	18	21	24	26	28	30
35	-2	8	14	18	22	25	28	31	33	35
40	1	11	18	22	27	31	33	36	38	40
45	4	15	22	27	32	36	38	41	43	45
50	8	19	28	32	36	40	43	45	48	50
	Kühlmitteleintrittstemperatur / C°									

abone co. Taapankiiaben

ÖLGEKÜHLTE GERÄTE MIT HIGH-PERFORMANCE KÜHLKÖRPER

6.3.5 Zulässiger Volumenstrom bei Öl

Es muss der Volumenstrom der folgenden Tabelle eingehalten werden.

Zulässiger Volumenstrom				
Min. Volumenstrom	Q_min / I/min	15		
Max. Volumenstrom	Q_max / I/min	25		
Tabelle 64: Zulässiger Volumenstrom beim Ölkühler				

7 Zertifizierung

7.1 CE-Kennzeichnung

Die mit einem CE Logo gekennzeichneten Antriebsstromrichter halten die Anforderungen, die durch die Maschinenrichtlinie sowie die EMV- und Rohs-Richtlinie und Energieeffizienzregulierung ein.

Für weitere Informationen zu den CE-Konformitätserklärungen

=> "7.3 Weitere Informationen und Dokumentation".

7.2 UL-Zertifizierung

Eine Abnahme gemäß UL ist bei KEB Antriebsstromrichtern auf dem Typenschild durch nebenstehendes Logo gekennzeichnet.

Zur Konformität gemäß UL für einen Einsatz auf dem nordamerikanischen und kanadischen Markt sind folgende zusätzliche Hinweise unbedingt zu beachten (englischer Originaltext):

· All models:

Maximum Surrounding Air Temperature: 45°C

- Use 75°C Copper Conductors Only
- Control Circuit Overcurrent Protection Required
- Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.

CSA: For Canada: Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Canadian Electrical Code. Part I.

480Vac supplied models only:

Only for use in non-corner grounded type WYE source not exceeding 277V phase to ground.

- For installations according to Canadian National Standard C22.2 No. 274-13:
- For use in Pollution Degree 2 and Overvoltage Category III environments only.
- When 480Vac supplied:

Suitable For Use On A Circuit Capable Of Delivering Not More Than 10000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details.

Suitable For Use On A Circuit Capable Of Delivering Not More Than 100000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Semiconductor Fuses by SIBA (Type 20 189 20.), or by Bussmann (Type 170M13), or by Littelfuse (Type L70QS), see instruction manual for Branch Circuit Protection details.

When 240Vac supplied:

Suitable For Use On A Circuit Capable Of Delivering Not More Than 10000 rms Symmetrical Amperes, 240 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details.

Suitable For Use On A Circuit Capable Of Delivering Not More Than 65000 rms Symmetrical Amperes, 240 Volts Maximum when protected by Semiconductor Fuses by SIBA (Type 20 189 20.), or by Bussmann (Type 170M13), or by Littelfuse (Type L70QS), see instruction manual for Branch Circuit Protection details.

When DC supplied:

Suitable For Use On A Circuit Capable Of Delivering Not More Than 50000 Amperes, 680 Volts DC Maximum when protected by Semiconductor Fuses as Specified in the Manual.

- WARNING The opening of the branch circuit protective device may be an
 indication that a fault current has been interrupted. To reduce the risk of fire or
 electrical shock, current-carrying parts and other components of the controller
 should be examined and replaced if damaged. If burnout of the current element of
 an overload relay occurs, the complete overload relay must be replaced.
- · For water cooled devices:

High performance types:

Maximum working pressure: 10 bar (145 psi)

- Max. inlet liquid temperature: +55°C
- Min water flow rate: 15l/min
- Coolant type: Water or a mixture of water with a maximum of 52% monoethylene glycol
- · External brake resistor ratings and duty cycle:
 - Duty cycle 50%
 - Max. 60 sec on-time / 60 sec off-time

Sub-mounted brake resistor ratings and duty cycle:

- Duty cycle 0.75%
- Max. 0.9 sec on-time / 119.1 sec off-time

7.3 Weitere Informationen und Dokumentation

Ergänzende Anleitungen und Hinweise zum Download finden Sie unter www.keb.de/de/service/downloads

Allgemeine Anleitungen

- · EMV- und Sicherheitshinweise
- Anleitungen für weitere Steuerkarten, Sicherheitsmodule, Feldbusmodule, etc.

Anleitungen für Konstruktion und Entwicklung

- Eingangssicherungen gemäß UL
- · Programmierhandbuch für Steuer- und Leistungsteil
- Motorkonfigurator, zur Auswahl des richtigen Antriebsstromrichters, sowie zur Erstellung von Downloads zur Parametrierung des Antriebsstromrichters

Zulassungen und Approbationen

- CE-Konformitätserklärung
- TÜV-Bescheinigung
- FS-Zertifizierung

Sonstiges

- COMBIVIS, die Software zur komfortablen Parametrierung der Antriebsstromrichter über einen PC (per Download erhältlich)
- EPLAN-Zeichnungen

8 Änderungshistorie

Version	Datum	Beschreibung
00	2016-09	Vorserie
01	2017-11	Serie, neues CI, Wasserkühlung, Aufnahme der UL-Zertifizierung
02	00 0040 44	Korrekturen der technischen Zeichnungen,
02	2018-11	Abbildungen der Überlastcharakteristiken angepasst
03	2019-10	Aufnahme der Geräte mit Unterbaubremswiderständen
04	2020-03	Aufnahme der ölgekühlten Geräte
05	2021-06	Zeichnungen, technische Daten aktualisiert
06	2022-01	Strom des Bremstransistors angepasst. Zeichnungen für Geräte mit 3 Unterbaubremswiderständen aufgenommen.
07	2022-04	Typenschlüssel und Zeichnungen überarbeitet.
08	2023-05	Aufnahme der 230V-Geräte
09	2024-07	Beschreibung der 400 V DC-Ready Geräte aufgenommen. Typenschlüssel, Normen, Abbildungen aktualisiert. Redaktionelle Änderungen.
10	2025-01	Aufnahme des High-Performance Kühlkörpers

WEITERE KEB PARTNER WELTWEIT:

www.keb-automation.com/de/contact

Automation mit Drive

www.keb-automation.com

KEB Automation KG Südstraße 38 D-32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de