

Funktionale Sicherheit Functional safety

Sicherheitsmodul Typ 3

SICHERHEITSHANDBUCH | Firmware - V3.2.0.1

Originalanleitung
Dokument 20148769 DE 07

1 Vorwort

Die beschriebene Hard- und Software sind Entwicklungen der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

1.1 Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

▲ GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

> Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

1.2 Weitere Symbole

- Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Hinweis auf weiterführende Dokumentation.

Dokumentensuche auf www.keb.de

1.3 Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit dem CE-Zeichen und der EU-Konformitätserklärung, dass unser Gerät den grundlegenden Sicherheitsanforderungen entspricht.

Das CE-Zeichen befindet sich auf dem Typenschild. Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden. Weitere Informationen befinden sich im Kapitel 16 "Anhang zur Konformitätserklärung".

1.4 Gewährleistung

Die Gewährleistung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den "Allgemeinen Verkaufsbedingungen" zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen.

<u>AGB</u>

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

1.5 Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Maschinenherstellers, Systemintegrators oder Kunden.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über die Applikation. Sie gelten jedoch nur als unverbindliche Hinweise. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter.

Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der Applikation vom Maschinenhersteller erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

1.6 Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Andere Wort- und/oder Bildmarken sind Marken (™) oder eingetragene Marken (®) der jeweiligen Inhaber und werden beim ersten Auftreten in der Fußnote erwähnt.

Inhalt

1	vorv	/ort	3
	1.1 1.2	Signalwörter und AuszeichnungenWeitere Symbole	
	1.2	Gesetze und Richtlinien	
	1.4	Gewährleistung	
	1.5	Unterstützung	
	1.6	Urheberrecht	
2	Grur	ndlegende Sicherheitshinweise	12
	2.1	Zielgruppe	
	2.2	Gültigkeit der vorliegenden Anleitung	
	2.3 2.4	Elektrischer AnschlussInstallation	
	2.5	Inbetriebnahme und Betrieb	
	2.6	Wartung	
3	Proc	luktbeschreibung	15
	3.1	Gültigkeit	
	3.2	Funktion	
	3.3 3.4	Sicherheitsfunktionen nach IEC 61800-5-2	
	3.4 3.5	Einstufung der Sicherheitsfunktionen nach IEC 61508 Einstufung der Sicherheitsfunktionen nach EN ISO 13849	
	3.6	Sicherer Zustand	
	3.7	Verwendete Begriffe und Abkürzungen	17
4	Beso	chreibung der I/Os	19
	4.1	Anschlussklemme X2B	19
	4.1.1	Montage der Anschlusslitzen	
	4.1.2	Montage von Litzen mit Aderendhülsen nach DIN46228/4	
	4.1.3 4.1.4	Montage von Litzen ohne Aderendhülsen	
	4.1.5	Spezifikation der Ausgänge	
	4.2	Anschlussklemmen Bremse	20
	4.3	Anschlussklemme Geberinterface	2
	4.4	Status-LEDs	21
5	Para	metrierung und Benutzerverwaltung	22
	5.1	Benutzerverwaltung und Login	
	5.2	Sichere Konfiguration von Parametern des Sicherheitsmoduls	2
	5.2.1	Herunterladen von neuen Konfigurationsdaten	
	5.2.2	Auslesen von bestehenden Konfigurationsdaten aus dem Sicherheitsmodul	
	5.2.3 5.2.4	Import und Export von Konfigurationsdaten	
	5.2.5	Sichere Parametrierdaten importieren	
	5.2.6	Parameterliste für Download erzeugen	27
	5.2.7	Sichere Parametrierdaten aus Parameterliste importieren	27
	5.3 5.4	Status des SicherheitsmodulsAuslesen der Protokolldaten	
	5.4	Aubiebeii uei Fiolokoiiualeii	30

	5.4.1	Auslesen von Fehlern	30
	5.4.2	Auslesen von Einschaltzeitpunkten	
	5.4.3	Auslesen von Ausschaltzeitpunkten	31
	5.4.4	Auslesen von Anforderungen für Sicherheitsfunktionen	
	5.4.5	Auslesen des Zeitpunkts der Übernahme von neuen Konfigurationsdaten	
	5.4.6 5.4.7	Auslesen von Konfigurationsfehlern	
	5.4.8	Auslesen von Busfehlern	
	5.4.9	Bus Anforderung von Sicherheitsfunktionen	
		· ·	
_	5.5	Parameterliste	
6		ebszustände des Sicherheitsmoduls	
	6.1	Globaler Betriebszustand	43
	6.2	Start des Sicherheitsmoduls und Übernahme neuer Konfigurationsdaten	44
	6.3	Rücksetzen von Fehlern	
7	Konf	igurationsstatus und Konfigurationsübernahme	
	7.1	Konfigurationsstatus	47
_	7.2	Konfigurationsdaten erstellen für verschiedene Maschinen	
8	Eing	angskonfiguration und Eingangsparameter	
	8.1	Filterzeit für die Sicherheitseingänge	
	8.2	Taktsignal Eingangskonfiguration für alle Eingänge	
	8.3	STO Hardware Eingangskonfiguration	
	8.4 8.5	SBC Hardware EingangskonfigurationFunktion1 Hardware Eingangskonfiguration	
	8.6	Funktion2 Hardware Eingangskonfiguration	
	8.7	Ripple Hardware Eingangskonfiguration	
9	Auso	gänge	
	9.1	Sicherer Ausgang 1 & 2	
	9.2	Ripple Ausgänge	
	9.3	Taktausgang	
	9.3.1 9.3.2	TaktausgangskonfigurationEmpfohlene Einstellungen für die Periodendauer für die Taktausgänge	
10	Gebe	erkonfiguration	66
	10.1	Geber Auswahl	
	10.2	Verwendung von Sinus/Cosinus-Gebern	
	10.3	Verwendung von Resolvern	68
	10.3.1	maximal zulässige Geschwindigkeit	68
	10.3.2	Phasenverschiebungen der Signale	
	10.3.3	Lagefehler	
	10.4	Skalierungseinstellungen für die Position, Gebereinstellungen für die Eingangskanäle	69
	10.5	Gebereinstellungen für die Geschwindigkeitsermittlung	
	10.5.1	Drehzahlabtastzeit	70
	10.5.2	Drehzahl PT1-Zeit	
	10.5.3	Drehzahlabtastzeit + Drehzahl PT1-Zeit	71
11	Funk	tionsbeschreibung der Sicherheitsfunktionen	72
	11.1	Priorität der Sicherheitsfunktionen	72
	11.2	Status des SicherheitsmodulsFunktionsbeschreibung Safe Torque off (STO)	

11.3.1 11.3.2	Not-Halt gemäß EN 60204Fehlerreaktionszeiten STO-Funktion	
11.4	Funktionsbeschreibung Sichere Bremsenansteuerung (SBC)	75
11.4.1 11.4.2 11.4.3 11.4.4 11.4.5	Anforderungen an die Bremse	76 76 76
11.5	Funktionsbeschreibung Sicherer Stopp 1 (SS1)	78
11.5.1 11.5.2 11.5.3 11.5.4 11.5.5 11.5.6	Aktivierung der Sicherheitsfunktion SS1 Konfigurationsparameter der Sicherheitsfunktion SS1 Fehlerreaktionszeiten SS1- Funktion Not-Halt gemäß EN 60204 Beschreibung der SS1-r Funktion Beschreibung der SS1-t Funktion	78 78 78 79
11.6	Funktionsbeschreibung Sicherer Stopp 2 (SS2)	84
11.6.1 11.6.2 11.6.3 11.6.4 11.6.5	Aktivierung der Sicherheitsfunktion SS2 Konfigurationsparameter der Sicherheitsfunktion SS2. Fehlerreaktionszeiten SS2- Funktion Beschreibung der SS2-r Funktion Beschreibung der SS2-t Funktion	84 84 85
11.7	Funktionsbeschreibung Sicherer Betriebshalt (SOS)	89
11.7.1 11.7.2 11.7.3	Aktivierung der Sicherheitsfunktion SOS	90
11.8	Funktionsbeschreibung Sicher begrenzte Geschwindigkeit (SLS)	91
11.8.1 11.8.2 11.8.3	Aktivierung der Sicherheitsfunktion SLS	91 91
11.9	Funktionsbeschreibung SLP: Referenzposition	93
11.9.1 11.9.2	Aktivierung der Funktion SLP Referenz Position	
11.10	Funktionsbeschreibung Sicher begrenzte Position (SLP)	94
11.10.2 11.10.3	Funktionsbeschreibung Safe Emergency Limits (SEL) Aktivierung der Sicherheitsfunktion SLP Konfigurationsparameter der Sicherheitsfunktion SLP Fehlerreaktionszeiten SLP- Funktion	95 96
11.11	Funktionsbeschreibung Sicher begrenztes Schrittmaß (SLI)	97
11.11.2	Aktivierung der Sicherheitsfunktion SLI Konfiguration der SLI-Funktion Fehlerreaktionszeiten SLI- Funktion	98
11.12	Funktionsbeschreibung Sichere Bewegungsrichtung (SDI)	99
11.12.2	Aktivierung der Sicherheitsfunktion SDI Konfiguration der SDI Funktion Fehlerreaktionszeiten SDI- Funktion	99
11.13	Funktionsbeschreibung Sichere Geschwindigkeitsüberwachung (SSM)	100
	Aktivierung der Sicherheitsfunktion SSM	

1	11.13.3	Fehlerreaktionszeiten SSM- Funktion	101
•	11.14	Funktionsbeschreibung Sichere maximale Geschwindigkeit (SMS)	102
1	11.14.2	Aktivierung der Sicherheitsfunktion SMS	103
		Fehlerreaktionszeiten SMS- Funktion	
		Funktionsbeschreibung Sicher begrenzte Beschleunigung (SLA)	
1	11.15.2	Beschleunigungsgrenzen	105
1	11.15.4	Fehlerreaktionszeiten SLA- Funktion	106
12 :	Safet	y over EtherCAT® (FSoE)	107
		Einstellen der Feldbusadresse	
		FSoE Buseinstellungen	
		FSoE Funktionsbeschreibung und Parametrierung	
13		haltungsvorschläge	
•	13.1	Beispiel für eine Beschaltung von Taktausgängen mit Eingängen	108
1	13.1.1	Parametrierung der Taktausgänge und Eingänge	109
•	13.2	Beispiel für eine Ripple Kette	110
		Geschlossene Ripple Kette mit 2 Sicherheitsmodulen Anlaufverhalten	
•	13.3	Schaltungsbeispiel mit STO, SS1 und SS2 und der Ripple Kette	112
1 1 1	13.3.2 13.3.3 13.3.4 13.3.5	Parametrierung für COMBIVERT FB	113 113 114 115
14 /	Abna	hmetests und Konfigurationsprüfung	117
	14.3	Sinn des Abnahmetests	117 117
15 V		ung und Modifikationen am Sicherheitsmodul	
		ng zur Konformitätserklärung	
		rungshistorie	

Abbildungen

Abbildung 1: Montage des Anschlusses X2B	
Abbildung 2: KEB Sicherheitsmodul hinzufügen	
Abbildung 3: Benutzerverwaltung in KEB COMBIVIS	
Abbildung 4: Login Fenster in COMBIVIS	23
Abbildung 5: Benutzerverwaltung für das Sicherheitsmodul in COMBIVIS	24
Abbildung 6: Sichere Konfiguration der Parameter des Sicherheitsmoduls	
Abbildung 7: Tooltipp beim Parameter Konfiguration des Ripple Eingangs	25
Abbildung 8: Import und Export von Konfigurationsdaten	
Abbildung 9: "Entsperren" nach dem Importieren von Konfigurationsdaten	27
Abbildung 10: Status Registerkarte im KEB Safety Editor	
Abbildung 11: Fehlerstatus mit Fehlerbeschreibung in COMBIVIS	
Abbildung 12: Fehlerzeitpunkt, Fehlernummer und Beschreibung	
Abbildung 13: Einschaltzeitpunkt mit Datum und Zeit im Log	
Abbildung 14: Abschaltzeitpunkte mit Datum und Zeit im Log	
Abbildung 15: Anforderungszeitpunkte von Sicherheitszeitpunkten	
Abbildung 16: Übernahmezeitpunkte von neuen Konfigurationsdaten	
Abbildung 17: Zeitpunkt, Fehlernummer und Beschreibung von Konfigurationsfehlern	
Abbildung 18: Busfehler mit Datum und Zeit im Log	32
Abbildung 19: Buskonfigurationsfehler mit Datum und Zeit im Log	
Abbildung 20: Bus Anforderung von Sicherheitsfunktionen im Log	
Abbildung 21: Der globale Status des Sicherheitsmoduls	
Abbildung 22: Hochstarten des Sicherheitsmoduls	
Abbildung 23: Konfigurationsstatus des Sicherheitsmoduls	
Abbildung 24: Sicherheitsmodul Adresse in den Konfigurationsdaten	
Abbildung 25: Filterzeit für die Sicherheitseingänge (Eingangskonfiguration)	
Abbildung 26: Taktsignal Eingangskonfiguration für die Sicherheitseingänge	
Abbildung 27: Parameter für den STO Sicherheitseingang	
Abbildung 28: Parameter für den SBC Sicherheitseingang	
Abbildung 29: Parameter für den Funktion 1 Eingang	
Abbildung 30: Parameter für den Funktion2 Eingang	
Abbildung 31: Parameter für den Ripple Eingang	
Abbildung 32: Parameter der Ausgangskonfiguration	
Abbildung 33: Ripple Ausgangskonfigurationseinstellungen	
Abbildung 34: Taktausgangskonfiguration in COMBIVIS	
Abbildung 35: Geberkonfiguration allgemein	
Abbildung 36: Geber Konfiguration in COMBIVIS	01
Abbildung 37: Geber Einstellungen für die Eingangskanäle	
Abbildung 38: Gebereinstellungen für die Geschwindigkeitsmessung	
Abbildung 39: Drehzahlabtastzeit in Bezug auf die Drehzahl	/0
Abbildung 40: Drehzahl PT1-Zeit in Bezug auf einen Drehzahlsprung	
Abbildung 41: Drehzahlabtastzeit und Drehzahl PT1-Zeit zusammengenommen	
Abbildung 42: SBC Parameter	
Abbildung 43: Konfigurationsparameter für die Sicherheitsfunktion SS1	
Abbildung 44: SS1-r Sicherheitsfunktion	
Abbildung 45: SS1-r mit negativer Drehzahl als Startwert	
Abbildung 46: SS1-r Sicherheitsfunktion mit höherer Verzögerung zulässig	
Abbildung 47: SS1-r Sicherheitsfunktion mit fehlerhafter Rampe	
Abbildung 48: SS1-t Funktionsbeschreibung	
Abbildung 49: Konfigurationsparameter für die Sicherheitsfunktion SS2	
Abbildung 50: SS2-r Sicherheitsfunktion	
Abbildung 51: SS2-r Sicherheitsfunktion mit negativer Drehzahl	
Abbildung 52: SS2-r Sicherheitsfunktion mit höherer Verzögerung zulässig	
Abbildung 53: SS2-r Sicherheitsfunktion mit fehlerhafter Rampe	
Abbildung 54: SS2-t Funktion	
Abbildung 55: SOS Sicherheitsfunktion	89

Abbildung 56: Konfigurationsparameter für die Sicherheitsfunktion SOS	
Abbildung 58: Konfigurationsparameter für die Sicherheitsfunktion SLS	
Abbildung 59: SLP Referenz Position	
Abbildung 60: Konfigurationsparameter der Funktion SLP Referenz Position	
Abbildung 61: Sicher begrenzte Position (Safely-limited position – SLP)	
Abbildung 62: Safe emergency limits (SEL)	95
Abbildung 63: Konfigurationsparameter für die Sicherheitsfunktion SLP	96
Abbildung 64: Sicher begrenztes Schrittmaß (Safely-Limited Increment – SLI)	
Abbildung 65: Konfigurationsparameter für die Sicherheitsfunktion SLI	98
Abbildung 66: Konfigurationsparameter für die Sicherheitsfunktion SDI	99
Abbildung 67: Sichere Geschwindigkeitsüberwachung (Safe Speed Monitor – SSM)	100
Abbildung 68: Konfigurationsparameter für die Sicherheitsfunktion SSM	
Abbildung 69: Sicher maximal Geschwindigkeit (Safe maximum speed - SMS)	
Abbildung 70: Konfigurationsparameter für die Sicherheitsfunktion SMS	
Abbildung 71: Sichere maximale Beschleunigung (Safe maximum acceleration - SLA)	104
Abbildung 72 Log Einträge bei der Sicherheitsfunktion SLA	105
Abbildung 73: Konfigurationsparameter für die Sicherheitsfunktion SLA	105
Abbildung 74: Sicherheitsmodul Adresse in der Konfiguration	
Abbildung 75: Taktausgänge mit Eingängen beschaltet	
Abbildung 76: Testpulse der Taktausgänge	
Abbildung 77: Konfiguration der Taktsignal Eingänge	
Abbildung 78: Konfiguration der Takt Ausgänge	
Abbildung 79: Geschlossene Ripple Kette mit 2 Sicherheitsmodulen Anlaufverhalten	
Abbildung 80: Ripple Kette mit 3 Sicherheitsmodulen	
Abbildung 81: Schaltungsbeispiel mit Not-Aus, Tür, STO, SS1 und SS2	
Abbildung 82: Ripple Eingangskonfiguration für den COMBIVERT FB	112
Abbildung 83: Ripple Ausgangskonfiguration für den COMBIVERT FB	112
Abbildung 84: Taktsignal Eingangskonfiguration für den COMBIVERT FB	113
Abbildung 85: Ripple Eingangskonfiguration für den COMBIVERT B1X	113
Abbildung 86: Taktsignal Eingangskonfiguration für den COMBIVERT B1X	113
Abbildung 87: Ripple Ausgangskonfiguration für den COMBIVERT B1Z	114
Abbildung 88: Taktsignal Eingangskonfiguration für den COMBIVERT B1Z	114
Abbildung 89: Taktausgangskonfiguration für den COMBIVERT B1Z	
Abbildung 90: Eingang1 Eingangskonfiguration für den COMBIVERT B1Z	115
Abbildung 91: Taktsignal Eingangskonfiguration für den COMBIVERT B2X	115
Abbildung 92: Taktsignal Eingangskonfiguration für den COMBIVERT B2Y	116
Abbildung 93: Taktausgangskonfiguration für den COMBIVERT B2Y	116
Abbildung 94: Eingang1 Eingangskonfiguration für den COMBIVERT B2Y	
Abbildung 95: Zertifikat Baumusterprüfung	120
Tabellen	
Tabelle 1: Übersicht der Sicherheitsfunktionen mit möglichem SIL/PL Level	
Tabelle 2: Einstufung nach IEC61508	
Tabelle 3: Einstufung nach ISO13849	
Tabelle 2: Verwendete Begriffe und Abkürzungen	
Tabelle 5: Anschlussklemme X2B	
Tabelle 6: Benutzerrechte zu Benutzerlevel	
Tabelle 7: Auflistung der Parameter	
Tabelle 8: Indexauswahl über konfigurierbare Eingänge	
Tabelle 9: Indexauswahl über konfigurierbare Eingänge	
Tabelle 10: Indexauswahl über konfigurierbare Eingänge	
Tabelle 11: Indexauswahl über konfigurierbare Eingänge	59

Tabelle 12: Indexauswahl über konfigurierbare Eingänge	61
Tabelle 13: Priorität der Sicherheitsfunktionen des Sicherheitsmoduls	
Tabelle 14: Status des Sicherheitsmoduls	72

2 Grundlegende Sicherheitshinweise

Der COMBIVERT ist nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Nichtbeachtung führt zum Verlust von Schadensersatzanspruch.

ACHTUNG

Gefahren und Risiken durch Unkenntnis!

- Lesen Sie alle Teile der Gebrauchsanleitung!
- Beachten Sie die Sicherheits- und Warnhinweise!
- Fragen Sie bei Unklarheiten nach!

2.1 Zielgruppe

Diese Anleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- Kenntnis und Verständnis der Sicherheitshinweise.
- Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über DIN IEC 60364-5-54.
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).
- Einschlägige Kenntnisse aus dem Bereich der Sicherheitstechnik.
- Grundlagen im Umgang mit dem Betriebssystem Windows®.

2.2 Gültigkeit der vorliegenden Anleitung

Dieser Teil der Gebrauchsanleitung

- ergänzt die Anleitungen des COMBIVERT um das Sicherheitsmodul vom Typ 3.
- ist nur gültig in Verbindung mit der Gebrauchsanleitung des COMBIVERT.
- enthält sicherheitstechnische Ergänzungen und Auflagen für den Betrieb von Geräten in sicherheitsgerichteten Anwendungen. Die Grundnormen sowie anwendungsund landesspezifischen Normen sind weiterhin zu beachten.
- enthält nur ergänzende Sicherheitshinweise und Normen.

2.3 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät! Lebensgefahr durch Stromschlag!

- ➤ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten und gegen Einschalten sichern.
- > Warten bis der Antrieb zum Stillstand gekommen ist, damit keine generatorische Energie erzeugt werden kann.
- Kondensatorentladezeit (5 Minuten) abwarten, ggf. DC-Spannung an den Klemmen messen.
- Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken

Für einen störungsfreien und sicheren Betrieb sind folgende Hinweise zu beachten:

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der Auslegung des Maschinenherstellers zu dimensionieren. Angegebene Minimal-/ Maximalwerte dürfen dabei nicht unter- /überschritten werden.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit sicherer Trennung die EN-Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß EN 61800-5-1) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.

ACHTUNG

Auswahl geeigneter Spannungsquellen!

- ➤ Verwenden Sie zum Anschluss nur geeignete Spannungsquellen mit sicherer Trennung (SELV/PELV) gemäß VDE 0100 mit einer Nennspannung von DC 24V ±10%.
 - Auf eine ausreichende Überspannungskategorie der Spannungsversorgung achten.

SELV/PELV

2.4 Installation

Zusatzhinweise:

- Für Arbeiten an spannungsführenden Teilen muss die Maschine durch einen Hauptschalter galvanisch vom Netz getrennt werden können.
- Wirken auf die Antriebsachse äußere Kräfte, z. B. bei Vertikalachsen (hängende Lasten) oder Rundachsen mit asymmetrischer Gewichtsverteilung, müssen zusätzlich mechanische Bremsen installiert werden.
- Für den Schutz gegen Verschmutzung (Verschmutzungsgrad 2) ist der Einbau der Geräte in Umgebung mit erhöhter Schutzart vorzusehen (z. B. Schaltschrank IP 54).

- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile in den COMBIVERT fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Nach der Installation die Sicherheitsfunktionen und Fehlerreaktionen prüfen und ein Abnahmeprotokoll erstellen.
- Bei Unterbrechung der STO-Signale kann der Anlauf verhindert werden. Nach EN 60204-1 darf STO bei einer drohenden Gefährdung nicht freigegeben werden. Auch die Hinweise zu den externen Sicherheitsschaltgeräten beachten.
- Dimensionieren Sie die Sicherheitsanwendung so, dass für die Eingänge der entsprechende Eingangsstrom der Sicherheitsfunktionen zur Verfügung steht (siehe 4.1.4). Werden mehrere Sicherheitsmodule bzw. Sicherheitsfunktionen an ein Sicherheitsschaltgerät angeschlossen, muss das Sicherheitsschaltgerät entsprechend für alle Sicherheitsmodule die Stromleistung aufbringen.

2.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

Unsachgemäße Installation der Sicherheitstechnik! Tod und schwere Körperverletzung

Sicherheitsfunktionen dürfen nur von Personen installiert und in Betrieb genommen werden, die im Bereich der Sicherheitstechnik ausgebildet oder entsprechend unterwiesen sind.

Softwareschutz und Programmierung! Gefährdung durch ungewolltes Verhalten des Antriebes!

- Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichter prüfen, ob die Parametrierung zur Applikation passt.
- ➤ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- Motoren gegen selbsttätigen Anlauf sichern.

2.6 Wartung

ACHTUNG

Regelmäßige Kontrollen! Keine Gewährleistung der Sicherheit!

Um die Sicherheit dauerhaft zu gewährleisten, sind die Funktionen in regelmäßigen Abständen entsprechend den Ergebnissen der Risikoanalyse zu kontrollieren.

3 Produktbeschreibung

3.1 Gültigkeit

Die vorliegende Anleitung beschreibt das Sicherheitsmodul Typ 3

Materialnummer: 03H6x10-00xx

• Hardware: Sicherheitsmodul Typ 3

• Firmwareversion: 3.2.0.1

eingesetzt in

Servosteller xxS6A3x-xxxxUmrichter xxF6A3x-xxxx

FS - Gültigkeit von Zertifikaten

Die Zertifizierung von Stellern mit Sicherheitstechnik ist nur gültig, wenn die Materialnummer dem angegebenen Nummernschlüssel entspricht und das FS-Logo auf dem Typenschild aufgedruckt ist.

3.2 Funktion

Durch elektronische Schutzeinrichtungen sind Sicherheitsfunktionen in die Antriebssteuerung integriert, um Gefährdungen durch Funktionsfehler in Maschinen zu minimieren oder zu beseitigen. Die integrierten Sicherheitsfunktionen ersetzen die aufwändige Installation von externen Sicherheitskomponenten. Die Sicherheitsfunktionen können angefordert oder durch einen Fehler ausgelöst werden.

3.3 Sicherheitsfunktionen nach IEC 61800-5-2

Funktion	Beschreibung	SIL	PL
STO (Safe Torque Off)	Sicher abgeschaltetes Moment Der Antrieb wird durch die zweikanalige Abschaltung der Kommutierung der Leistungshalbleiter abgeschaltet. Nach Auslösung der Funktion trudelt der Antrieb aus. Er erreicht seine Ruhelage in Abhängigkeit der Drehzahl und des wirkenden Drehmoments.	3	е
SBC (Safe Brake Control)	Sichere Bremsenansteuerung Die Funktion stellt bei Anforderung das Einfallen einer Bremse si- cher.	3	е
SS1 (Safe Stop 1)	Sicherer Stopp 1 Der Antrieb wird durch die Wirkung der Antriebssteuerung, während die Bremsrampe überwacht wird, abgebremst. Nach Erreichen der Ruhelage oder Ablauf einer Verzögerungszeit wird der Zustand STO eingenommen.	3	е
SS2 (Safe Stop 2)	Sicherer Stopp 2 Der Antrieb wird durch die Wirkung der Antriebssteuerung, während die Bremsrampe überwacht wird, abgebremst. Nach Erreichen der Ruhelage wird der Zustand SOS eingenommen.	3	е
SOS (Safe Operating Stop)	Sicherer Betriebshalt Innerhalb dieser sicheren Funktion steht der Antrieb still. Die Motor- regelung bleibt aktiv und widersteht externen Kräften.	3	е
SLS (Safely-Limited Speed)	Sicher begrenzte Geschwindigkeit Durch die Funktion wird das Überschreiten eines Geschwindigkeitsgrenzwertes verhindert.	3	е

Funktion	Beschreibung	SIL	PL
SLP (Safely Limited Position)	Sicher begrenzte Position Die Funktion verhindert das Überschreiten eines Positions-Grenzwertes.	3	е
SLI (Safely-Limited Increment)	Sicher begrenztes Schrittmaß Bei dieser Sicherheitsfunktion wird ein begrenztes Schrittmaß überwacht.	3	е
SDI (Safe Direction)	Sichere Bewegungsrichtung Die Sicherheitsfunktion überwacht die Dreh- oder Verfahrrichtung eines Antriebes.	3	е
SSM (Safe Speed Monitor)	Sichere Geschwindigkeitsüberwachung Die Sicherheitsfunktion liefert unterhalb eines spezifizierten Dreh- zahlwertes eines Antriebes ein sicheres Ausgangssignal.	3	е
SMS (Safe Maximum Speed)	Sichere maximale Geschwindigkeit Durch die Funktion wird das Überschreiten eines Geschwindigkeitsgrenzwertes verhindert.	3	е
SLA (Safe Limited Acceleration)	Sichere Beschleunigung Die Sicherheitsfunktion verhindert das Über- oder Unterschreiten des Beschleunigungsgrenzwertes.	3	е

Tabelle 1: Übersicht der Sicherheitsfunktionen mit möglichem SIL/PL Level

SAR (Safe Acceleration Range) entspricht SLA mit einer oberen und einer unteren Grenze mit gleichem Vorzeichen.

SSR (Safe Speed Range) entspricht SLS mit einer oberen und einer unteren Grenze mit gleichem Vorzeichen.

3.4 Einstufung der Sicherheitsfunktionen nach IEC 61508

PFH	6,6 • 10 ⁻¹¹ 1/h
PFD	5,7 • 10 ⁻⁶ pro Anforderung
Proof-Test-Interval T	20 Jahre

Tabelle 2: Einstufung nach IEC61508

Für die SIL-Einstufung im Zusammenhang mit den Applikationen müssen zur endgültigen Beurteilung die Versagensraten der externen Schaltgeräte mit berücksichtigt werden.

3.5 Einstufung der Sicherheitsfunktionen nach EN ISO 13849

Kategorie	3
MTTF _D	>1500 Jahre
DC	mittel

Tabelle 3: Einstufung nach ISO13849

Für die Einstufung innerhalb eines Performance Levels im Zusammenhang mit den Applikationen müssen zur endgültigen Beurteilung die Versagensraten der externen Schaltgeräte mit berücksichtigt werden.

3.6 Sicherer Zustand

Im Fehlerfall geht das Modul in den sicheren Zustand über. Der sichere Zustand ist festgelegt mit folgendem Status:

- Modulation aus (STO)
- Bremse geschlossen (SBC)

Alle Ausgänge (Takt/Ripple/Out1/Out2) abgeschaltet.

3.7 Verwendete Begriffe und Abkürzungen

Begriff	Beschreibung
0V	Erdpotenzialfreier Massepunkt
AC	Wechselstrom oder -spannung
ASCL	Asynchronous sensorless closed loop
Auto motor ident.	Automatische Motoridentifikation; Einmessen von Widerstand und Induktivität
AWG	Amerikanische Kodierung für Leitungsquerschnitte
B ₁₀ (B _{10D})	Bauteilkennwert gem. IEC 13849 zur stochastischen Angabe der erwarteten Lebensdauer.
COMBIVERT	KEB Antriebsstromrichter
COMBIVIS	KEB Inbetriebnahme- und Parametriersoftware
DC	Gleichstrom oder -spannung
DC Bremse	Abbremsen eines Antriebssystems mit einer konstanten Gleichspannung
DIN	Deutsches Institut für Normung
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Norm
EtherCAT®	Echtzeit-Ethernet-Bussystem; EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Deutschland. Sie wird durch folgendes Logo gekennzeichnet: EtherCAT®
Ethernet	Echtzeit-Bussystem - definiert Protokolle, Stecker, Kabeltypen
FE	Funktionserde
FSoE	Fail Safe over EtherCAT – siehe Safety over EtherCAT®
FU	Antriebsstromrichter
GND	Bezugspotenzial, Masse
IEC	Internationale Norm
IP xx	Schutzart (xx für Level)

Logikeinheit	Einer der internen Berechnungskanäle des Sicherheitsmoduls, typischerweise redundant vorhanden. Auch "Logikkanal"
Modulation	Bedeutet in der Antriebstechnik, dass die Leistungshalbleiter angesteuert werden
MTTF (MTTF _{D)}	Bauteilkennwert gem. IEC 13849 zur stochastischen Angabe der erwarteten Lebensdauer.
NN	Normalnull
Not-Aus	Abschalten der Spannungsversorgung im Notfall
Not-Halt	Stillsetzen eines Antriebs im Notfall (nicht spannungslos)
OC	Überstrom (Overcurrent)
OH	Überhitzung
OL	Überlast
OSSD	Ausgangsschaltelement; Ausgangssignal, dass in regelmäßigen Abstände auf seine Abschaltbarkeit hin geprüft wird. (Sicherheitstechnik)
PA	Potenzialausgleich
PDS	Leistungsantriebssystem inkl. Motor und Messfühler
PE	Schutzerde
PELV	Sichere Schutzkleinspannung, geerdet
PFD	Begriff aus der Sicherheitstechnik (EN 61508-17) für die Größe der Fehlerwahrscheinlichkeit
PFH	Begriff aus der Sicherheitstechnik (EN 61508-17) für die Größe der Fehlerwahrscheinlichkeit pro Stunde
PWM	Pulsweitenmodulation
Safety over EtherCAT®	Safety over EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Deutschland. Sie wird durch folgendes Logo gekennzeichnet: Safety over
SCAMPI	interner Kommunikationsbus
abollo 4: Vorwondoto Bogriffo	

Tabelle 4: Verwendete Begriffe und Abkürzungen

4 Beschreibung der I/Os

4.1 Anschlussklemme X2B

PIN (x / x gebrückt)	Name	Funktion
1/2	STO.1	STO-Eingänge
3 / 4	STO.2	
5/6	SBC.1	SBC-Eingänge
7 / 8	SBC.2	
9 / 10	FUNC1.1	Funktion1- Eingänge
11 /12	FUNC1.2	
13 /14	FUNC2.1	Funktion2- Eingänge
15 / 16	FUNC2.2	
17 / 18	Ripple.1	Ripple- Eingänge
19 / 20	Ripple.2	
21 / 22	Takt.1	Takt-Ausgänge
23 / 24	Takt.2	
25 / 26	Out1	Ausgang1
27 / 28	Out2	Ausgang2
29 / 30	Ripple Out.1	Ripple- Ausgänge
31 / 32	Ripple Out.2	

Tabelle 5: Anschlussklemme X2B

Die Spannungen aller Ein- und Ausgänge beziehen sich auf die 0V der Steuerkarte des COMBIVERT und sind dort anzuschließen. Die Pin-Belegung der Steuerklemmen ist in der jeweiligen Anleitung des COMBIVERT beschrieben.

4.1.1 Montage der Anschlusslitzen

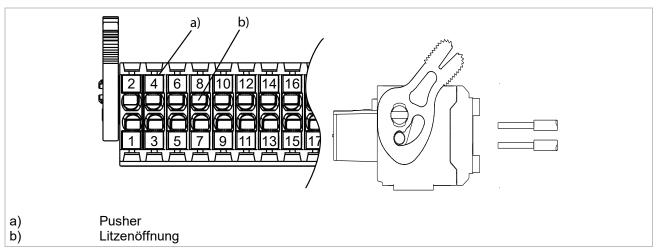


Abbildung 1: Montage des Anschlusses X2B

 Pusher von Hand drücken. Litze in die zugehörige Öffnung stecken, so dass keine einzelnen Drähte von außen zu sehen sind bzw. sich diese nicht nach außen zurückbiegen. Beim Einstecken muss ein erster Widerstand überwunden werden. Pusher wieder loslassen.

 Prüfen, ob die Litze fest sitzt und nicht wieder herausgezogen werden kann. Es ist darauf zu achten, dass die Litze und nicht die Isolierung geklemmt wird. Bei Querschnitten ab 1,00 mm² kann die Litze auch ohne Drücken des Pushers eingesteckt werden.

4.1.2 Montage von Litzen mit Aderendhülsen nach DIN46228/4

Querschnitt / AWG	Metallhülsenlänge	Abisolierlänge
0,50 mm ² / 21	10 mm 12 mm	
0,75 mm² / 19	12 mm	14 mm
1,00 mm² / 18	12 mm	15 mm

4.1.3 Montage von Litzen ohne Aderendhülsen

Querschnitt / AWG	Abisolierlänge				
0,141,5 mm ² / 2516	10 mm				
Litze starr und flexibel					

Hinweis

- KEB empfiehlt in Industrieumgebungen generell den Einsatz von Aderendhülsen.
- Bei Verwendung von kürzeren Aderendhülsen ist eine sichere Klemmung nicht gewährleistet.

4.1.4 Spezifikation der Eingänge

Die Eingänge sind nach IEC61131-2 Typ 3 wie folgt spezifiziert:

Eingänge	Status 0		Status 1		
Eingänge	UL [V]	IL [mA]	UH [V]	IH [mA]	
max.	5	15	30	15	
min.	-3	nicht definiert	11	2	

Der maximale kurzfristige Einschaltstrom des Eingangs ist auf 30 mA begrenzt.

4.1.5 Spezifikation der Ausgänge

Die digitalen Ausgänge sind gemäß IEC61131-2 spezifiziert. Der maximale Ausgangsstrom beträgt 100 mA. Die Ausgänge sind kurzschlussfest.

4.2 Anschlussklemmen Bremse

Die Lage der Klemmen und Spezifikation des Bremsenausgangs ist in der jeweiligen Anleitung des COMBIVERT beschrieben. Der Freilaufzweig zur Ansteuerung der Bremse ist im COMBIVERT integriert.

4.3 Anschlussklemme Geberinterface

Die Beschreibung der Geberinterfaceschnittstelle ist in der entsprechenden Anleitung des COMBIVERT beschrieben.

4.4 Status-LEDs

Anordnung der LEDs ist in der entsprechenden Anleitung des COMBIVERT hinterlegt.

Die Anzeige der LED des Sicherheitsmoduls gibt folgenden Status an:

LED	Status
aus	Keine Spannungsversorgung des Sicherheitsmoduls
grün	Sicherheitsmodul in Betrieb
orange	Sicherheitsmodul in Reset oder neue Konfiguration wird übernommen
rot	Sicherheitsmodul in Fehler
grün orange blinkend	Blinkt für 60 Sekunden, wenn sich ein neuer Benutzer eingeloggt hat.
grün orange doppelt blinkend	Blinkt alle 1,6 Sekunden zweimal kurz orange. Signalisiert, dass der Status der Buskommunikation nicht der Data State ist. Das Sicherheitsmodul befindet sich im sicheren Zustand.

5 Parametrierung und Benutzerverwaltung

Die Parametrierung geschieht mit dem Programm KEB COMBIVIS. Bei einem bestehenden Projekt kann ein KEB Sicherheitsmodul wie folgt hinzugefügt werden:

- · Rechtsklick auf das Gerät
- "Objekt hinzufügen"
- Eintrag "KEB Sicherheitsmodul" auswählen => Abbildung 2.

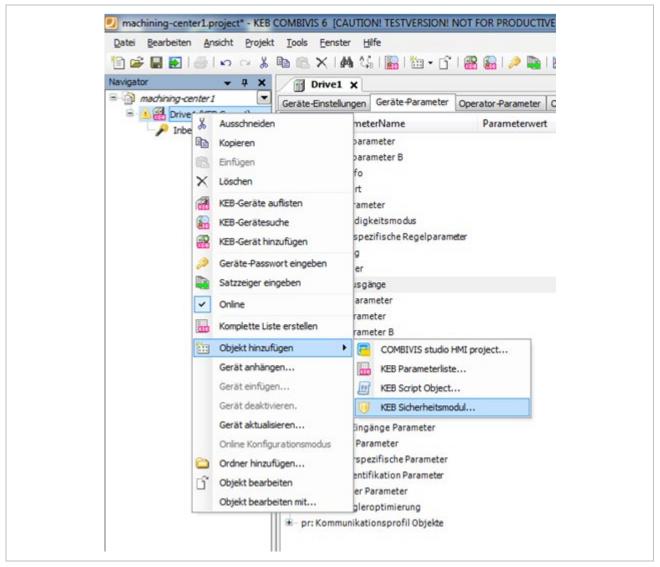


Abbildung 2: KEB Sicherheitsmodul hinzufügen

5.1 Benutzerverwaltung und Login

Der KEB Safety Editor enthält als erste Schaltfläche die Benutzerverwaltung => Abbildung 3.

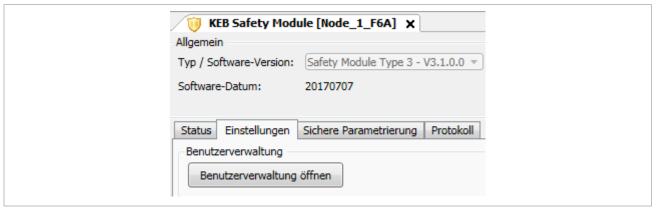


Abbildung 3: Benutzerverwaltung in KEB COMBIVIS

Bei Klick auf "Benutzerverwaltung öffnen" wird das Fenster aus Abbildung 4 angezeigt.

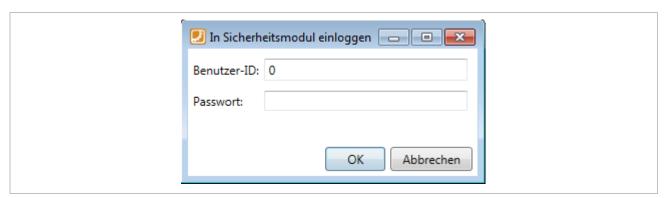


Abbildung 4: Login Fenster in COMBIVIS

Für den ersten Login gibt es einen Standardbenutzer. Der Login erfolgt durch Eingabe von

- Benutzer-ID = 1 und Passwort = default
- Nach dem Einloggen blinkt das Sicherheitsmodul für ca. 1 Minute. Mit dem Standardbenutzer ist es nur möglich neue Benutzer anzulegen. Es ist nicht möglich Sicherheitsparameter auf das Sicherheitsmodul herunterzuladen oder eine bestehende Konfiguration auszulesen.
- Benutzer können angelegt und mit verschiedenen Rechten versehen werden. Die Benutzerverwaltung ist durch die Schaltfläche "Benutzereinstellungen" erreichbar => Abbildung 5. Für jeden Benutzer kann eine Benutzer-ID und ein Passwort vergeben werden. Die Benutzer-ID 0 ist nicht möglich. Das mehrfache Anlegen eines Benutzers mit derselben Benutzer-ID ist nicht möglich und führt zu einer Fehlermeldung.
- Wenn ein neuer Benutzer mit den Benutzerrechten "0 Keine Benutzerrechte" angelegt wurde und dieser Benutzer der einzige, registrierte Benutzer im Sicherheitsmodul

Neuen Benutzer anlegen

Ausgewählten Benutzer löschen

Benutzer-ID

Berechtigung

11

7: Volle Benutzerrechte

Schließen

ist, dann kann sich weiterhin mit der Benutzer-ID 1 und Passwort default eingeloggt werden.

Abbildung 5: Benutzerverwaltung für das Sicherheitsmodul in COMBIVIS

Es gibt 6 verschiedene Benutzerrechte. Wenn ein neuer Benutzer angelegt wurde, so ist der Login mit dem Standardbenutzer nicht mehr möglich.

Benutzerlevel	Login möglich	Darf sein eige- nes Passwort verändern	Darf bestehende Benutzer verän- dern oder neue Benutzer hinzufü- gen	Darf neue Konfigurati- onsdaten herunterla- den	Darf eine beste- hende Konfigura- tion auslesen
0: Keine Benutzerrechte	х	x			
1: Hinzufügen und verändern von Benutzern	х	х	х		
2: Schreiben neuer Konfigurationsdaten	x	х		х	
4: Auslesen der Konfigurationsdaten	x	x			х
6: Auslesen und schreiben von Konfigurationsdaten	х	х		х	х
7: Volle Benutzerrechte	х	х	х	х	х

Tabelle 6: Benutzerrechte zu Benutzerlevel

5.2 Sichere Konfiguration von Parametern des Sicherheitsmoduls

Unterhalb der Benutzerverwaltung ist der Bereich wo die Parameter des Sicherheitsmoduls konfiguriert werden können => Abbildung 6. Die Parameter sind in verschiedene Gruppen unterteilt, welche durch das Auswahlfeld Parametergruppe gefiltert werden können. Bleibt der Mauszeiger längere Zeit über einem Parameter stehen, erscheint ein Tool-Tipp mit weiteren Informationen über den Parameter => Abbildung 7.

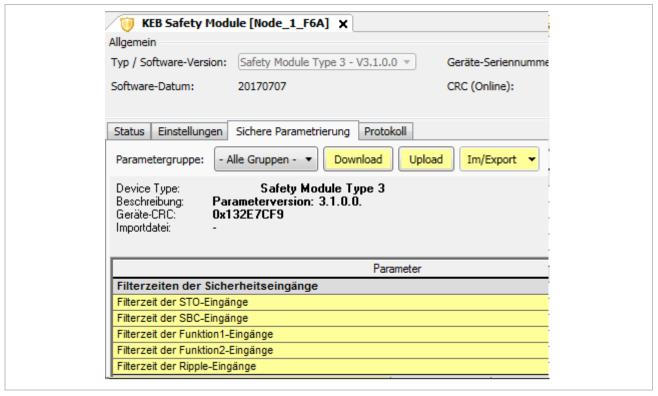


Abbildung 6: Sichere Konfiguration der Parameter des Sicherheitsmoduls

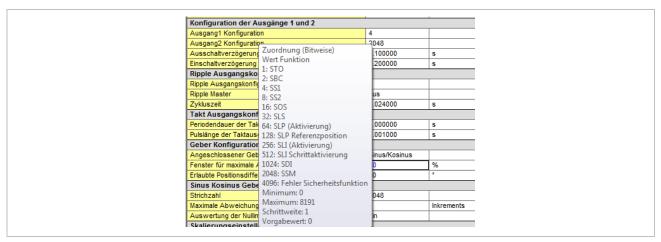


Abbildung 7: Tooltipp beim Parameter Konfiguration des Ripple Eingangs

5.2.1 Herunterladen von neuen Konfigurationsdaten

Über die Schaltfläche "Download" kann die neue Parametrierung auf das Sicherheitsmodul übertragen werden, wenn der eingeloggte Benutzer über genügend Rechte verfügt. Beim Download wird vom Sicherheitsmodul noch einmal überprüft, ob die Parameter richtig konfiguriert sind. Wenn bei der Übernahme der Konfigurationsdaten ein Fehler festgestellt wird, werden die Daten nicht übernommen und das Sicherheitsmodul geht in den Fehlerstatus über. Danach können die Fehler im Bereich Protokoll, siehe Kapitel <u>5.4.1</u>, ausgelesen und behoben werden.

5.2.2 Auslesen von bestehenden Konfigurationsdaten aus dem Sicherheitsmodul

Wenn der eingeloggte Benutzer über genügend Rechte verfügt, dann können Konfigurationsdaten aus dem Sicherheitsmodul ausgelesen werden. Hierfür genügt es die Schaltfläche "Upload" anzuklicken. Nach der Beendigung des Auslesevorgangs wird die bestehende Konfiguration im Konfigurationseditor angezeigt.

5.2.3 Import und Export von Konfigurationsdaten

Konfigurationsdaten können importiert oder exportiert werden. Hierfür auf die Schaltfläche "Im/Export" klicken und eine Option auswählen.

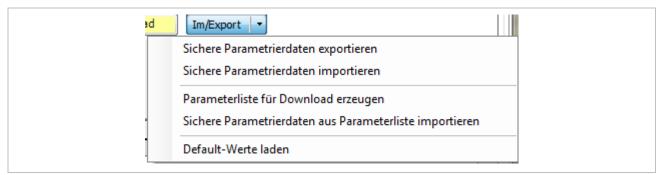


Abbildung 8: Import und Export von Konfigurationsdaten

5.2.4 Sichere Parametrierdaten exportieren

Über diesen Menüpunkt können die eingestellten Konfigurationsdaten in eine Datei exportiert werden. Diese können dann z.B. in einem anderen Projekt wieder importiert werden. Eine Veränderung der Daten in der Datei ist nicht möglich, da der Import der Daten ansonsten nicht durchgeführt werden kann.

5.2.5 Sichere Parametrierdaten importieren

Über diesen Menüpunkt können Konfigurationsdaten aus einer vorher exportierten Datei wieder importiert werden. Nach dem Import werden die Daten im Konfigurationseditor angezeigt. Nach dem Import ist der Editor für die Konfigurationsdaten schreibgeschützt. Durch einen Rechtsklick in den Editor und die Option "Entsperren" kann der Schreibschutz aufgehoben werden.

Abbildung 9: "Entsperren" nach dem Importieren von Konfigurationsdaten

Ein Import ist nur bei gleicher Firmwareversion möglich (z. B. Firmwareversion 3.2.0.1).

5.2.6 Parameterliste für Download erzeugen

Hier wird eine Downloadliste erzeugt, welche ohne den Konfigurationseditor von COMBIVIS in das Sicherheitsmodul übertragen werden kann. Die Downloadliste kann nicht ohne den Konfigurationseditor editiert werden, da sonst der Download der Konfigurationsdaten vom Sicherheitsmodul abgelehnt wird.

5.2.7 Sichere Parametrierdaten aus Parameterliste importieren

Hiermit wird eine vorher erstellte Downloadliste wieder in den Konfigurationseditor importiert. Nach dem Import werden die Daten im Konfigurationseditor angezeigt.

Ein Import ist nur bei gleicher Firmwareversion möglich (z. B. Firmwareversion 3.2.0.1).

5.3 Status des Sicherheitsmoduls

Der Status des Sicherheitsmoduls kann in der Registerkarte "Status" angezeigt werden (=> Abbildung 10).

Status Einstellungen Sichere I	Parametrierung Protokoll				
Sicherheitsmodul-Status					
Allg. Sicherheitsstatus:	262306: Sicherheitsoperation freigegeben				
	Hochstarten des Sicherheitsmoduls beendet				
	Busstatus: Reset				
	Index 1				
	Konfiguration Ok				
Bus-Sicherheitsfunktionsstatus:	3: STO + Bremse geschlossen				
Aktivierte Sicherheitsfunktion:	131072: STO + Bremse geschlossen + SMS				
Fehlerstatus:	Kein Fehler				
Letzter Fehler/Warnhinweis:	Kein Fehler				
Busfehler:	Kein Fehler				
I/O-Status:	Eingangskanal 1:				
	Eingangskanal 2:				
	Ausgangskanal 1:				
	Ausgangskanal 2:				
Geberdrehzahl:	-0,4669 1/min				
Geberposition (Umdrehungen):	0.300353				
Umrichter-Position:	19671				

Abbildung 10: Status Registerkarte im KEB Safety Editor

• Allg. Sicherheitsstatus:

Gibt Auskunft, ob des Sicherheitsmodul ordnungsgemäß funktioniert und ob die Konfigurationsdaten fehlerfrei sind, Einzelheiten => Kapitel 7.

• Bus-Sicherheitsfunktionsstatus:

Gibt Auskunft, welche Sicherheitsfunktion vom sicheren Bussystem angefordert wurde.

• Aktivierte Sicherheitsfunktionen

Zeigt die aktivierten Sicherheitsfunktionen, welche über die Eingänge und die FSoE Daten aktiviert wurden.

Fehlerstatus:

Der Fehlerstatus gibt Auskunft, ob ein Fehler vorliegt. Durch den angezeigten Fehlertext kann die Ursache des Fehlers erkannt werden (=> Abbildung 11).

536871649: Fehler: + Cpu 2 + Fehlerzeit für den SBC Eingang abgelaufen.

Abbildung 11: Fehlerstatus mit Fehlerbeschreibung in COMBIVIS

Letzter Fehler / Warnhinweis:

Hier wird der letzte erkannte Fehler angezeigt. Es kann vorkommen, dass zu einem bereits erkannten Fehler weitere Fehler erkannt werden. Diese werden hier anzeigt. Zusätzlich werden diese Fehler auch in das Fehlerprotokoll aufgenommen.

Busfehler:

Es wird der letzte Busfehler angezeigt, welcher bei der Kommunikation mit dem sicheren Master festgestellt wurde.

I/O Status:

Hier wird der Eingangs- und Ausgangsstatus angezeigt. Der Eingangsstatus ist der Status der Eingänge zum Sicherheitsmodul.

Die Ausgänge auf der Sicherheitskarte sind zweikanalig ausgeführt. Der Ausgangsstatus setzt sich aus dem Eingangsstatus an den Klemmen des Sicherheitsmoduls, der Konfiguration für die Ausgänge und teilweise auch aus dem Eingangsstatus der Steuerkarte zusammen. Damit z. B. die Bremse ausgeschaltet werden kann (der Bremsenausgang geschaltet wird), muss sowohl der SBC Eingang vom Sicherheitsmodul eingeschaltet werden, als auch in den Geräteparametern des COMBIVERT co00 Bit 15 auf 1 gesetzt werden. Erst dann wird der Bremsenausgang geschaltet.

• Geberdrehzahl:

Hier wird die Geschwindigkeit des Antriebs angezeigt. Die Geschwindigkeit wurde vom Sicherheitsmodul ermittelt.

• Geberposition (in Umdrehungen):

Hier wird die Position des Antriebs angezeigt. Wenn bereits eine Referenzposition angefahren wurde und mit dem Taster quittiert ist, dann wird die Position abhängig von der Referenzposition ausgegeben.

Umrichter Position (in Bits pro Umdrehung):

Hier wird die Position als skalierter Lagewert angegeben. Der Lagewert wird hierbei mit der konfigurierten "Skalierungseinstellungen für die Position" angezeigt. Wenn bereits eine Referenzposition angefahren wurde und mit dem Taster quittiert ist, dann wird die Position abhängig von der Referenzposition ausgegeben.

5.4 Auslesen der Protokolldaten

Das Auslesen von Protokolldaten kann über die Registerkarte Protokoll durchgeführt werden. Es gibt verschiedene Arten von Protokolldaten, welche ausgelesen werden können. Der Auslesevorgang wird gestartet, indem eine oder mehrere Schaltflächen ausgewählt werden und dann der Button "Aktualisieren" angeklickt wird.

Die jeweils letzten 20 Einträge in jeder Kategorie werden nichtflüchtig gespeichert.

Die Protokolldaten richten sich nach der auf dem Sicherheitsmodul befindlichen Uhr. Ist diese nicht richtig eingestellt, können die Protokolldaten die falsche Uhrzeit und das falsche Datum enthalten. Die Echtzeituhr hat eine Gangreserve von ungefähr 2 Tagen.

5.4.1 Auslesen von Fehlern

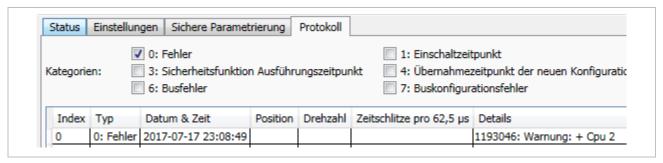


Abbildung 12: Fehlerzeitpunkt, Fehlernummer und Beschreibung

Für das Auslesen von Fehlern muss im Menüpunkt "Protokoll" die jeweilige Kategorie markiert werden. Danach wird durch einen Klick auf "Aktualisieren" das Fehlerlog vom Sicherheitsmodul ausgelesen und angezeigt.

5.4.2 Auslesen von Einschaltzeitpunkten

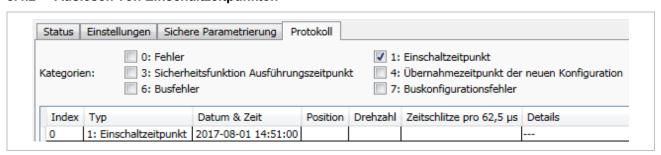


Abbildung 13: Einschaltzeitpunkt mit Datum und Zeit im Log

Für das Auslesen von Einschaltzeitpunkten muss im Menüpunkt "Protokoll" der Schalter "Einschaltzeitpunkt" gesetzt werden => Abbildung 13. Danach wird durch einen Klick auf "Aktualisieren" das Protokoll vom Sicherheitsmodul ausgelesen und angezeigt.

5.4.3 Auslesen von Ausschaltzeitpunkten

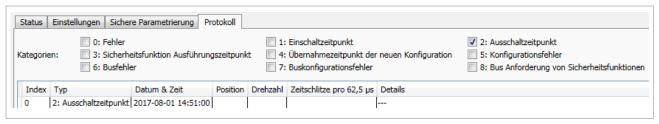


Abbildung 14: Abschaltzeitpunkte mit Datum und Zeit im Log

Für das Auslesen von Ausschaltzeitpunkten muss im Menüpunkt Protokoll der Schalter "Ausschaltzeitpunkt" betätigt werden => Abbildung 14. Danach wird durch einen Klick auf Aktualisieren das Protokoll vom Sicherheitsmodul ausgelesen und angezeigt. Der Ausschaltzeitpunkt ist auf 5 Minuten genau.

5.4.4 Auslesen von Anforderungen für Sicherheitsfunktionen

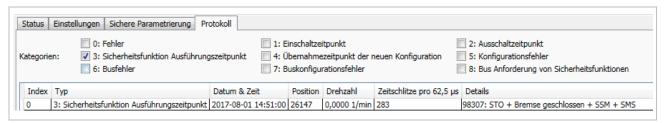


Abbildung 15: Anforderungszeitpunkte von Sicherheitszeitpunkten

Für das Auslesen von Anforderungen von Sicherheitsfunktionen muss im Menüpunkt Protokoll der Schalter "Sicherheitsfunktion Ausführungszeitpunkt" gesetzt werden. Danach wird durch einen Klick auf "Aktualisieren" das Log vom Sicherheitsmodul ausgelesen und angezeigt.

5.4.5 Auslesen des Zeitpunkts der Übernahme von neuen Konfigurationsdaten

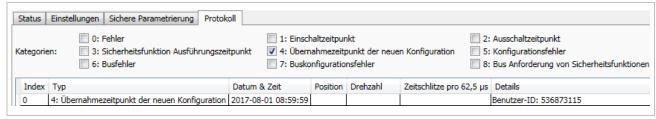


Abbildung 16: Übernahmezeitpunkte von neuen Konfigurationsdaten

Für das Auslesen von Übernahmezeitpunkten von neuen Konfigurationsdaten muss im Menüpunkt "Protokoll" der Schalter "Übernahmezeitpunkt der neuen Konfiguration" gesetzt werden => Abbildung 16. Danach wird durch einen Klick auf "Aktualisieren" das Log vom Sicherheitsmodul ausgelesen und angezeigt. Im Protokoll werden der Übernahmezeitpunkt und die Benutzer-ID angezeigt.

5.4.6 Auslesen von Konfigurationsfehlern

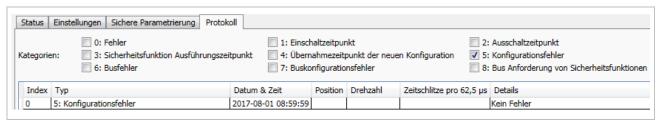


Abbildung 17: Zeitpunkt, Fehlernummer und Beschreibung von Konfigurationsfehlern

Für das Auslesen von Konfigurationsfehlern muss im Menüpunkt "Protokoll" der Schalter "Konfigurationsfehler" gesetzt werden => Abbildung 17. Danach wird durch einen Klick auf "Aktualisieren" das Protokoll vom Sicherheitsmodul ausgelesen und angezeigt.

Wichtig:

Bei einem Konfigurationsfehler wird beim Neustart des Sicherheitsmoduls die fehlerhafte Konfiguration verworfen und die letzte fehlerfreie Konfiguration geladen.

5.4.7 Auslesen von Busfehlern

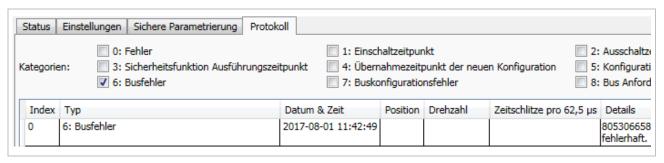


Abbildung 18: Busfehler mit Datum und Zeit im Log

Für das Auslesen von Busfehlern muss im Menüpunkt "Protokoll" der Schalter "Busfehler" gesetzt werden => Abbildung 18. Danach wird durch einen Klick auf Aktualisieren das Protokoll vom Sicherheitsmodul ausgelesen und angezeigt.

5.4.8 Auslesen von Buskonfigurationsfehlern

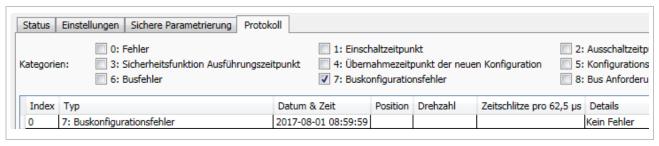


Abbildung 19: Buskonfigurationsfehler mit Datum und Zeit im Log

Für das Auslesen von Buskonfigurationsfehlern muss im Menüpunkt "Protokoll" der Schalter "Buskonfigurationsfehler" gesetzt werden => Abbildung 19. Danach wird durch einen Klick auf "Aktualisieren" das Protokoll vom Sicherheitsmodul ausgelesen und angezeigt.

5.4.9 Bus Anforderung von Sicherheitsfunktionen

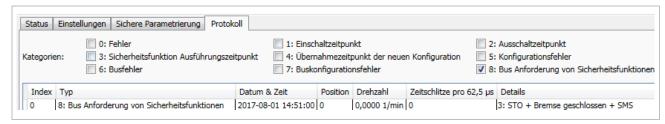


Abbildung 20: Bus Anforderung von Sicherheitsfunktionen im Log

Für das Auslesen von Sicherheitsfunktionen, welche mittels des sicheren Bussystems angefordert wurden, muss im Menüpunkt "Protokoll" der Schalter "Bus Anforderung von Sicherheitsfunktionen" gesetzt werden => Abbildung 20. Danach wird durch einen Klick auf "Aktualisieren" das Protokoll vom Sicherheitsmodul ausgelesen und angezeigt.

5.5 Parameterliste

Name	Bemerkung	Ein- heit	Mini- mum	Maxi- mum	De- fault	
Filterzeiten der Sicherheitseingänge (=> <u>8.1</u>)						
Filterzeit der STO-Eingänge	Filterzeit zum Entprellen von Eingangs- signalen der Sicherheitsfunktion STO	S	0	0,1	0,01	
Filterzeit der SBC- Eingänge	Filterzeit zum Entprellen von Eingangs- signalen der Sicherheitsfunktion SBC	S	0	0,1	0,01	
Filterzeit der Funktion1- Eingänge	Filterzeit zum Entprellen von Eingangs- signalen der Sicherheitsfunktion 1	S	0	0,1	0,01	
Filterzeit der Funktion2- Eingänge	Filterzeit zum Entprellen von Eingangs- signalen der Sicherheitsfunktion 2	S	0	0,1	0,01	
Filterzeit der Ripple- Eingänge	Filterzeit zum Entprellen von Eingangs- signalen der Ripple-Funktion	S	0	0,1	0,01	
Testsignal Eingangskonf	iguration (=> <u>8.2</u>)					
Testsignal-Perioden- dauer	Periodendauer der Testsignale (Taktausgang) zur Überprüfung des Anschlusses. Die Einstellung gilt für alle Eingänge	S	0,01	10,0	10,0	
Testpulslänge	Puls-Zeit der Testsignale (Taktausgang) zur Überprüfung des Anschlusses. Die Einstellung gilt für alle Eingänge	S	0,000 5	0,001	0,001	
Auswertung des Test- signals für die STO-Ein- gänge	Auswertung der STO- Eingänge an, wenn sie mit einem Testsignal belegt sind				aus	
Auswertung des Test- signals für die SBC-Ein- gänge	Auswertung der SBC- Eingänge an, wenn sie mit einem Testsignal belegt sind				aus	
Auswertung des Test- signals für die Funk- tion1- Eingänge	Auswertung für Funktion1- Eingänge an, wenn sie mit einem Testsignal belegt sind				aus	
Auswertung des Test- signals für die Funk- tion2- Eingänge	Auswertung für Funktion2- Eingänge an, wenn sie mit einem Testsignal belegt sind				aus	
STO Hardware Eingangskonfiguration (=> <u>8.3</u>)						
Belegung der STO-Ein- gänge	Auswahl der Sicherheitsfunktion, die durch die STO Eingänge aktiviert werden kann		0	18	STO	

Name	Bemerkung	Ein- heit	Mini- mum	Maxi- mum	De- fault	
Toleranzzeit der STO- Eingänge	Während der Toleranzzeit darf der Status zwischen den beiden STO-Eingängen abweichen	S	0	0,1	0,01	
Status der STO-Ein- gänge	Der Status der beiden STO-Eingänge ist äquivalent oder antivalent				äqui- valent	
SBC Hardware Eingangskonfiguration (=> <u>8.4</u>)						
Belegung der SBC-Ein- gänge	Auswahl der Sicherheitsfunktion, die durch die SBC Eingänge aktiviert werden kann		0	18	SBC	
Toleranzzeit der SBC- Eingänge	Während der Toleranzzeit darf der Status zwischen den beiden SBC-Eingängen abweichen	S	0	0,1	0,01	
Status der SBC-Ein- gänge	Der Status der beiden SBC-Eingänge ist äquivalent oder antivalent				äqui- valent	
Funktion1 Hardware Eir	ngangskonfiguration (=> <u>8.5</u>)					
Belegung der Funk- tion1- Eingänge	Auswahl der Sicherheitsfunktion, die durch die Funktion1-Eingänge aktiviert werden kann.		0	18	0	
Toleranzzeit der Funk- tion1-Eingänge	Während der Toleranzzeit darf der Status zwischen den beiden Funktion1-Eingängen abweichen.	S	0	0,1	0,01	
Status der Funktion1- Eingänge	Der Status der beiden Funktion1-Eingänge ist äquivalent oder antivalent				äqui- valent	
Funktion2 Hardware Ein	ngangskonfiguration (=> <u>8.6</u>)					
Belegung der Funk- tion2- Eingänge	Auswahl der Sicherheitsfunktion, die durch die Funktion2-Eingänge aktiviert werden kann		0	18	0	
Toleranzzeit der Funk- tion2-Eingänge	Während der Toleranzzeit darf der Status zwischen den beiden STO-Eingängen abweichen	S	0	0,1	0,01	
Status der Funktion2- Eingänge	Der Status der beiden Funktion2-Eingänge ist äquivalent oder antivalent				äqui- valent	
Ripple Hardware Eingangskonfiguration (=> 8.7)						
Belegung der Ripple- Eingänge	Auswahl der Sicherheitsfunktion, die durch die Ripple-Eingänge aktiviert werden kann		0	18	0	
Toleranzzeit der Ripple-Eingänge	Während der Toleranzzeit darf der Status zwischen den beiden Ripple -Eingängen abweichen	S	0	0,1	0,01	
Konfiguration der Ausgänge 1 und 2 (=> 9.1)						

Name	Bemerkung	Ein- heit	Mini- mum	Maxi- mum	De- fault	
Ausgang 1 Konfigura- tion	Zuordnung (Bitweise)		0	131071	0	
Ausgang2 Konfigura- tion	Zuordnung (Bitweise)		0	131071	0	
Einschaltverzögerung	Ausgänge 1 und 2 werden zur Schaltbedingung verzögert eingeschaltet	S	0	1	0,0	
Ripple Ausgangskonfigu	ration (=> <u>9.2</u>)					
Ripple Ausgangskonfi- guration	Zuordnung (Bitweise)		0	8191	0	
Ripple Master	Bei "ein" ist dieses Sicherheitsmodul der Master der Ripple-Kette				aus	
Zykluszeit	Benötigte Zeit, um das Ripple-Signal durch eine geschlossene Kette zu schi- cken	S	0	60	0,0	
Takt Ausgangskonfigura	ition (=> <u>9.3</u>)					
Periodendauer der Taktausgänge	Periodendauer der Testsignale zur Über- prüfung des Anschlusses	S	0,01	10	10,0	
Pulslänge der Taktaus- gänge	Puls-Zeit der Testsignale zur Überprü- fung des Anschlusses	S	0,000 5	0,001	0,001	
Geber Konfiguration (=>	10.1)					
Angeschlossener Geber	Auswahl des Gebertyps: kein Geber Sin/Cos-Geber Resolver				kein Geber	
Fenster für maximale Abweichung	Die Abweichung der Sinus- und Cosinus- Signale wird durch sin²x+cos²x = 1 ± Fenster überwacht	%	0	95	50	
Erlaubte Positionsdif- ferenz zwischen den Eingangskanälen	Wird die Differenz der Lageermittlung der beiden CPUs größer als der einge- stellte Wert, geht das Modul in den si- cheren Zustand über	٥	1	90	10	
Sinus Cosinus Geber Ko	Sinus Cosinus Geber Konfiguration (=> <u>10.2</u>)					
Strichzahl	Anzahl der Sinus-/Cosinus-Perioden pro Umdrehung		128	16000	2048	

Name	Bemerkung	Ein- heit	Mini- mum	Maxi- mum	De- fault
Erlaubte Lageabwei- chung	Wenn die gezählte Lage mehr als der eingestellte Wert von den gezählten In- krementen der Sinus oder Cosinusspur abweicht, so wird das Sicherheitsmodul in den sicheren Zustand überführt. Der maximale Wert ist (Strichzahl * 4) / 2 -1.		1	Strich- zahl / 2 - 1	1
Auswertung der Nul- limpulsspur	Die Auswertung der Nullimpulsspur kann mit diesem Parameter abgeschal- tet werden				ein
Skalierungseinstellunge	n der Position (=> <u>10.4</u>)				
Anzahl der Bit pro Um- drehung (Ps)	Mit dem Parameter wird die Auflösung der Position festgelegt (Einheit Ps). Die 32Bit Lagewerte werden aufgeteilt in dem Parameterwert für die Bit pro Umdrehung und die restlichen Bits werden für die ganzen Umdrehungen genutzt.	Bit	2	30	16
Einstellungen für die Ge	eschwindigkeitsmessung (=> 10.5)				
Drehzahlabtastzeit	Parameter gibt die Zeit an, über der der Drehzahlmittelwert gebildet wird		2	7	4
Drehzahl PT1-Zeit	Parameter gibt die Zeit des PT1-Filters der Drehzahlberechnung an	ms	0	256	2,0
SBC: Sichere Bremsenar	nsteuerung (=> <u>11.4</u>)				
SBC mit STO koppeln	Bei ein wird die SBC-Funktion aktiviert wenn die STO-Funktion ausgeführt wird				aus
Messung des Brem- senstromes	Die Messung des Bremsenstromes kann aktiviert werden. Wenn der Strom grö- ßer als 3,3A ist, wird das Modul in den sicheren Zustand überführt.				ein
SDI: Sichere Bewegungs	richtung (=> <u>11.12</u>)				
Fehlerfunktion	Auswahl der Funktion, die bei falscher Drehrichtung ausgeführt wird (STO oder SS1)		STO	SS1	STO
Positionsfenster bei Motorstillstand	Bei Drehzahl = 0 und Positionsänderungen, die kleiner als das Positionsfenster sind, wird keine Drehrichtung ermittelt	PS	0	2,147 · 10 ⁹	0

Name	Bemerkung	Ein- heit	Mini- mum	Maxi- mum	De- fault
Zeitfenster der Dreh- richtung	Wenn eine falsche Drehrichtung erkannt wird und diese länger als das einge- stellte Zeitfenster vorliegt, wird die aus- gewählte Fehlerfunktion ausgeführt	S	0	1	0
SS1: Sicherer Stopp 1 (=	> <u>11.5</u>)				
Auswahl des Funkti- onstyps	Mögliche Funktionstypen: SS1-r und SS1-t SS1-r (früher Typ B) SS1-t (früher Typ C)				SS1-r und SS1-t
Verzögerung	Vorgabe der Überwachungsrampe. Drehzahländerung in der Zeit Delta t.	1/s²	0	60000	0,0
Negative Toleranz	Die erlaubte negative Toleranz zur Rampe	1/min	0	60000	0,0
Positive Toleranz	Die erlaubte positive Toleranz zur Rampe	1/min	0	60000	0,0
Zeitfenster für Dreh- zahlabweichung	Wenn eine Abweichung der Geschwindigkeit größer als die Toleranz und länger als das eingestellte Zeitfenster existiert, wird die STO-Funktion ausgeführt	S	0	600	0,0
Typ C Zeit	Zeitspanne bis zur Auslösung der STO- Funktion	S	0	600	0,0
Höhere Verzögerung zulässig	Die Drehzahl darf nicht größer als die Verzögerung + Positive Toleranz sein. Al- lerdings ist die untere Drehzahlgrenze 0 – negative Toleranz. Somit kann der An- trieb auch schneller verzögern.		0	1	aus
SS2: Sicherer Stopp 2 (=	> <u>11.6</u>)				
Auswahl des Funkti- onstyps	Mögliche Funktionstypen: SS1-r und SS1-t SS1-r (früher Typ B) SS1-t (früher Typ C)				SS1-r und SS1-t
Verzögerung	Vorgabe der Überwachungsrampe. Drehzahländerung in der Zeit Delta t.	1/s²	0	60000	0,0
Negative Toleranz	Die erlaubte negative Toleranz zur Rampe	1/min	0	60000	0,0
Positive Toleranz	Die erlaubte positive Toleranz zur Rampe	1/min	0	60000	0,0

Name	Bemerkung	Ein- heit	Mini- mum	Maxi- mum	De- fault
Zeitfenster für Dreh- zahlabweichung	Wenn eine Abweichung der Geschwindigkeit größer als die Toleranz und länger als das eingestellte Zeitfenster existiert, wird die STO-Funktion ausgeführt	S	0	600	0,0
Typ C Zeit	Zeitspanne bis zur Auslösung der Funktion SOS		0	600	0,0
Höhere Verzögerung zulässig	Die Drehzahl darf nicht größer als die Verzögerung + Positive Toleranz sein. Al- lerdings ist die untere Drehzahlgrenze 0 – negative Toleranz. Somit kann der An- trieb auch schneller verzögern.		0	1	aus
SLS: Sicher begrenzte G	eschwindigkeit (=> <u>11.8</u>)				
Obere Geschwindig- keitsgrenze	Wenn die Geschwindigkeit die obere Geschwindigkeitsgrenze übersteigt, dann wird die Fehlerfunktion aktiviert.	1/min	60000	60000	6000 0
Untere Geschwindig- keitsgrenze	Wenn die Geschwindigkeit die untere Geschwindigkeitsgrenze unterschreitet, dann wird die Fehlerfunktion aktiviert.	1/min	60000	60000	- 6000 0
Toleranzzeit	Zeit, ab der eine Überschreitung der Drehzahl detektiert wird	S	0	60	0,0
Fehlerfunktion	Auswahl der Funktion, die bei Über- schreitung der Grenze ausgeführt wird (STO oder SS1)		STO	SS1	STO
SSM: Sichere Geschwin	digkeitsüberwachung (=> <u>11.13</u>)				
Obere Geschwindig- keitsgrenze	Die maximale erlaubte Drehzahl.	1/ min	- 60000	60000	0,0
Untere Geschwindig- keitsgrenze	Die minimal erlaubte Drehzahl.	1/ min	60000	60000	0,0
Hysterese	Überschreitet die Drehzahl den Drehzahlpegel + Hysterese, so wird die Ausgangsbedingung SSM aktiviert. Bei Unterschreitung von Drehzahlpegel - Hysterese wird sie deaktiviert.	1/ min	0	60000	0,0
Überwachung immer aktiv	Bei "aus" muss die Geschwindigkeits- überwachung über einen Eingang akti- viert werden. Bei "an" ist sie immer ak- tiv.				aus
SMS: Sicher maximale (Geschwindigkeit (=> <u>11.14</u>)				

Name	Bemerkung	Ein- heit	Mini- mum	Maxi- mum	De- fault
Obere Geschwindig- keitsgrenze	Die maximale erlaubte Drehzahl.	1/ min	60000	60000	0,0
Untere Geschwindig- keitsgrenze	Die minimal erlaubte Drehzahl.	1/ min	60000	60000	0,0
Toleranzzeit	Dieses ist die Zeit, in welcher die Schwelle für die maximale oder minimale Drehzahl überschritten werden darf.		60	0	
Fehlerfunktion	Bei Überschreitung der eingestellten maximalen Drehzahl um die Toleranzzeit wird diese Fehlerfunktion ausgeführt. Entweder STO oder SS1.		STO	SS1	STO
SLA: Sicher begrenzte B	eschleunigung (=> <u>11.15</u>)				
Obere Beschleunigungsgrenze	Die maximale erlaubte Beschleunigung.	1/s²	-1 ·10 ⁶	1·10 ⁶	0
Untere Beschleuni- gungsgrenze	Die minimale erlaubte Beschleunigung.	1/s²	-1 ·10 ⁶	1·10 ⁶	0
Fehlerfunktion	Bei Überschreitung der eingestellten oberen Beschleunigungsgrenze, oder Unterschreiten der unteren Beschleunigungsgrenze wird diese Fehlerfunktion ausgeführt. Entweder STO oder SS1.		STO	SS1	STO
SOS: Sicherer Betriebsh	alt (=> <u>11.7</u>)				
Positionsfenster	Toleranzfenster der Stillstandsposition	Ps	-2,147 · 10 ⁹	2,147 · 10 ⁹	0
Zeitfenster für Positi- onsabweichungen	Ist die Positionsdifferenz zur Stillstands- position größer als das Positionsfenster und liegt länger an als das eingestellte Zeitfenster, so wird die STO-Funktion ausgeführt	S	0	60	0,0
SLI: Sicher begrenztes S	chrittmaß (=> <u>11.11</u>)				
Begrenztes Schrittmaß	Konfiguration der Positionsdifferenz, die der Antrieb ausführen darf, wenn ein Inkrement über den Eingang ausgelöst wurde	Ps	0	4,295 · 10 ⁹	0

Name	Bemerkung	Ein- heit	Mini- mum	Maxi- mum	De- fault
Minimale Verweil- dauer im Positions- fenster	Konfiguration der Zeit, die der Antrieb mindestens in der Funktion SOS sein muss bis ein neues Inkrement übernom- men wird	S	0	1	0,0
Fehlerfunktion	Auswahl der Funktion, die bei einer Ver- nktion letzung des begrenzten Schrittmaßes STC ausgeführt wird (STO oder SS1)		STO	SS1	STO
Positionsfenster	Toleranzfenster der Position	Ps	0	4,295 · 10 ⁹	0
Zeitfenster für Positi- onsabweichungen	Weicht die Position mehr als das einge- stellte Positionsfenster ab und liegt die- ser Zustand länger als das Zeitfenster vor, wird die ausgewählte Fehlerfunk- tion ausgelöst	S	0	1	0,0
SLP: Referenz Position (=> <u>11.9</u>)				
Absolute Referenzposition	Konfiguration der Position am Referenz- punkt	Ps	-2,147 10 ⁹	2,147 · 10 ⁹	0
SLP: Sicher begrenzte Po	osition (=> <u>11.10</u>)				
Maximale Antriebsposition	Ist die Position größer als der einge- stellte Werte, führt der Antrieb die aus- gewählte Fehlerfunktion aus	Ps	$-2,147$ $\cdot 10^{9}$	2,147 · 10 ⁹	0
Minimale Antriebsposition	Ist die Position kleiner als der einge- stellte Wert, führt der Antrieb die ausge- wählte Fehlerfunktion aus	Ps	-2,147 · 10 ⁹	2,147 · 10 ⁹	0
Fehlerfunktion	Auswahl der Funktion, die beim Verlassen des Positionsbereiches ausgeführt wird (STO oder SS1)		STO	SS1	STO
SEL: Differenzposition	Sobald die Differenzposition zu der ma- ximalen oder minimalen Position er- reicht ist, wird die Sicherheitsfunktion SEL aktiviert	PS	0	2,147 · 10 ⁹	0
SEL: Limit für die Geschwindigkeit:	Wenn die Sicherheitsfunktion SEL aktiviert ist, dann darf die Geschwindigkeit des Antriebs nicht mehr über das Limit erhöht werden. Dieses ist eine Rampe bis zu SLP Maximale Antriebsposition.	1/min	0	60000	0
Buseinstellungen (=> 12)				
Bustyp	Dieses ist die Auswahl des sicheren Bustyps. Die Auswahlparameter sind "Kein Bus" oder "FSoE".		0	1	kein Bus

Name	Bemerkung	Ein- heit	Mini- mum	Maxi- mum	De- fault
Sicherheitsmodul Adresse	Sicherheitsmodul Adresse im sicheren Feldbus		0	65534	0
Sichere Busdatenlänge	Wenn ein sicheres Bussystem ausge- wählt wurde, so kann hier die Länge der sicheren Daten eingestellt werden		0	19	11

Tabelle 7: Auflistung der Parameter

6 Betriebszustände des Sicherheitsmoduls

Der Betriebs- und Fehlerzustand kann in COMBIVIS über den KEB Safety Editor überprüft werden. Siehe hierzu Status des Sicherheitsmoduls in Kapitel <u>5.3</u>.

6.1 Globaler Betriebszustand

Der Betriebszustand des Sicherheitsmoduls gliedert sich in verschiedene Status auf. Abbildung 21 zeigt die verschiedenen Status für das Sicherheitsmodul.

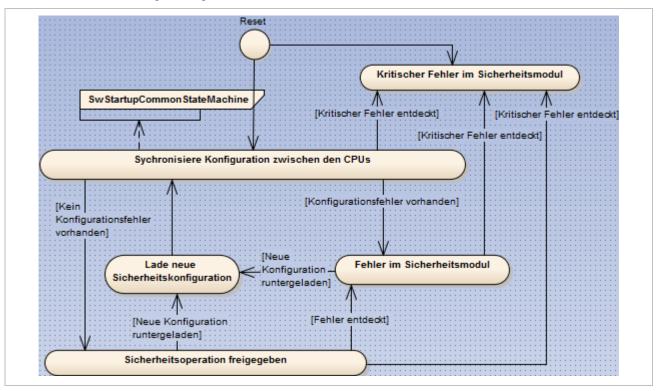


Abbildung 21: Der globale Status des Sicherheitsmoduls

0. Reset:

Dieses ist der Status, wenn das Sicherheitsmodul eingeschaltet wird. Das Sicherheitsmodul führt die Sicherheitsfunktion STO aus.

1. Synchronisiere Konfiguration zwischen den CPUs:

Das Sicherheitsmodul besitzt 2 unabhängige CPUs. Nachdem die Konfiguration geladen wurde, muss diese auf die 2 CPU übertragen und überprüft werden. Das Sicherheitsmodul führt die Sicherheitsfunktion STO aus.

2. Sicherheitsoperation freigegeben:

Das Sicherheitsmodul ist bereit Sicherheitsoperationen durchzuführen.

3. Kritischer Fehler im Sicherheitsmodul:

Im Sicherheitsmodul wurde ein kritischer Fehler erkannt. Der erkannte Fehler kann im Status Sicherheitsmodul überprüft werden. Das Sicherheitsmodul führt die Sicherheitsfunktion STO aus. Dieser Status ist permanent und kann nur durch einen Power On Reset verlassen werden.

Start des Sicherheitsmoduls und Übernahme neuer Konfigurationsdaten

4. Fehler im Sicherheitsmodul:

Es wurde ein nicht kritischer Fehler im Sicherheitsmodul erkannt, z. B. ein Konfigurationsfehler. Durch das Herunterladen einer neuen Konfiguration oder durch einen Neustart kann der Zustand wieder verlassen werden.

5. Lade neue Sicherheitskonfiguration:

Neue Konfigurationsdaten wurden auf das Sicherheitsmodul übertragen. Die neuen Konfigurationsdaten sind nun vollständig und das Sicherheitsmodul versucht nun im nächsten Schritt die Konfigurationsdaten zu validieren.

6.2 Start des Sicherheitsmoduls und Übernahme neuer Konfigurationsdaten

Das Starten des Sicherheitsmoduls und der dazugehörigen Software gliedert sich in verschiedene Status auf. Abbildung 22 zeigt die verschiedenen Status des Sicherheitsmoduls beim Starten.

0. Software ist initialisiert:

Dieser Status zeigt an, dass die Software initialisiert wurde. Die Konfigurationsdaten werden aus dem Speicher gelesen.

1. CPU Kommunikation wird gestartet:

Das Sicherheitsmodul weist 2 CPUs auf. Damit überhaupt Konfigurationsdaten ausgetauscht werden können, muss die Datenkommunikation zwischen den beiden CPUs funktionstüchtig sein.

2. Zeitschlitz synchronisieren:

Die beiden CPUs des Sicherheitsmoduls müssen synchron laufen. Dafür muss der Zeitschlitz synchronisiert werden.

3. Starte die Synchronisation der Konfiguration:

Die Konfiguration wird nun bereitgestellt für die Synchronisation von der einen zur anderen CPU des Sicherheitsmoduls.

4. Beende die Synchronisation der Konfiguration:

Die Konfiguration wird nun auf die andere CPU übertragen.

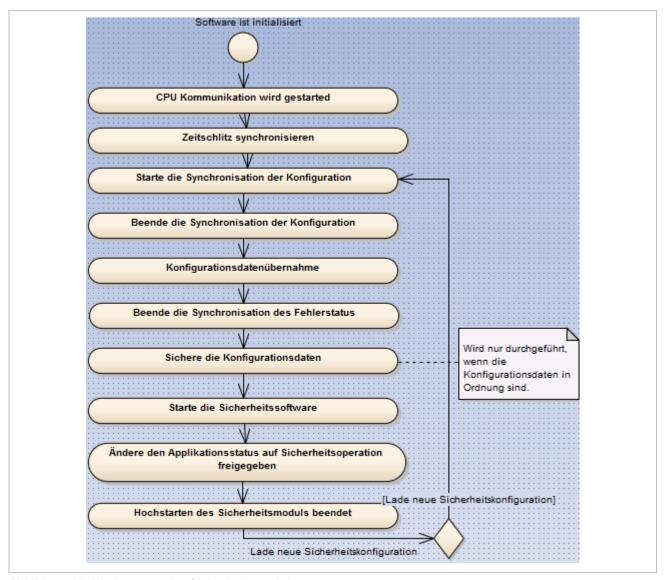


Abbildung 22: Hochstarten des Sicherheitsmoduls

5. Konfigurationsdatenübernahme:

Das Übertragen der Konfiguration ist vollständig. Die Konfigurationsdaten werden nun auf Plausibilität überprüft.

6. Beende die Synchronisation des Fehlerstatus:

Konfigurationsfehler wurden nach der Konfigurationsdatenübernahme bereitgestellt und werden nun zwischen den beiden CPUs ausgetauscht.

7. Sichere die Konfigurationsdaten:

Sofern die Konfigurationsdaten keinen Fehler aufweisen, werden diese Daten nun gesichert.

8. Starte die Sicherheitssoftware:

Die Sicherheitssoftware kann nun gestartet werden, die Konfigurationsdaten sind vorhanden.

9. Ändere den Applikationsstatus auf Sicherheitsoperation freigegeben: Der globale Betriebszustand wird nun auf Sicherheitsoperation freigegeben geändert. Wurde ein Fehler in der Konfiguration festgestellt, so wird der globale Betriebszustand auf Fehler im Sicherheitsmodul geändert.

10. Hochstarten des Sicherheitsmoduls beendet:

Das Sicherheitsmodul ist nun in der Lage Sicherheitsoperationen auszuführen.

6.3 Rücksetzen von Fehlern

Fehler können wie folgt zurückgesetzt werden

- Neustart (Power-On-Reset)
- Laden einer Konfiguration
- Digitalen Eingang (Fail safe bit); Reset durch Wegschalten der Spannung
- Rücksetzen des Fail safe reset bits

7 Konfigurationsstatus und Konfigurationsübernahme

7.1 Konfigurationsstatus

Der Konfigurationsstatus zeigt an, ob neue Konfigurationsdaten fehlerfrei sind. Abbildung 23 zeigt die verschiedenen Status des Sicherheitsmoduls.

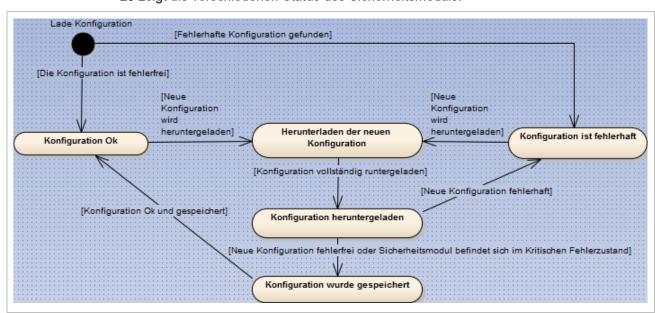


Abbildung 23: Konfigurationsstatus des Sicherheitsmoduls

0. Lade Konfiguration:

Die Konfigurationsdaten werden aus dem nichtflüchtigen Speicher geladen.

1. Herunterladen der neuen Konfiguration:

Neue Konfigurationsdaten werden gerade heruntergeladen.

2. Konfiguration gespeichert:

Konfigurationsdaten wurden heruntergeladen, sind fehlerfrei und wurden im nichtflüchtigen Speicher gespeichert. Oder aber das Sicherheitsmodul befindet sich im Status "Kritischer Fehler im Sicherheitsmodul". Dann wird die neue Konfiguration gespeichert ohne Überprüfung auf Korrektheit. Dieses wird beim nächsten Starten des Sicherheitsmoduls durchgeführt.

3. Konfiguration ist fehlerhaft:

Die Konfiguration ist fehlerhaft und wurde nicht gespeichert. Die Konfigurationsfehler können im Konfigurationslog ausgelesen werden.

4. Konfiguration OK:

Die Konfiguration wurde runtergeladen, überprüft und ist fehlerfrei. Die Konfiguration wurde gespeichert.

7.2 Konfigurationsdaten erstellen für verschiedene Maschinen

Konfigurationsdaten für verschiedene Maschinen können mit einer sogenannten "Sicherheitsmodul Adresse" versehen werden. Für jedes Sicherheitsmodul kann einzeln eine Adresse zwischen 0 und 65535 konfiguriert werden. Wenn eine Konfiguration auf das Sicherheitsmodul runtergeladen wird, so wird die neue Konfiguration nur akzeptiert, wenn die Adressen übereinstimmen.

Die Sicherheitsmoduladresse in den Konfigurationsdaten wird in Abbildung 24 gezeigt.

Feldbusparameter
Sicherheitsmodul Adresse 0

Abbildung 24: Sicherheitsmodul Adresse in den Konfigurationsdaten

8 Eingangskonfiguration und Eingangsparameter

Das Sicherheitsmodul verfügt über 2 konfigurierbare Eingänge, 2 fest belegte Eingänge sowie über einen Ripple Eingang.

- Die fest belegten Eingänge k\u00f6nnen f\u00fcr die Sicherheitsfunktion STO und SBC verwendet werden.
- Die konfigurierbaren Eingänge können für das Auslösen von Sicherheitsfunktionen verwendet werden.
- Der Ripple Eingang dient zur Vernetzung des Sicherheitsmoduls mit anderen Sicherheitsmodulen.

8.1 Filterzeit für die Sicherheitseingänge

Für jeden Sicherheitseingang kann eine Filterzeit konfiguriert werden. Abbildung 25 zeigt die Konfigurationsoptionen.

Parameter	Wert	Einheit
Filterzeiten der Sicherheitseingänge		
Filterzeit der STO-Eingänge	0.010000	S
Filterzeit der SBC-Eingänge	0.010000	S
Filterzeit der Funktion1-Eingänge	0.010000	S
Filterzeit der Funktion2-Eingänge	0.010000	S
Filterzeit der Ripple-Eingänge	0.010000	s

Abbildung 25: Filterzeit für die Sicherheitseingänge (Eingangskonfiguration)

Parametrierung

- Filterzeit der STO-Eingänge:
- Filterzeit der SBC- Eingänge:
- Filterzeit der Funktion1- Eingänge:
- Filterzeit der Funktion2- Eingänge:
- Filterzeit der Ripple Eingänge:

Die Übernahme eines Wechsels des Eingangsstatus wird durch die Filterzeit verzögert erfolgen. Die Filterzeit dient dazu, Störungen am Eingang zu unterdrücken.

8.2 Taktsignal Eingangskonfiguration für alle Eingänge

Jeder Eingang des Sicherheitsmoduls, außer der Ripple Eingang, kann mit einem Signal verbunden werden, auf dem Testsignale ausgeführt werden. Es wird die Logik des Signals zyklisch für einen Takt invertiert. Die Takteingangsanalyse deckt dabei Querschlüsse zwischen den Eingangskanälen auf. Zur Erkennung von gefährlichen Leitungskurzschlüssen zwischen zwei zusammengehörigen Eingängen werden Kontaktpaare über phasenversetzte Taktausgänge versorgt. Hierbei werden z.B. die Taktausgänge vom Sicherheitsmodul mit den Takteingängen über einen Schalter verbunden. Abbildung 26 zeigt die Konfigurationsparameter.

Parameter	Wert	Einheit
Taktsignal Eingangskonfiguration		
Testsignal-Periodendauer	10.000000	S
Testpulslänge	0.001000	S
Auswertung des Testsignals für die STO-Eingänge	aus	
Auswertung des Testsignals für die SBC-Eingänge	aus	
Auswertung des Testsignals für die Funktion1-Eingänge	aus	
Auswertung des Testsignals für die Funktion2-Eingänge	aus	

Abbildung 26: Taktsignal Eingangskonfiguration für die Sicherheitseingänge

Parametrierung

• Testsignal-Periodendauer:

Dieser Parameter wirkt sich auf die Auswertung des Testsignals von allen Sicherheitseingängen aus. Die Periodendauer ist die Zeit von einem Testsignal zum nächsten. Die Periodendauer muss mit der Einstellung der Periodendauer für die Takt-Ausgänge übereinstimmen, welche mit den jeweiligen Eingängen verbunden sind.

• Testpulslänge:

Dieser Parameter wirkt sich auf die Auswertung des Taktsignals von allen Sicherheitseingängen aus. Die Pulslänge muss mit der Einstellung der Pulslänge für die Takt-Ausgänge übereinstimmen, welche mit den jeweiligen Eingängen verbunden sind.

- Auswertung des Testsignals für die STO-Eingänge:
- Auswertung des Testsignals für die SBC-Eingänge:
- Auswertung des Testsignals für die Funktion1-Eingänge:
- Auswertung des Testsignals für die Funktion2- Eingänge:

Wenn hier "ein" ausgewählt wird, dann wird kontinuierlich überprüft, ob ein Taktsignal mit der konfigurierten Periodendauer und Pulslänge am Eingang erkannt wird. Weiterhin wird überprüft, dass das Taktsignal nicht gleichzeitig am Kanal 1 und Kanal 2 vorhanden ist. Wenn 5 mal nacheinander kein Taktsignal erkannt wurde, so geht das Sicherheitsmodul in den sicheren Zustand über.

Bei der Auswahl von "aus", findet diese Überprüfung nicht statt.

Wichtig:

Die Takteingangskonfiguration muss mit der Taktausgangskonfiguration der verbundenen Ausgänge übereinstimmen.

8.3 STO Hardware Eingangskonfiguration

Der STO Eingang dient normalerweise zum Auslösen der Sicherheitsfunktion STO => <u>11.3</u>. Der Eingang kann allerdings auch anders konfiguriert werden. Abbildung 27 zeigt die Parameter für den STO Hardware Sicherheitseingang.

Parameter	Value	Unit
STO Hardware Eingangskonfiguration		
Belegung der STO-Eingänge	STO Safe torque off	
Toleranzzeit der STO-Eingänge	0.010000	S
Status der STO-Eingänge	äquivalent	

Abbildung 27: Parameter für den STO Sicherheitseingang

Parametrierung

• Belegung der STO-Eingänge:

Hier kann die Sicherheitsfunktion, die von dem STO-Eingang ausgelöst wird, ausgewählt werden. Folgende Sicherheitsfunktionen stehen zur Verfügung:

o keine Funktion:

Der Sicherheitseingang ist nicht mit einer Sicherheitsfunktion belegt.

o STO:

Die Sicherheitsfunktion "Safe Torque off" wird ausgeführt, => 11.3.

SBC:

Die Sicherheitsfunktion "Sichere Bremsenansteuerung" wird ausgeführt, => 11.4.

o SS1

Die Sicherheitsfunktion "Sicherer Stopp 1" wird ausgeführt, => 11.5.

o SS2:

Die Sicherheitsfunktion "Sicherer Stopp 2" wird ausgeführt, => 11.6.

o SOS:

Die Sicherheitsfunktion "Sicherer Betriebshalt" wird ausgeführt, => 11.7.

- SLS: Die Sicherheitsfunktion "Sicher begrenzte Geschwindigkeit" wird ausgeführt, => 11.8.
- SLP: Die Sicherheitsfunktion "Sicher begrenzte Position" wird ausgeführt => 11.9.

SLP Referenzpunkt setzen:

Die Sicherheitsfunktion "Sicher begrenzte Position setzen der Referenzposition" wird ausgeführt => 11.9.

SLI Aktivierung:

Bei aktivem Eingang ist die Funktion SLI **nicht** aktiv. Bei nicht gewählter Funktion oder nicht aktivem Eingang wird die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" zusätzlich zu anderen gewählten Sicherheitsfunktionen ausgeführt => 11.11.

SLI Next Step:

Setzt den Eingang "SLI Next Step" für die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" => 11.11.

o SDI Vorwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt => 11.12.

SDI Rückwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt => 11.12.

o SSM:

Die Sicherheitsfunktion "Sichere Geschwindigkeitsüberwachung" wird ausgeführt => 11.13.

o SLA:

Die Sicherheitsfunktion "Sicher begrenzte Beschleunigung" wird ausgeführt => 11.15.

o Fail safe rücksetzen:

Wenn eine Sicherheitsfunktion einen Fehler feststellt, z.B. weil Grenzen überschritten wurden, dann wird das Fail Safe Bit im Status gesetzt. Der Reset wird ausgeführt, wenn die Spannung am Eingang weggeschaltet wird.

Subindex Bit 0, 1, 2:

Viele Sicherheitsfunktionen verfügen über Indizes. Damit können betriebsartenabhängig bis zu 8 mögliche Konfigurationen hinterlegt werden. Mit den entsprechend konfigurierten Eingängen (Subindex Bit 0, 1, 2) können diese gemäß Indexauswahl über konfigurierbare Eingänge aktiviert werden (Tabelle 8). Alternativ ist eine Umschaltung auch über FSoE möglich.

Index	Wert	Eingang 3 (Bit 2)	Eingang 2 (Bit 1)	Eingang 1 (Bit 0)
Index 1	0	0	0	0
Index 2	1	0	0	1
Index 3	2	0	1	0
Index 4	3	0	1	1
Index 5	4	1	0	0
Index 6	5	1	0	1
Index 7	6	1	1	0
Index 8	7	1	1	1

Tabelle 8: Indexauswahl über konfigurierbare Eingänge

• Toleranzzeit der STO-Eingänge:

Der STO Eingang ist zweikanalig ausgeführt. Dadurch kann es dazu kommen, dass ein Kanal früher oder später geschaltet wird als der zweite Kanal. Damit dieses nicht sofort zu einem Fehler führt, kann hier eine Toleranzzeit eingetragen werden.

Status der STO-Eingänge:

Der Eingangsstatus zwischen den beiden Kanälen ist Antivalent oder Äguivalent:

Bei äquivalent müssen die beiden Sicherheitseingänge immer gleich geschaltet werden. Es darf also nicht vorkommen, dass ein Kanal mit 24V und

der andere Kanal mit 0V Eingangsspannung versorgt sind. Ist die Eingangsspannung 0V so wird die Sicherheitsfunktion ausgeführt.

- Bei antivalent muss ein Kanal immer 24V und der andere 0V versorgt sein.
 Dabei gilt:
 - Ist STO.1 mit einer Eingangsspannung von 24V versorgt, so wird die Sicherheitsfunktion nicht ausgeführt.
 - Ist STO.1 mit einer Eingangsspannung von 0V versorgt, so wird die Sicherheitsfunktion ausgeführt.

8.4 SBC Hardware Eingangskonfiguration

Der SBC Eingang dient normalerweise zum Auslösen der Sicherheitsfunktion SBC => 11.4. Der Eingang kann allerdings auch anders konfiguriert werden. Abbildung 28 zeigt die Parameter für den SBC Sicherheitseingang.

Parameter	Value	Unit		
SBC Hardware Eingangskonfiguration				
Belegung der SBC-Eingänge	SBC Sichere Bremsenansteuerung			
Toleranzzeit der SBC-Eingänge	0.010000	s		
Status der SBC-Eingänge	äquivalent			

Abbildung 28: Parameter für den SBC Sicherheitseingang

Parametrierung

• Belegung der SBC-Eingänge:

Hier kann die Sicherheitsfunktion ausgewählt werden, die von dem SBC-Eingang ausgelöst wird. Folgende Sicherheitsfunktionen stehen zur Verfügung:

o keine Funktion:

Der Sicherheitseingang ist nicht mit einer Sicherheitsfunktion belegt.

o STO:

Die Sicherheitsfunktion "Safe Torque off" wird ausgeführt => 11.3.

o SBC

Die Sicherheitsfunktion "Sichere Bremsenansteuerung" wird ausgeführt => 11.4.

o SS1:

Die Sicherheitsfunktion "Sicherer Stopp 1" wird ausgeführt => 11.5.

o SS2:

Die Sicherheitsfunktion "Sicherer Stopp 2" wird ausgeführt => 11.6.

o SOS:

Die Sicherheitsfunktion "Sicherer Betriebshalt" wird ausgeführt => 11.7.

- SLS: Die Sicherheitsfunktion "Sicher begrenzte Geschwindigkeit" wird ausgeführt => 11.8.
- SLP: Die Sicherheitsfunktion "Sicher begrenzte Position" wird ausgeführt => 11.9.
- SLP Referenzpunkt setzen:

Die Sicherheitsfunktion "Sicher begrenzte Position setzen der Referenzposition" wird ausgeführt => 11.9.

SLI Aktivierung:

Bei aktivem Eingang ist die Funktion SLI **nicht** aktiv. Bei nicht gewählter Funktion oder nicht aktivem Eingang wird die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" zusätzlich zu anderen gewählten Sicherheitsfunktionen ausgeführt => 11.11.

o SLI Next Step:

Setzt den Eingang "SLI Next Step" für die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" => 11.11.

SDI Vorwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt => 11.12.

SDI Rückwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt, => 11.12.

o SSM:

Die Sicherheitsfunktion "Sichere Geschwindigkeitsüberwachung" wird ausgeführt, => 11.13.

SLA:

Die Sicherheitsfunktion "Sicher begrenzte Beschleunigung" wird ausgeführt, => 11.15.

o Fail safe rücksetzen:

Wenn eine Sicherheitsfunktion einen Fehler feststellt, z.B. weil Grenzen überschritten wurden, dann wird das Fail Safe Bit im Status gesetzt. Der Reset wird ausgeführt, wenn die Spannung am Eingang weggeschaltet wird.

Subindex Bit 0, 1, 2:

Viele Sicherheitsfunktionen verfügen über Indizes. Damit können betriebsartenabhängig bis zu 8 mögliche Konfigurationen hinterlegt werden. Mit den entsprechend konfigurierten Eingängen (Subindex Bit 0, 1, 2) können diese gemäß Indexauswahl über konfigurierbare Eingänge aktiviert werden (Tabelle 8). Alternativ ist eine Umschaltung auch über FSoE möglich.

Index	Wert	Eingang 3 (Bit 2)	Eingang 2 (Bit 1)	Eingang 1 (Bit 0)
Index 1	0	0	0	0
Index 2	1	0	0	1
Index 3	2	0	1	0
Index 4	3	0	1	1
Index 5	4	1	0	0
Index 6	5	1	0	1
Index 7	6	1	1	0
Index 8	7	1	1	1

Tabelle 9: Indexauswahl über konfigurierbare Eingänge

• Toleranzzeit der SBC-Eingänge:

Der SBC Eingang ist 2 Kanalig ausgeführt. Dadurch kann es dazu kommen, dass ein Kanal früher oder später geschaltet wird als der zweite Kanal. Damit dieses nicht sofort zu einem Fehler führt kann hier eine Toleranzzeit eingetragen werden.

• Status der SBC-Eingänge:

Der Eingangsstatus zwischen den beiden Kanälen ist Antivalent oder Äquivalent:

- Bei äquivalent müssen die beiden Sicherheitseingänge immer gleich geschaltet werden. Es darf also nicht vorkommen, dass ein Kanal mit 24V und der andere Kanal mit 0V Eingangsspannung versorgt sind. Ist die Eingangsspannung 0V so wird die Sicherheitsfunktion ausgeführt.
- Bei antivalent muss ein Kanal immer 24V und der andere 0V versorgt sein.
 Dabei gilt:
 - Ist SBC.1 mit einer Eingangsspannung von 24V versorgt, so wird die Sicherheitsfunktion nicht ausgeführt.
 - Ist SBC.1 mit einer Eingangsspannung von 0V versorgt, so wird die Sicherheitsfunktion ausgeführt.

8.5 Funktion1 Hardware Eingangskonfiguration

Der Funktion1-Eingang des Sicherheitsmoduls kann für verschiedene Sicherheitsfunktionen benutzt werden. Die auszuführende Sicherheitsfunktion kann parametriert werden. Abbildung 29 zeigt die Parameter für den Eingang 1.

Parameter	Value	Unit
Funktion1 Hardware Eingangskonfigu	ration	
Belegung der Funktion1-Eingänge	Hardware Eingang deaktiviert	
Toleranzzeit der Funktion1-Eingänge	0.010000	S
Status der Funktion1-Eingänge	äquivalent	

Abbildung 29: Parameter für den Funktion 1 Eingang

Parametrierung

Belegung der Funktion 1-Eingänge:

Hier kann die Sicherheitsfunktion, die von dem Funktion 1-Eingang ausgelöst wird, ausgewählt werden. Folgende Sicherheitsfunktionen stehen zur Verfügung:

keine Funktion:

Der Sicherheitseingang ist nicht mit einer Sicherheitsfunktion belegt.

o STO:

Die Sicherheitsfunktion "Safe Torque off" wird ausgeführt, => 11.3.

o SBC

Die Sicherheitsfunktion "Sichere Bremsenansteuerung" wird ausgeführt, => 11.4.

SS1

Die Sicherheitsfunktion "Sicherer Stopp 1" wird ausgeführt, => 11.5.

o SS2:

Die Sicherheitsfunktion "Sicherer Stopp 2" wird ausgeführt, => 11.6.

Funktion1 Hardware Eingangskonfiguration

o SOS:

Die Sicherheitsfunktion "Sicherer Betriebshalt" wird ausgeführt, => 11.7.

- SLS: Die Sicherheitsfunktion "Sicher begrenzte Geschwindigkeit" wird ausgeführt, => 11.8.
- SLP: Die Sicherheitsfunktion "Sicher begrenzte Position" wird ausgeführt,
 => 11.9.

SLP Referenzpunkt setzen:

Die Sicherheitsfunktion "Sicher begrenzte Position setzen der Referenzposition" wird ausgeführt, => 11.9.

SLI Aktivierung:

Bei aktivem Eingang ist die Funktion SLI **nicht** aktiv. Bei nicht gewählter Funktion oder nicht aktivem Eingang wird die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" zusätzlich zu anderen gewählten Sicherheitsfunktionen ausgeführt => <u>11.11</u>.

SLI Next Step:

Setzt den Eingang "SLI Next Step" für die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" => <u>11.11</u>.

SDI Vorwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt, => 11.12.

SDI Rückwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt, => 11.12.

o SSM:

Die Sicherheitsfunktion "Sichere Geschwindigkeitsüberwachung" wird ausgeführt, => 11.13.

SLA

Die Sicherheitsfunktion "Sicher begrenzte Beschleunigung" wird ausgeführt, => 11.15.

o Fail safe rücksetzen:

Wenn eine Sicherheitsfunktion einen Fehler feststellt, z.B. weil Grenzen überschritten wurden, dann wird das Fail Safe Bit im Status gesetzt. Der Reset wird ausgeführt, wenn die Spannung am Eingang weggeschaltet wird.

Subindex Bit 0, 1, 2:

Viele Sicherheitsfunktionen verfügen über Indizes. Damit können betriebsartenabhängig bis zu 8 mögliche Konfigurationen hinterlegt werden. Mit den entsprechend konfigurierten Eingängen (Subindex Bit 0, 1, 2) können diese gemäß Indexauswahl über konfigurierbare Eingänge aktiviert werden (Tabelle 8). Alternativ ist eine Umschaltung auch über FSoE möglich.

Index	Wert	Eingang 3 (Bit 2)	Eingang 2 (Bit 1)	Eingang 1 (Bit 0)
Index 1	0	0	0	0
Index 2	1	0	0	1
Index 3	2	0	1	0
Index 4	3	0	1	1
Index 5	4	1	0	0
Index 6	5	1	0	1
Index 7	6	1	1	0
Index 8	7	1	1	1

Tabelle 10: Indexauswahl über konfigurierbare Eingänge

• Toleranzzeit der Funktion1-Eingange:

Der Funktion1-Eingang ist zweikanalig ausgeführt. Dadurch kann es dazu kommen, dass ein Kanal früher oder später geschaltet wird als der zweite Kanal. Damit dieses nicht sofort zu einem Fehler führt, kann hier eine Toleranzzeit eingetragen werden.

• Status der Funktion1-Eingänge:

Der Eingangsstatus zwischen den beiden Kanälen ist antivalent oder äquivalent:

- Bei äquivalent muss der Eingang FUNC1.1 und FUNC1.2 immer gleich geschaltet werden. Es darf also nicht vorkommen, dass ein Kanal mit 24V und der andere Kanal mit 0V Eingangsspannung versorgt sind. Ist die Eingangsspannung 0V so wird die Sicherheitsfunktion ausgeführt.
- Bei antivalent muss ein Kanal immer 24V und der andere 0V versorgt sein.
 Dabei gilt:
 - Ist Func1.1mit einer Eingangsspannung von 24V versorgt, so wird die Sicherheitsfunktion nicht ausgeführt.
 - Ist Func1.1 mit einer Eingangsspannung von 0V versorgt, so wird die Sicherheitsfunktion ausgeführt.

8.6 Funktion2 Hardware Eingangskonfiguration

Der Funktion2-Eingang des Sicherheitsmoduls kann für verschiedene Sicherheitsfunktionen benutzt werden. Die auszuführende Sicherheitsfunktion kann mit den Parametern nach Abbildung 30 parametriert werden.

Parameter	Value	Unit
Funktion2 Hardware Eingangskonfigu	ration	
Belegung der Funktion2-Eingänge	Hardware Eingang deaktiviert	
Toleranzzeit der Funktion2-Eingänge	0.010000	S
Status der Funktion2-Eingänge	äquivalent	

Abbildung 30: Parameter für den Funktion2 Eingang

Parametrierung

• Belegung der Funktion2-Eingänge:

Hier kann die Sicherheitsfunktion, die von dem Funktion2-Eingang ausgelöst wird, ausgewählt werden. Folgende Sicherheitsfunktionen stehen zur Verfügung:

o keine Funktion:

Der Sicherheitseingang ist nicht mit einer Sicherheitsfunktion belegt.

STO:

Die Sicherheitsfunktion "Safe Torque off" wird ausgeführt, => 11.3.

o SBC:

Die Sicherheitsfunktion "Sichere Bremsenansteuerung" wird ausgeführt, => 11.4.

o SS1:

Die Sicherheitsfunktion "Sicherer Stopp 1" wird ausgeführt, => 11.5.

SS2:

Die Sicherheitsfunktion "Sicherer Stopp 2" wird ausgeführt, => 11.6.

o SOS:

Die Sicherheitsfunktion "Sicherer Betriebshalt" wird ausgeführt, => 11.7.

- SLS: Die Sicherheitsfunktion "Sicher begrenzte Geschwindigkeit" wird ausgeführt, => 11.8.
- SLP: Die Sicherheitsfunktion "Sicher begrenzte Position" wird ausgeführt,
 => 11.9.

SLP Referenzpunkt setzen:

Die Sicherheitsfunktion "Sicher begrenzte Position setzen der Referenzposition" wird ausgeführt, => 11.9.

SLI Aktivierung:

Bei aktivem Eingang ist die Funktion SLI **nicht** aktiv. Bei nicht gewählter Funktion oder nicht aktivem Eingang wird die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" zusätzlich zu anderen gewählten Sicherheitsfunktionen ausgeführt => <u>11.11</u>.

o SLI Next Step:

Setzt den Eingang "SLI Next Step" für die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" \Rightarrow 11.11.

SDI Vorwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt, => 11.12.

SDI Rückwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt, => 11.12.

SSM:

Die Sicherheitsfunktion "Sichere Geschwindigkeitsüberwachung" wird ausgeführt, => <u>11.13</u>.

o SLA:

Die Sicherheitsfunktion "Sicher begrenzte Beschleunigung" wird ausgeführt, => 11.15.

Fail safe rücksetzen:

Wenn eine Sicherheitsfunktion einen Fehler feststellt, z.B. weil Grenzen überschritten wurden, dann wird das Fail Safe Bit im Status gesetzt. Der Reset wird ausgeführt, wenn die Spannung am Eingang weggeschaltet wird.

Subindex Bit 0, 1, 2:

Viele Sicherheitsfunktionen verfügen über Indizes. Damit können betriebsartenabhängig bis zu 8 mögliche Konfigurationen hinterlegt werden. Mit den entsprechend konfigurierten Eingängen (Subindex Bit 0, 1, 2) können diese gemäß Indexauswahl über konfigurierbare Eingänge aktiviert werden (Tabelle 8). Alternativ ist eine Umschaltung auch über FSoE möglich.

Index	Wert	Eingang 3 (Bit 2)	Eingang 2 (Bit 1)	Eingang 1 (Bit 0)
Index 1	0	0	0	0
Index 2	1	0	0	1
Index 3	2	0	1	0
Index 4	3	0	1	1
Index 5	4	1	0	0
Index 6	5	1	0	1
Index 7	6	1	1	0
Index 8	7	1	1	1

Tabelle 11: Indexauswahl über konfigurierbare Eingänge

Toleranzzeit der Funktion2-Eingänge:

Der Funktion2-Eingang ist zweikanalig ausgeführt. Dadurch kann es dazu kommen, dass ein Kanal früher oder später geschaltet wird als der zweite Kanal. Damit dieses nicht sofort zu einem Fehler führt, kann hier eine Toleranzzeit eingetragen werden.

• Status der beiden Funktion2-Eingänge:

Der Eingangsstatus zwischen den beiden Kanälen ist antivalent oder äguivalent:

- Bei äquivalent muss der Eingang FUNC2.1 und FUNC2.2 immer gleich geschaltet werden. Es darf also nicht vorkommen, dass ein Kanal mit 24V und der andere Kanal mit 0V Eingangsspannung versorgt sind. Ist die Eingangsspannung 0V so wird die Sicherheitsfunktion ausgeführt.
- Bei antivalent muss ein Kanal immer 24V versorgt sein und der andere
 0V Eingangsspannung versorgt sein. Dabei gilt:
 - Ist Func2.1 mit einer Eingangsspannung von 24V versorgt, so wird die Sicherheitsfunktion nicht ausgeführt.
 - Ist Func2.1 mit einer Eingangsspannung von 0V versorgt, so wird die Sicherheitsfunktion ausgeführt.

8.7 Ripple Hardware Eingangskonfiguration

Die Ripple Eingänge sind für die Verbindung mit den Ripple Ausgängen eines anderen Sicherheitsmoduls bestimmt. Diese können aber auch als ganz normaler Eingänge genutzt werden, wenn in der Ripple Ausgangskonfiguration (siehe Kapitel 9.2) der Parameter "Das Sicherheitsmodul ist der Ripple Master" auf "ein" gesetzt wird.

Parameter	Value	Unit
Ripple Hardware Eingangskonfiguration		
Belegung der Ripple-Eingänge	Hardware Eingang deaktiviert	
Toleranzzeit der Ripple-Eingänge	0.010000	S

Abbildung 31: Parameter für den Ripple Eingang

Parametrierung

• Belegung der Ripple-Eingänge:

Hier kann die Sicherheitsfunktion, die von dem Ripple-Eingang ausgelöst wird, ausgewählt werden. Folgende Sicherheitsfunktionen stehen zur Verfügung:

keine Funktion:

Der Sicherheitseingang ist nicht mit einer Sicherheitsfunktion belegt.

STO:

Die Sicherheitsfunktion "Safe Torque off" wird ausgeführt, => 11.3.

SBC:

Die Sicherheitsfunktion "Sichere Bremsenansteuerung" wird ausgeführt, => 11.4.

o SS1:

Die Sicherheitsfunktion "Sicherer Stopp 1" wird ausgeführt, => 11.5.

o SS2:

Die Sicherheitsfunktion "Sicherer Stopp 2" wird ausgeführt, => 11.6.

o SOS:

Die Sicherheitsfunktion "Sicherer Betriebshalt" wird ausgeführt, => 11.7.

- SLS: Die Sicherheitsfunktion "Sicher begrenzte Geschwindigkeit" wird ausgeführt, => 11.8.
- SLP: Die Sicherheitsfunktion "Sicher begrenzte Position" wird ausgeführt,
 => 11.9.

SLP Referenzpunkt setzen:

Die Sicherheitsfunktion "Sicher begrenzte Position setzen der Referenzposition" wird ausgeführt, => <u>11.9</u>.

o SLI Aktivierung:

Bei aktivem Eingang ist die Funktion SLI **nicht** aktiv. Bei nicht gewählter Funktion oder nicht aktivem Eingang wird die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" zusätzlich zu anderen gewählten Sicherheitsfunktionen ausgeführt => <u>11.11</u>.

SLI Next Step:

Setzt den Eingang "SLI Next Step" für die Sicherheitsfunktion "Sicher begrenztes Schrittmaß" => 11.11.

SDI Vorwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt, => 11.12.

SDI Rückwärts:

Die Sicherheitsfunktion "Sichere Bewegungsrichtung" wird ausgeführt, => 11.12.

o SSM:

Die Sicherheitsfunktion "Sichere Geschwindigkeitsüberwachung" wird ausgeführt, => 11.13.

o SLA:

Die Sicherheitsfunktion "Sicher begrenzte Beschleunigung" wird ausgeführt, => 11.15.

Fail safe rücksetzen:

Wenn eine Sicherheitsfunktion einen Fehler feststellt, z.B. weil Grenzen überschritten wurden, dann wird das Fail Safe Bit im Status gesetzt. Der Reset wird ausgeführt, wenn die Spannung am Eingang weggeschaltet wird.

Subindex Bit 0, 1, 2:

Viele Sicherheitsfunktionen verfügen über Indizes. Damit können betriebsartenabhängig bis zu 8 mögliche Konfigurationen hinterlegt werden. Mit den entsprechend konfigurierten Eingängen (Subindex Bit 0, 1, 2) können diese gemäß Indexauswahl über konfigurierbare Eingänge aktiviert werden (Tabelle 8). Alternativ ist eine Umschaltung auch über FSoE möglich.

Index	Wert	Eingang 3 (Bit 2)	Eingang 2 (Bit 1)	Eingang 1 (Bit 0)
Index 1	0	0	0	0
Index 2	1	0	0	1
Index 3	2	0	1	0
Index 4	3	0	1	1
Index 5	4	1	0	0
Index 6	5	1	0	1
Index 7	6	1	1	0
Index 8	7	1	1	1

Tabelle 12: Indexauswahl über konfigurierbare Eingänge

• Toleranzzeit der Ripple-Eingänge:

Der Ripple Eingang ist 2 Kanalig ausgeführt. Dadurch kann es dazu kommen, dass ein Kanal früher oder später geschaltet wird als der zweite Kanal. Damit dieses nicht sofort zu einem Fehler führt, kann hier eine Toleranzzeit eingetragen werden.

9 Ausgänge

Das Sicherheitsmodul verfügt über 2 konfigurierbare Ausgänge, einen Taktausgang sowie einen Ripple Ausgang zur Vernetzung des Sicherheitsmoduls mit anderen Sicherheitsmodulen.

9.1 Sicherer Ausgang 1 & 2

Abbildung 32 zeigt die Parameter der Ausgangskonfiguration. Die Ausschaltverzögerung und Einschaltverzögerung wirkt sich generell auf Ausgang 1 und Ausgang 2 aus.

ACHTUNG

Unterbrechung der OSSD-Signale durch Funktionstest!

- Um die Abschaltbarkeit des Ausgangskanals zu überprüfen, findet zweimal ca. alle 30 min eine Unterbrechung bis zu 2 ms statt.
- Wird nach 2 ms kein Absinken der Spannung am Ausgang detektiert, wechselt das Modul in den sicheren Zustand.

Parameter	Value	Unit
Konfiguration der Ausgänge 1 und 2		
Ausgang1 Konfiguration	0	
Ausgang2 Konfiguration	0	
Einschaltverzögerung	0.000000	S

Abbildung 32: Parameter der Ausgangskonfiguration

Parametrierung

• Ausgang1 Konfiguration :

• Ausgang2 Konfiguration :

Der Ausgang kann bei der Ausführung von Sicherheitsfunktionen eingeschaltet werden. Die folgenden Werte können beliebig kombiniert und als Ausgangskonfiguration gesetzt werden. Die Ausgangskonfiguration ist dann "ODER-verknüpft". Als Beispiel für eine "ODER-Verknüpfung" dient das Beispiel SLS oder SSM. Wenn der Ausgang dann gesetzt werden soll, wenn eine der beiden Sicherheitsfunktionen ausgeführt wird, dann muss für SLS der Wert 32 + für SSM der Wert 2048 eingestellt werden. Dies ist zusammen 2080.

Folgende Optionen sind vorhanden:

Wert	Klartext	Bemerkung
0	Keine Funktion	Der Ausgang wird nicht genutzt.
1	STO	Wenn die Sicherheitsfunktion STO ausgeführt wird, wird der Ausgang eingeschaltet.
2	SBC	Wenn die Sicherheitsfunktion SBC ausgeführt wird, wird der Ausgang eingeschaltet.
4	SS1	Wenn die Sicherheitsfunktion SS1 ausgeführt wird, wird der Ausgang eingeschaltet.

Wert	Klartext	Bemerkung
8	SS2	Wenn die Sicherheitsfunktion SS2 ausgeführt wird, wird der Ausgang eingeschaltet.
16	sos	Wenn die Sicherheitsfunktion SOS ausgeführt wird, wird der Ausgang eingeschaltet.
32	SDIR	Wenn die Sicherheitsfunktion SDI Vorwärts ausgeführt wird, wird der Ausgang eingeschaltet.
64	SDIL	Wenn die Sicherheitsfunktion SDI Rückwärts ausgeführt wird, wird der Ausgang eingeschaltet.
128	Fehler Sicherheitsfunktion	Wenn ein Fehler bei der Ausführung einer Sicherheitsfunktion aufgetreten ist, dann wird der Ausgang eingeschaltet.
256	SLS	Wenn die Sicherheitsfunktion SLS ausgeführt wird, wird der Ausgang eingeschaltet.
512	SLA	Wenn die Sicherheitsfunktion SLA ausgeführt wird, wird der Ausgang eingeschaltet.
1024	SLP (Aktivierung)	Wenn die Sicherheitsfunktion SLP ausgeführt wird, wird der Ausgang eingeschaltet.
2048	SLP Referenz Position	Wenn die Sicherheitsfunktion SLP Referenz Position ausgeführt wird, wird der Ausgang eingeschaltet.
4096	SEL	Wenn die Sicherheitsfunktion SEL ausgeführt wird, wird der Ausgang eingeschaltet.
8192	SLI Aktivierung	Wenn die Sicherheitsfunktion SLI Aktivierung ausgeführt wird, wird der Ausgang eingeschaltet.
16384	SLI Schrittaktivierung	Wenn die Sicherheitsfunktion SLI Schrittaktivierung ausgeführt wird, wird der Ausgang eingeschaltet.
32768	SSM	Wird der Wert der parametrierten Drehzahl zuzüglich der Hysterese überschritten, wird der sichere Ausgang abgeschaltet. Erst bei Unterschreitung der parametrierten Drehzahl zuzüglich der Hysterese wird der sichere Ausgang gesetzt.
65536	SMS	Wenn die Sicherheitsfunktion SMS ausgeführt wird, wird der Ausgang eingeschaltet.

• Einschaltverzögerung:

Dieses verzögert das Einschalten des Ausgangs, wenn die Sicherheitsfunktion aktiviert wird.

9.2 Ripple Ausgänge

Das Sicherheitsmodul verfügt über einen Ripple Ausgang, welcher mit den Ripple Eingängen eines anderen Sicherheitsmoduls verbunden werden kann. Der Ripple Ausgang ist zweikanalig ausgeführt. Der Ripple Ausgang kann auch als ganz normaler Ausgang verwendet werden, wenn der Parameter "Ripple Master" auf Ein gesetzt wird. Hierbei ist allerdings zu beachten, dass das Verhalten der Ripple Ausgänge umgekehrt ist zu den normalen Ausgängen. Das bedeutet, wenn die Sicherheitsfunktion aktiv ist, dann werden die Ripple Ausgänge auf 0 geschaltet und wenn die Sicherheitsfunktion nicht aktiv ist, dann werden die Ripple Ausgänge auf 1 geschaltet.

Beispiele für Verschaltungen und das Anlaufverhalten sind in Kapitel 13.2 enthalten.

Abbildung 33 zeigt die Konfigurationsoptionen für den Ripple Ausgang.

Parameter	Wert	Einheit
Ripple Ausgangskonfiguration	-	
Ripple Ausgangskonfiguration	2080	
Ripple Master	aus	
Zykluszeit	5.000000	s

Abbildung 33: Ripple Ausgangskonfigurationseinstellungen

Parametrierung

Ripple Ausgangskonfiguration:

Der Ausgang wird bei der Ausführung der konfigurierten Sicherheitsfunktionen ausgeschaltet. Es können beliebig viele Sicherheitsfunktionen zugleich konfiguriert werden. Die Optionen sind die Gleichen wie bei den sicheren Ausgängen.

Ripple Master:

Wenn dieses Sicherheitsmodul nicht in einer geschlossenen Ripple Kette eingebunden ist, dann muss diese Einstellung auf "ein" gesetzt werden. Der Ripple Ausgang kann mit dieser Einstellung auch als zusätzlicher Ausgang verwendet werden. Der Ausgang ist ausgeschaltet, wenn die konfigurierte Sicherheitsfunktion ausgeführt wird.

Zykluszeit:

Die Ripple Zykluszeit ist die maximale Zeit, welche das Signal benötigt um von diesem Sicherheitsmodul einmal durch die Ripple Kette und wieder zurück zu den Eingängen zu gelangen. Die Ripple Zykluszeit ergibt sich aus:

maximale Einschaltverzögerung Ripple Eingänge: 2ms + maximale Einschaltverzögerung Ripple Ausgänge: 448us + maximale Verzugszeit für die Ripple Ausgänge: 750us = 3.2ms

Die Ripple Zykluszeit ist mit der Anzahl der Teilnehmer zu multiplizieren, außerdem muss noch die Filterzeit für die Ripple Eingänge hinzuaddiert werden.

9.3 Taktausgang

Zur Erkennung von gefährlichen externen Leitungskurzschlüssen zwischen zwei zusammengehörigen Eingängen und zu Spannungsversorgungspotentialen werden mechanische Kontaktpaare über phasenversetzte Taktausgänge versorgt. Die zyklischen Taktsignale werden von den sicheren Eingängen des Steuerungsmoduls ausgewertet. Steuerungsinterne Querschlüsse werden durch den sequentiellen Test der Eingangsschaltungen erkannt.

9.3.1 Taktausgangskonfiguration

Parameter	Wert	Einheit
Takt Ausgangskonfiguration		
Periodendauer der Taktausgänge	7.000000	S
Pulslänge der Taktausgänge	0.001000	S

Abbildung 34: Taktausgangskonfiguration in COMBIVIS

Parametrierung

• Periodendauer der Taktausgänge:

Die Periodendauer für die Taktausgänge ist der zeitliche Abstand von einem Testpuls zum nächsten.

Pulslänge der Taktausgänge:

Die Pulslänge ist die Zeit für einen Testpuls.

9.3.2 Empfohlene Einstellungen für die Periodendauer für die Taktausgänge

Bei zyklischen Schaltvorgängen sollte die Periodendauer immer weniger als der zyklische Schaltvorgang betragen. Wenn also alle 10s die Anforderung für eine Sicherheitsfunktion stattfindet, dann muss die Periodendauer weniger als 10s betragen, ansonsten kann es dazu kommen, dass der Taktpuls niemals vom Sicherheitsmodul untersucht werden kann, wenn dieser immer genau mit dem zyklischen Schaltvorgang zusammenfällt. Oder aber der zyklische Schaltvorgang wird für den Taktpuls gehalten und dadurch geht das Sicherheitsmodul in den Fehlerzustand über.

10 Geberkonfiguration

10.1 Geber Auswahl

Es können 2 Gebertypen angeschlossen werden.

- Sinus/Cosinus Geber
- Resolver

Parameter	Wert	Einheit
Geber Konfiguration		
Angeschlossener Geber	Sinus/Cosinus Geber	
Fenster für maximale Abweichung	50	%
Erlaubte Positionsdifferenz zwischen den Eingangskanälen	10	•

Abbildung 35: Geberkonfiguration allgemein

Parametrierung

• Angeschlossener Geber:

Der angeschlossene Geber kann ein Sinus/Cosinus-Geber, Resolver oder kein Geber sein.

Fenster f ür maximale Abweichung:

Das Sinus- und Cosinus-Signal vom Geber, wird über eine $\sin^2 x + \cos^2 x = 1$ Auswertung auf Fehler überprüft. Da kein Geber ideal ist, kann es zu Abweichungen kommen. Für die Abweichung gilt die Formel $\sin^2 x + \cos^2 x = (1 + - \text{Fenster für maximale Abweichung (%)})$. Für den in Kapitel 10.2 genannten SICK SKM36S-HFA0-K02 Geber wird im Handbuch ein Toleranzbereich von 50% empfohlen.

Erlaubte Positionsdifferenz zwischen den Eingangskanälen:

Das Sicherheitsmodul verfügt über zwei unabhängige Eingangskanäle für die Auswertung der Positionsdaten. Dadurch kann es zu geringen Abweichungen zwischen den beiden Kanälen kommen. Sollten sich beim Betrieb mit einem geeigneten Geber Probleme ergeben, so kann dieser Wert angepasst werden. Als Standard ist hier ein Wert von 10° eingetragen.

ACHTUNG

Lösen des Gebers vom Motorgehäuse!

Um den Fehlerausschluss gegen Lösen des Gebergehäuses vom Motorgehäuse bzw. der Geberwelle von der Motorwelle anwenden zu können, muss die zulässige Belastung des Sensors bekannt oder auf die Angaben im Datenblatt begrenzt sein. Dabei wird zwischen formund kraftschlüssigen Verbindungen unterschieden.

10.2 Verwendung von Sinus/Cosinus-Gebern

ACHTUNG

Nur SIL zertifizierte Sinus-/ Cosinus-Geber verwenden!

➤ Es dürfen nur SIL Zertifizierte Sinus/Cosinus-Geber verwendet werden. Die Installations- & Anbauhinweise für den Geber müssen beachtet werden. Der Geber muss eine Amplitude von 1Vss und einen Offset von 2,5V aufweisen. Die Strichzahl darf nicht mehr als 16000 Striche betragen.

Als Sinus / Cosinus-Geber empfehlen wir den Drehgeber SICK SKM36S-HFA0-K02. Dieser Drehgeber hat 128 Striche und keine Nullspur. Die maximale Eingangsfrequenz für die Geberauswertung beträgt 200kHz.

Sinus Cosinus Geber Konfiguration		
Strichzahl	128	
Erlaubte Lageabweichung	1	
Auswertung der Nullimpulsspur	aus	

Abbildung 36: Geber Konfiguration in COMBIVIS

Parametrierung

• Strichzahl:

Die Strichzahl des Sinus/Cosinus-Gebers laut Datenblatt.

Erlaubte Lageabweichung:

Das Sicherheitsmodul überprüft intern ob Fehlinkremente während der Laufzeit des Sicherheitsmoduls aufgetreten sind. Weiterhin wird überprüft ob eine Lageabweichung zur Nullimpulsspur festgestellt werden konnte. Wenn Fehlinkremente oder eine Lageabweichung zur Nullimpulsspur festgestellt wurde, welche größer als die erlaubte Lageabweichung ist, dann geht das Sicherheitsmodul in den sicheren Zustand über.

Die Eingabe dieses Parameters geschieht in vollen Strichen.

• Auswertung der Nullimpulsspur:

Nur wenn der Geber über eine Nullimpulsspur verfügt, dann kann diese ausgewertet werden.

Die Auswertung der Nullimpulsspur sollte nur eingestellt werden, wenn ein Sinus/ Cosinusgeber mit einer Nullimpulsspur verwendet wird. Es wird überprüft, ob die gezählten Inkremente mit dem Nullimpuls und der eingestellten Strichzahl übereinstimmt.

Da ein möglicher Lagefehler über den Parameter Lageabweichung variiert werden kann, sollte die Auflösung der sicheren Lage nicht kleiner als der Parameter sein.

$$maximale \ m\ddot{o}gliche \ Fehllage [°] = \frac{Erlaubte \ Lageabweichung}{Strichzahl} \cdot 360^{\circ}$$

10.3 Verwendung von Resolvern

ACHTUNG

Resolver mit Dauerbefestigung verwenden!

- > Für den Resolver ist der Nachweis der Dauerfestigkeit der mechanischen Befestigung notwendig.
- > Für KEB DL3-Mototren ist diese Bedingung erfüllt.

10.3.1 maximal zulässige Geschwindigkeit

Die maximal zulässige Geschwindigkeit ist auf 25000 1/min durch die Software begrenzt.

10.3.2 Phasenverschiebungen der Signale

Weiterhin darf der Resolver die angegebenen Phasenverschiebungen nicht überschreiten:

- Der Phasenversatz zwischen dem Sinus und Kosinuskanal des Resolvers darf maximal -54 Grad und +72 Grad groß werden. Auch der Phasenversatz zwischen dem Referenzsignal der Statorwicklung zum Sinus- und Cosinuskanal darf nicht kleiner als -54 Grad und größer als 72 Grad groß werden.
- 2. Bei einer Phasenverschiebung größer 72 und kleiner 126 Grad wird ein Fehler im Resolver festgestellt. Das Sicherheitsmodul wird in den sicheren Zustand überführt.
- 3. Bei einem Phasenversatz größer 126 Grad und kleiner 252 Grad wird kein Fehler festgestellt, allerdings wird die erkannte Drehrichtung invertiert.
- 4. Bei einem Phasenversatz größer 252 Grad und kleiner 306 Grad wird ein Fehler im Resolver festgestellt. Das Sicherheitsmodul wird in den sicheren Zustand überführt.

10.3.3 Lagefehler

Der Lagefehler der aus der Überprüfung von der Funktion $\sin^2 x + \cos^2 x = (1 + - Fenster für maximale Abweichung (%)/100%) vorhanden sein kann ist:$

$$maximale\ m\ddot{o}gliche\ Fehllage = arctan \left(\sqrt{\frac{\text{Fenster f\"{u}r maximale Abweichung (\%)}}{100\%}} \right)$$

Die sichere Lageauflösung sollte größer sein als die maximal mögliche Fehllage.

10.4 Skalierungseinstellungen für die Position, Gebereinstellungen für die Eingangskanäle

Parameter	Wert	Einheit
Skalierungseinstellungen für die Position		
Anzahl der Bits pro Umdrehung (Ps)	16	Bit

Abbildung 37: Geber Einstellungen für die Eingangskanäle

Parametrierung

Anzahl der Bits pro Umdrehung (Ps):

Für die Sicherheitsfunktionen SDI, SOS, SLI, SLP Referenz Position und SLP Sicher begrenzte Position können Positionsgrenzen angegeben werden. Diese sind immer im Format "Bits pro Umdrehung". Als Standard sind hier 16 Bit eingetragen, das bedeutet ein Wert von 2^16 entspricht 1 Umdrehung oder 360 Grad. Durch eine Vergrößerung des Wertes können Positionen genauer eingegeben werden. Durch eine Verringerung des Wertes können größere aber ungenauere Positionen eingegeben werden.

10.5 Gebereinstellungen für die Geschwindigkeitsermittlung

ACHTUNG

Reaktionszeit der Sicherheitsfunktionen!

Die Reaktionszeit der Sicherheitsfunktionen SS1, SS2, SLS und SSM hängt mit den Gebereinstellungen für die Geschwindigkeitsermittlung direkt zusammen. Höhere Abtastzeiten sorgen für eine geglättete Drehzahl, aber auch für eine langsamere Reaktionszeit der Sicherheitsfunktionen.

Neustart erst nach Bestätigung

Der Antrieb läuft wieder an, wenn die Funktion STO nicht mehr ausgelöst ist. Um der Norm EN 60204-1 zu entsprechen, muss durch externe Maßnahmen sichergestellt sein, dass der Antrieb erst nach einer Bestätigung wieder anläuft.

	Parameter	Wert	Einheit
Eir	nstellungen für die Geschwindigkeitsmessung		
Dr	rehzahl PT1-Zeit	2.000000	ms
Dr	rehzahlabtastzeit	1 ms	

Abbildung 38: Gebereinstellungen für die Geschwindigkeitsmessung

Parametrierung

Drehzahl PT1-Zeit:

Die Geschwindigkeit kann durch einen PT1 Filter gefiltert werden. Eine Einstellung von 0 bedeutet, dass kein PT1 Filter angewendet wird. Eine Einstellung von 256 ms (maximaler Wert) bedeutet, dass ein PT1 Filter von 256 ms verwendet wird.

Drehzahlabtastzeit:

Die Geschwindigkeit wird durch folgende Formel ermittelt: Position – Position (Drehzahlabtastzeit) / Drehzahlabtastzeit. Bei einer höheren Drehzahlabtastzeit werden Positionsstörungen gefiltert, die Reaktionszeit wird aber langsamer.

10.5.1 Drehzahlabtastzeit

Die Drehzahlabtastzeit sorgt für eine Verzögerung der Geschwindigkeitsänderung. Dabei wird bei einem Drehzahlsprung die tatsächliche Drehzahl erst nach der Drehzahlabtastzeit erreicht.

$$y = \frac{\Delta Geberlage}{Drehzahlabtastzeit}$$

y = Ermittelte Drehzahl Sicherheitsmodul.

ΔGeberlage = Lagedifferenz der aktuellen zu der Lage vor der Drehzahlabtastzeit

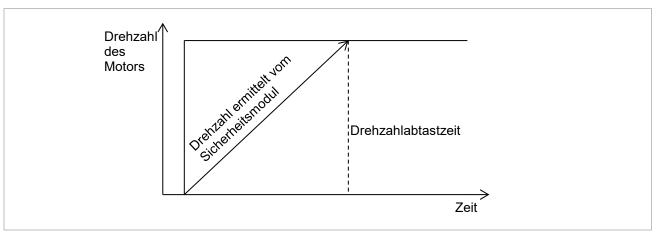


Abbildung 39: Drehzahlabtastzeit in Bezug auf die Drehzahl

10.5.2 Drehzahl PT1-Zeit

Die Drehzahl PT1- Zeit sorgt für eine Verzögerung der Geschwindigkeitsänderung. Dabei wird bei einem Drehzahlsprung die tatsächliche Drehzahl erst nach Erreichen der Drehzahl PT1-Zeit erreicht.

$$y = y_{t-1} + \frac{t}{T}(x(Geber) - y_{t-1})$$

y = Ermittelte Drehzahl Sicherheitsmodul.

x (Geber) = Drehzahl aus Drehzahlabtastzeitermittlung.

y (t-1) = Ermittelte Drehzahl vom Sicherheitsmodul zum letzten Zeitpunkt

T = Drehzahl PT1- Zeit

t = Zeitpunkt der Berechnung (Drehzahl vom Sicherheitsmodul wird in 250 μs Schritten berechnet).

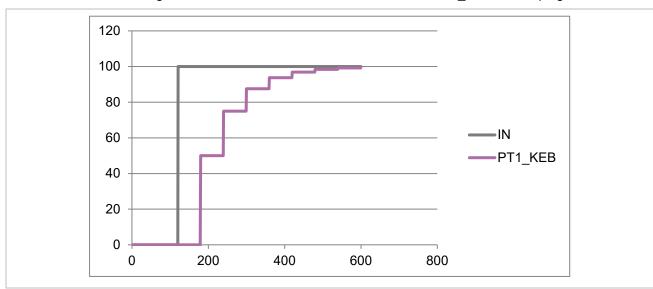


Abbildung 40 zeigt das gemäß Formel spezifizierte Verhalten. PT1_KEB ist das Verhalten des Algorithmus im zeitdiskreten Fall. Ein Schritt von PT1_KEB ist 250 µs groß.

Abbildung 40: Drehzahl PT1-Zeit in Bezug auf einen Drehzahlsprung

10.5.3 Drehzahlabtastzeit + Drehzahl PT1-Zeit

Das Verhalten der Drehzahlabtastzeit mit der Drehzahl PT1-Zeit wird in Abbildung 41 dargestellt. Dabei gilt, dass der Drehzahlsprung zuerst von der Drehzahlabtastzeit verzögert wird. Auf diese gefilterte Drehzahländerung wird dann die Drehzahl PT1- Zeit angewendet. Ein Schritt von PT1_KEB ist 250 µs groß.

$$y = y_{t-1} + \frac{t}{T}((\frac{\Delta Geberlage}{Drehzahlabtastzeit}) - y_{t-1})$$

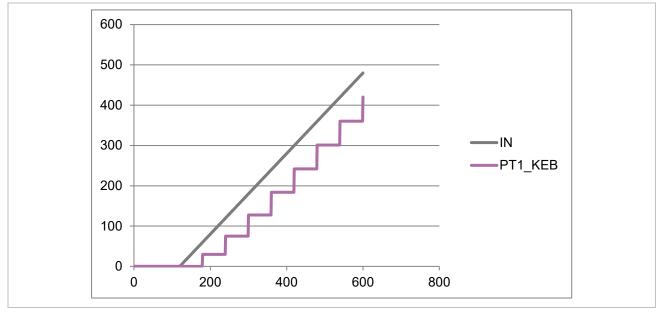


Abbildung 41: Drehzahlabtastzeit und Drehzahl PT1-Zeit zusammengenommen

11 Funktionsbeschreibung der Sicherheitsfunktionen

Das Sicherheitsmodul Typ 3 erfüllt folgende in diesem Kapitel aufgeführte Funktionen nach IEC 61800-5-2.

11.1 Priorität der Sicherheitsfunktionen

STO hat immer höchste Priorität. Die anderen Sicherheitsfunktionen haben alle die gleiche Priorität.

Priorität	Bedeutung
0	STO wird ausgeführt, Modulation nicht freigegeben. Siehe Kapitel 11.3.

Tabelle 13: Priorität der Sicherheitsfunktionen des Sicherheitsmoduls

11.2 Status des Sicherheitsmoduls

Der Status des Sicherheitsmoduls kann mit dem Parameter sb29 "safety mod. status word" des COMBIVERT ausgelesen werden. Der Parameter ist bitcodiert gemäß folgender Tabelle:

Zustand	Bedeutung
Status "1"	Fehler im Safety-Modul
Status "0"	STO wird ausgeführt, Modulation nicht freigegeben (=> <u>11.3</u>).
Status "0"	SBC wird ausgeführt. Bremse geschlossen (=> <u>11.4</u>).
Status "1"	SS1 wird ausgeführt (=> <u>11.5</u>)
Status "1"	SS2 wird ausgeführt (=> <u>11.6</u>)
Status "1"	SOS wird ausgeführt (=> <u>11.7</u>)
Status "1"	SDI Vorwärts wird ausgeführt (=> <u>11.12</u>)
Status "1"	SDI Rückwärts wird ausgeführt (=> <u>11.12</u>)
Status "1"	Fail Safe. Die Grenze einer aktiven Sicherheitsfunktion wurde verletzt.
Status "1"	SLS wird ausgeführt (=> <u>11.8</u>)
Status "1"	SLA wird ausgeführt (=> <u>11.15</u>)
Status "1"	SLP wird ausgeführt (=> <u>11.10</u>)
Status "1"	SLP Set Reference Position (Reference Position gesetzt) (=> 11.9)
Status "1"	SEL wird ausgeführt (=> <u>11.10.1</u>)
Status "1"	SLI wird ausgeführt (=> <u>11.11</u>)
Status "1"	Aktivierung eines sicheren Inkrementes der Funktion SLI (=> 11.11)
Status "1"	SSM wird ausgeführt (=> <u>11.13</u>)
Status "1"	SMS wird ausgeführt (=> <u>11.14</u>)
	Status "1" Status "0" Status "0" Status "1"

Tabelle 14: Status des Sicherheitsmoduls

11.3 Funktionsbeschreibung Safe Torque off (STO)

Die sicherheitsgerichtete Abschaltung nach STO wird durch eine zweikanalige Optokopplersperre erreicht. So ist sichergestellt, dass bei der Ausführung von STO auch keine Versorgung der Optokoppler möglich ist. Sind die Optokoppler nicht mehr versorgt, so kann kein IGBT angesteuert und somit dem Antrieb keine Rotationsenergie zugeführt werden.

STO Status wird im Statusbit 1 angezeigt.

In Gefahrenbereichen können Einrichtarbeiten oder Arbeiten zur Störungsbeseitigung notwendig sein, bei denen Schutzeinrichtungen wie Netz- oder Motorschütze nicht aktiviert werden sollen. Dort kann die Sicherheitsfunktion STO eingesetzt werden. Je nach Anwendung kann durch die Nutzung von STO der Einsatz von Netz- oder Motorschützen entfallen.

Im Fehlerfall oder auf Anforderung werden die Leistungshalbleiter des Antriebsmoduls abgeschaltet und dem Antrieb keine Energie zugeführt, die eine Drehung oder ein Drehmoment (oder bei einem Linearantrieb eine Bewegung oder eine Kraft) verursachen würde. Bei Auftreten eines Fehlers kann die Anlage noch sicher abgeschaltet werden bzw. bleiben.

Bei aktiver STO-Funktion liegt die Netzspannung weiterhin an! Elektrischer Schlag!

Bei Arbeiten an Gerät oder Motor Netz wegschalten.

11.3.1 Not-Halt gemäß EN 60204

Durch die Verwendung geeigneter Sicherheitsschaltgeräte kann mit der STO-Funktion Stopp-Kategorie 0 nach EN 60204-1 in der Anlage erreicht werden.

Stopp-Kategorie 0

"ungesteuertes Stillsetzen", d. h. Stillsetzen durch sofortiges Abschalten der Energie zu den Antriebselementen.

Not-Halt nach EN 60204 muss in allen Betriebsarten des Antriebsmoduls funktionsfähig sein. Das Rücksetzen von Not-Halt darf nicht zum unkontrollierten Anlauf des Antriebs führen.

Neustart erst nach Bestätigung

Der Antrieb läuft wieder an, wenn die Funktion STO nicht mehr ausgelöst ist. Um der Norm EN 60204-1 zu entsprechen, muss durch externe Maßnahmen sichergestellt sein, dass der Antrieb erst nach einer Bestätigung wieder anläuft.

Ohne mechanische Bremse kann es zum Nachlaufen des Antriebs kommen; der Motor trudelt aus. Kann dabei eine Gefährdung von Personen oder Sachschaden entstehen, müssen zusätzliche Schutzeinrichtungen installiert werden (z.B. Zuhaltung).

ACHTUNG

Nachlaufen des Motors absichern!

Besteht nach dem Abschalten der Motoransteuerung durch STO eine Gefährdung für Personen, muss der Zugang zu Gefahrenbereichen solange gesperrt bleiben, bis der Antrieb stillsteht.

ACHTUNG

Rucken im Fehlerfall!

Bei einem zweifachen Versagen kann es zu einem ungewollten Rucken kommen, dessen Drehwinkel von der Polzahl des gewählten Antriebes und von der Übersetzung des Getriebes abhängt.

Berechnung des Rucks:

Drehwinkel des Ruckes WR [°] =
$$\frac{180^{\circ}}{\text{Polpaarzahl p } \cdot \text{Getriebeuntersetzung g}}$$

Formel 1: Berechnung des Ruckes

Die Wahrscheinlichkeit eines Ruckes ist < 1,84 *10⁻¹⁵ 1/h.

Dieses Verhalten kann entweder durch einen Kurzschluss der IGBTs oder durch ein Durchschalten (ebenfalls Kurzschluss) der Ansteuerungstreiber entstehen. Der Fehler ist nur dann als kritisch anzusehen, wenn der Antrieb im Zustand STO verweilt.

11.3.2 Fehlerreaktionszeiten STO-Funktion

Technische Daten der STO-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 3 ms

11.4 Funktionsbeschreibung Sichere Bremsenansteuerung (SBC)

Die sichere Bremsenansteuerung ist ausschließlich für Bremsen bestimmt, die in stromlosem Zustand aktiv sind. Durch Anlegen einer Spannung werden diese Bremsen geöffnet, so dass ein einzelner Fehler, wie das Versagen der Spannungsversorgung, nicht zum Verlust der Sicherheitsfunktion führen kann.

Die Schaltung funktioniert zweikanalig. Dabei kann die Bremse nur dann von der Steuerung im COMBIVERT geöffnet werden, wenn die Sicherheitsfunktion SBC nicht mehr ausgeführt wird. Dann wird das Öffnen der Bremse mit "Bremse Status" im Statusbit 2 angezeigt (1 bedeutet Bremse geöffnet).

Die Zweikanaligkeit wird mittels eines diversitären High-Side- und Low-Side-Schalters erreicht. Diese werden auf ihre Schaltfähigkeit jede Stunde getestet.

11.4.1 Anforderungen an die Bremse

Versorgungsspannung	DC 24 V ±10 %
max. Strom	DC 3,3 A
Freilaufbeschaltung	im COMBIVERT integriert

ACHTUNG

Stromlos bremsen!

Generell sind Bremsen einzusetzen, die im stromlosen Zustand geschlossen sind.

Eine Einstufung des gesamten Bremssystems einschließlich der mechanischen Bremse nach SIL 3 und PL e ist in Abhängigkeit der verwendeten Bremse zu bewerten. Bremsen gelten als Komponenten mit relativ hoher Fehlerwahrscheinlichkeit. Je nach vom Hersteller angegebener Fehlerwahrscheinlichkeit der eingesetzten Bremse und in Abhängigkeit von der Applikation ist ein Testintervall für die Bremse festzulegen.

ACHTUNG

Überprüfen der Bremse!

- Eine Überprüfung der Bremse kann nicht durch das Sicherheitsmodul erfolgen.
- Die Überprüfung muss durch den Anwender sichergestellt werden.

Schwebende Lasten!

Wegen der hohen Versagenswahrscheinlichkeit von mechanischen Bremsen ist der Aufenthalt unter hängenden oder schwebenden Lasten nicht gestattet. Gleiches gilt auch für Trägheitsmassen, die nicht in der Ruhelage verweilen.

11.4.2 Fehlerreaktionszeiten SBC- Funktion

Technische Daten der SBC-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 3 ms

11.4.3 Setzen von Statusbits durch die SBC-Funktion

Bei geöffneter Bremse wird der Strom durch die Bremse gemessen. Abhängig von der Messung werden folgende Bits gesetzt:

Strommessung	Bit
>3,3 A	Im Fehlerstatus wird der Fehler ausgegeben.
<100 mA	Im Fehlerstatus wird eine Warnung ausgegeben.

Reaktionszeit beachten

Da bei hoher Induktivität der Bremse der Strom langsam ansteigt, ist die Fehlerreaktionszeit max. 100 ms auf einen Strom <0,1 A.</p>

11.4.4 Überwachung der SBC-Funktion

Die Schalter werden bei geöffneter Bremse jede Stunde auf ihre Schaltfähigkeit getestet.

Dazu werden die Signale der Bremsenausgänge überprüft.

Eine Überwachung der Verdrahtung auf Kurzschluss nach 24V bzw. 0V ist somit gegeben. Stellt das Sicherheitsmodul einen Fehler fest, wird die Ansteuerung beider Kanäle weggenommen, die LED auf Rot gesetzt und das Bit 0 im Status gesetzt.

Reaktionszeit beachten

Die maximale Fehlerreaktionszeit beträgt 9 ms.

Die Versorgungsspannung zum Schalten der Bremse wird überwacht. Liegt die Spannung außerhalb 24 V ±10 % wird das Statusbit 0 gesetzt. Außerdem wird im Fehlerstatus ein Fehler ausgegeben.

Ist das Sicherheitsmodul im Fehlerzustand, wird dies im Status der Steuerung des COM-BIVERT mit Parameter ru01 = "55" (Fehler Sicherheitsmodul) angezeigt.

11.4.5 Konfigurationsparameter der Sicherheitsfunktion SBC

Parameter	Wert	Einheit
SBC: Sichere Bremsenansteuerung		
SBC mit STO koppeln	aus	
Messung des Bremsenstromes	ein	

Abbildung 42: SBC Parameter

In Abbildung 42 sind die Konfigurationsparameter für die SBC Funktion aufgeführt.

Parametrierung:

• SBC mit STO koppeln:

Wenn bei einer Sicherheitsfunktion der Zustand STO erreicht wird, dann wird bei "ein" auch gleichzeitig der Bremsenausgang ausgeschaltet. Die Bremse fällt dann ein.

Messung des Bremsenstromes:

Wenn diese Option auf "ein" gesetzt ist (Default), dann wird der Bremsenausgangsstrom gemessen. Wenn ein Strom größer als 3,3 A gemessen wird, so wird das Sicherheitsmodul in den sicheren Zustand überführt.

11.5 Funktionsbeschreibung Sicherer Stopp 1 (SS1)

Die Sicherheitsfunktion SS1 kann auf 2 Arten durchgeführt werden

- SS1-r (früher Typ B)
- SS1-t (früher Typ C)

11.5.1 Aktivierung der Sicherheitsfunktion SS1

Die Schaltung funktioniert zweikanalig. Dabei kann die Sicherheitsfunktion nur dann von der Steuerung im COMBIVERT verlassen werden, wenn beide Hardware Eingänge Spannung erhalten oder wenn ein entsprechender Statuswechsel über ein sicheres Bussystem empfangen wurde. Der SS1 Status wird im Statusbit 3 angezeigt.

11.5.2 Konfigurationsparameter der Sicherheitsfunktion SS1

Parameter	Wert	Einheit
SS1: Sicherer Stopp 1 [1]		
Auswahl des Funktionstyps	Typ B und Typ C	
Verzögerung	0.000000	1/s²
Negative Toleranz	0.000000	1/min
Positive Toleranz	0.000000	1/min
Zeitfenster für Drehzahlabweichung	0.000000	S
Typ C Zeit	0.000000	S
Höhere Verzögerung zulässig	aus	

Abbildung 43: Konfigurationsparameter für die Sicherheitsfunktion SS1

11.5.3 Fehlerreaktionszeiten SS1- Funktion

Technische Daten der SS1-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms

Reaktionszeit beachten

➤ Die Reaktionszeit der SS1-r Funktion hängt maßgeblich von den Gebereinstellungen für die Geschwindigkeitsmessung ab => Kapitel 10.5.

11.5.4 Not-Halt gemäß EN 60204

Durch die Verwendung geeigneter Sicherheitsschaltgeräte kann mit der SS1-Funktion die Stopp-Kategorie 1 nach EN 60204-1 in der Anlage erreicht werden.

Stopp-Kategorie 1

"gesteuertes Stillsetzen", d. h. die Energie zu den Antriebselementen wird beibehalten, um das Stillsetzen zu erreichen. Die Energie wird erst dann unterbrochen (STO), wenn der Stillstand erreicht ist.

11.5.5 Beschreibung der SS1-r Funktion

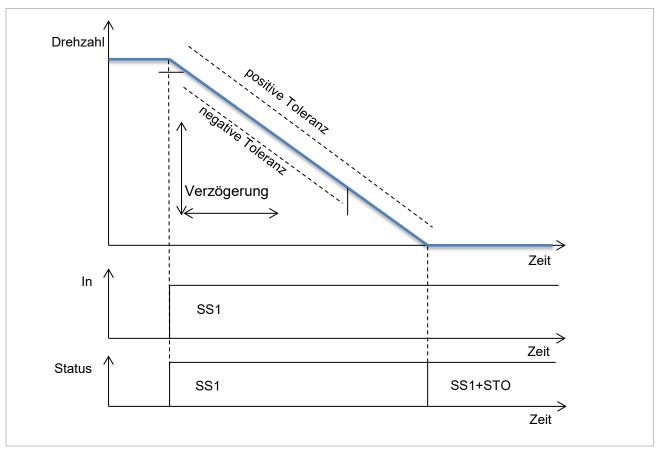


Abbildung 44: SS1-r Sicherheitsfunktion

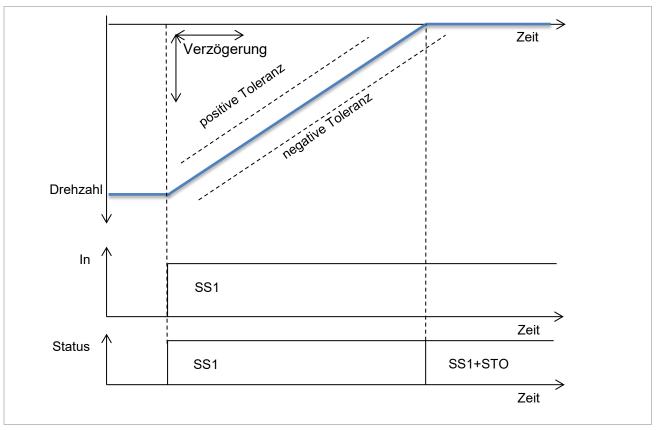


Abbildung 45: SS1-r mit negativer Drehzahl als Startwert

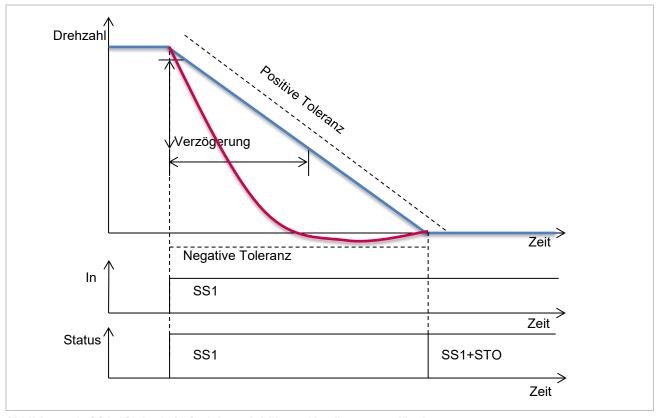


Abbildung 46: SS1-r Sicherheitsfunktion mit höherer Verzögerung zulässig

Nach dem Auslösen der Funktion erfolgt die Überwachung der Bremsrampe.

Zur Überwachung der Bremsrampe wird die Verzögerung überwacht. Nach dem Erreichen des Stillstandes wird der Zustand STO eingenommen.

Störungen werden über einen Parameter ausgeblendet, der eine maximale, tolerierbare Zeit für kurzzeitige Abweichungen vom Toleranzfenster definiert.

Parametrierung:

Verzögerung:

Erlaubt die Konfiguration der Rampe, mit welcher der Motor vom COMBIVERT abgebremst wird.

• Zeitfenster für Drehzahlabweichung:

Erlaubt eine Abweichung des Motors von der Rampe für den eingestellten Zeitraum. Wird der Zeitraum überschritten, dann wird die Sicherheitsfunktion STO ausgeführt. Es wird nur dann ein Statuswechsel nach FailSafe ausgelöst, wenn die Zeit von Aktivierung SS1-r bis zur Verletzung der Rampe (inkl. Toleranz) zzgl. der eingestellten Toleranzzeit kleiner ist, als die von der Sollrampe und der Ausgangsdrehzahl vorgegebenen Verzögerungszeit. Ist die Zeit von Aktivierung SS1-r plus Toleranzzeit größer, so wird SS1-r eine erfolgreiche Verzögerung erkennen und STO nach Ablauf der Verzögerungszeit (bezogen auf Rampe und Ausgangsdrehzahl) und nicht FS setzen.

Der Zähler wird inkrementiert, wenn sich die Drehzahl außerhalb der Geschwindigkeitsgrenze befindet. Wenn sich die Geschwindigkeit wieder innerhalb der Geschwindigkeitsgrenze befindet, wird der Zähler dekrementiert.

• Negative und positive Toleranz:

Erlaubt es einen Bereich zu definieren, in welchem Drehzahlabweichungen von der Rampe toleriert werden.

• Aktivierte Sicherheitsfunktion:

Hier kann die SS1-r und SS1-t oder nur SS1-r Funktion aktiviert werden.

• Höhere Verzögerung zulässig:

Die Drehzahl darf nicht größer als die Verzögerung + positive Toleranz sein. Allerdings ist die untere Drehzahlgrenze 0 – negative Toleranz. Somit kann der Antrieb auch schneller verzögern.

Wird der Toleranzbereich länger als das Zeitfenster verlassen, wird in den Zustand STO gewechselt.

Ab Steuerkartenfirmware 2.5 kann für SS1 und SS2 in pn80 eine Stoppbedingung eingestellt werden. Damit fährt bei Auslösung einer der Bedingungen der Antrieb selbstständig an der Rampe herunter.

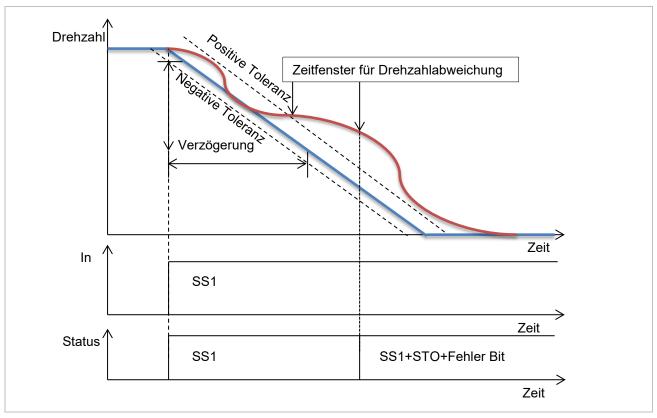


Abbildung 47: SS1-r Sicherheitsfunktion mit fehlerhafter Rampe

11.5.6 Beschreibung der SS1-t Funktion

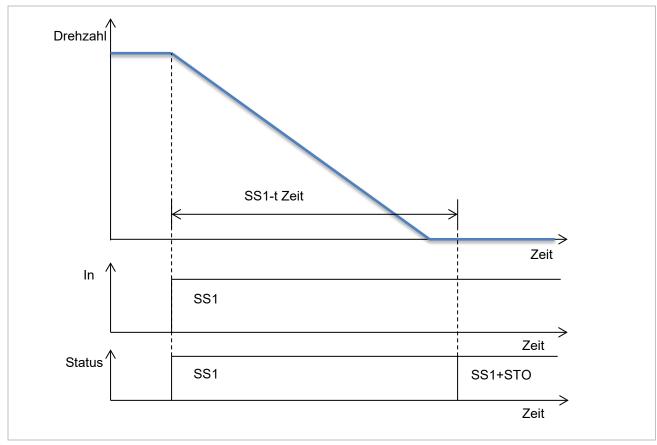


Abbildung 48: SS1-t Funktionsbeschreibung

Nach erfolgter Auslösung der Funktion SS1 wird der Antrieb durch die Antriebssteuerung abgebremst. Nach dem Ablauf der parametrierbaren Zeit "Zeitspanne bis zur Sicherheitsfunktion" wird der Zustand STO eingenommen.

Parametrierung

• SS1-t Zeit:

Wenn die eingegebene Zeitspanne abgelaufen ist, wird die Sicherheitsfunktion STO ausgeführt. Eine Rampe wird hier nicht überwacht.

Auswahl des Funktionstyps:

Hier kann die SS1-r und SS1-t oder nur SS1-t Funktion aktiviert werden.

11.6 Funktionsbeschreibung Sicherer Stopp 2 (SS2)

Die Sicherheitsfunktion SS2 kann auf 2 Arten durchgeführt werden:

- SS1-r (früher Typ B)
- SS1-t (früher Typ C)

11.6.1 Aktivierung der Sicherheitsfunktion SS2

Die Schaltung funktioniert zweikanalig. Dabei kann die Sicherheitsfunktion nur dann von der Steuerung im COMBIVERT verlassen werden, wenn beide Hardware Eingänge Spannung erhalten oder wenn ein entsprechender Statuswechsel über ein sicheres Bussystem empfangen wurde. Der SS2 Status wird in Statusbit 4 angezeigt

11.6.2 Konfigurationsparameter der Sicherheitsfunktion SS2

Parameter	Wert	Einheit
SS2: Sicherer Stopp 2 [3]	,	
Auswahl des Funktionstyps	Typ B und Typ C	
Verzögerung	0.000000	1/s²
Negative Toleranz	0.000000	1/min
Positive Toleranz	0.000000	1/min
Zeitfenster für Drehzahlabweichung	0.000000	S
Typ C Zeit	0.000000	S
Höhere Verzögerung zulässig	aus	

Abbildung 49: Konfigurationsparameter für die Sicherheitsfunktion SS2

11.6.3 Fehlerreaktionszeiten SS2- Funktion

Technische Daten der SS2-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms

Reaktionszeit beachten

Die Reaktionszeit der SS2 Funktion hängt maßgeblich von den Gebereinstellungen für die Geschwindigkeitsmessung ab (siehe Kapitel 10.5).

11.6.4 Beschreibung der SS2-r Funktion

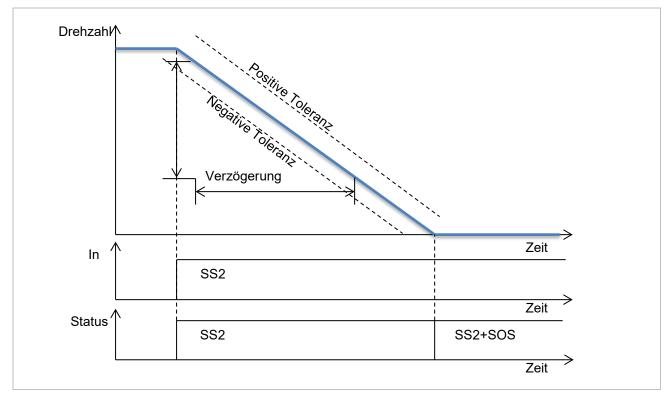


Abbildung 50: SS2-r Sicherheitsfunktion

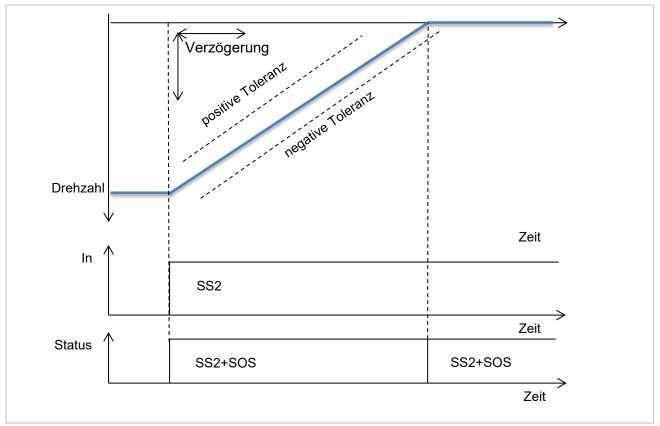


Abbildung 51: SS2-r Sicherheitsfunktion mit negativer Drehzahl

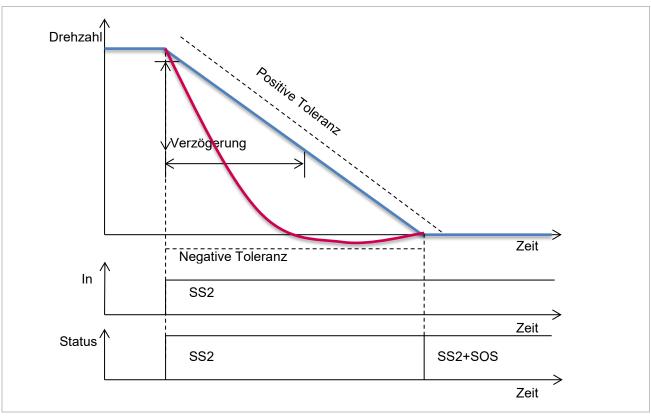


Abbildung 52: SS2-r Sicherheitsfunktion mit höherer Verzögerung zulässig

Nach dem Auslösen der Funktion erfolgt die Überwachung einer Bremsrampe, wie bei der SS1-r Funktion. Nach dem Erreichen des Stillstandes wird die Funktion SOS (Safe Operating Stopp) ausgeführt.

Parametrierung

Verzögerung:

Erlaubt die Konfiguration der Rampe, mit welcher der Motor vom COMBIVERT abgebremst wird.

• Zeitfenster für Drehzahlabweichung:

Erlaubt eine Abweichung des Motors von der Rampe für den eingestellten Zeitraum. Wird der Zeitraum überschritten, dann wird die Sicherheitsfunktion STO ausgeführt. Es wird nur dann ein Statuswechsel nach FailSafe ausgelöst, wenn die Zeit von Aktivierung SS1-r bis zur Verletzung der Rampe (inkl. Toleranz) zzgl. der eingestellten Toleranzzeit kleiner ist, als die von der Sollrampe und der Ausgangsdrehzahl vorgegebenen Verzögerungszeit. Ist die Zeit von Aktivierung SS1-r plus Toleranzzeit größer, so wird SS1-r eine erfolgreiche Verzögerung erkennen und STO nach Ablauf der Verzögerungszeit (bezogen auf Rampe und Ausgangsdrehzahl) und nicht FS setzen.

Der Zähler wird inkrementiert, wenn sich die Drehzahl außerhalb der Geschwindigkeitsgrenze befindet. Wenn sich die Geschwindigkeit wieder innerhalb der Geschwindigkeitsgrenze befindet, wird der Zähler dekrementiert.

• Negative und positive Toleranz:

Erlaubt es einen Bereich zu definieren, in welchem Drehzahlabweichungen von der Rampe toleriert werden.

Auswahl des Funktionstyps:

Hier kann die SS2-r und SS2-t oder nur SS2-r Funktion aktiviert werden.

• Höhere Verzögerung zulässig:

Die Drehzahl darf nicht größer als die Verzögerung + Positive Toleranz sein. Allerdings ist die untere Drehzahlgrenze 0 – negative Toleranz. Somit kann der Antrieb auch schneller verzögern.

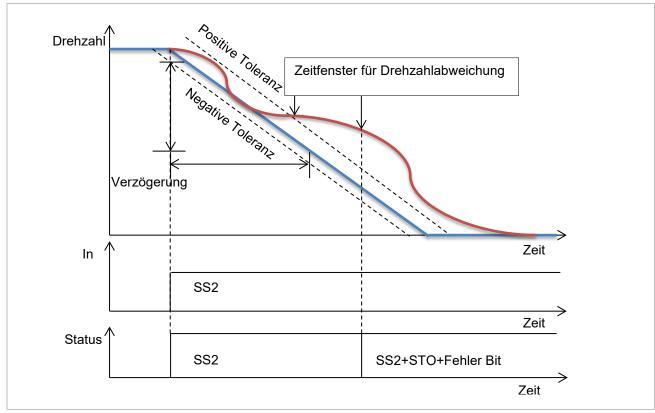
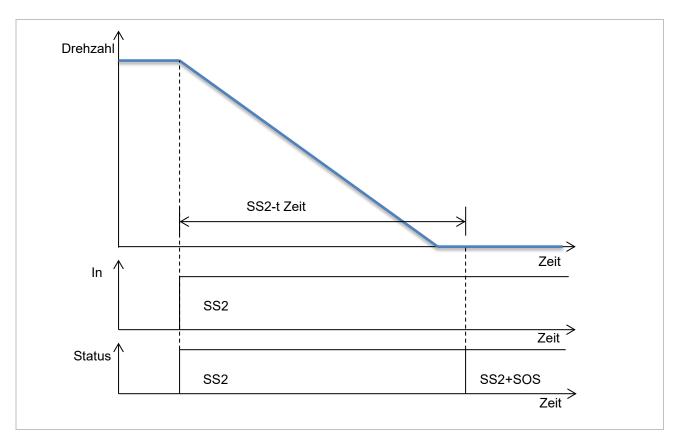



Abbildung 53: SS2-r Sicherheitsfunktion mit fehlerhafter Rampe

Wird der Toleranzbereich länger als das Zeitfenster verlassen, wird in den Zustand STO gewechselt.

Ab Steuerkartenfirmware 2.5 kann für SS1 und SS2 in pn80 eine Stoppbedingung eingestellt werden. Damit fährt bei Auslösung einer der Bedingungen der Antrieb selbstständig an der Rampe herunter.

11.6.5 Beschreibung der SS2-t Funktion

Abbildung 54: SS2-t Funktion

Nach erfolgter Auslösung der Funktion SS2 wird der Antrieb durch die Antriebssteuerung abgebremst. Nach dem Ablauf der parametrierbaren "SS2-t Zeit" wird der Zustand SOS eingenommen.

Parametrierung

SS2-t Zeit:

Wenn die eingegebene Zeitspanne abgelaufen ist, wird die Sicherheitsfunktion SOS ausgeführt. Eine Rampe wird hier nicht überwacht.

• Auswahl des Funktionstyps:

Hier kann die SS2-r und SS2-t oder nur SS2-t Funktion aktiviert werden.

11.7 Funktionsbeschreibung Sicherer Betriebshalt (SOS)

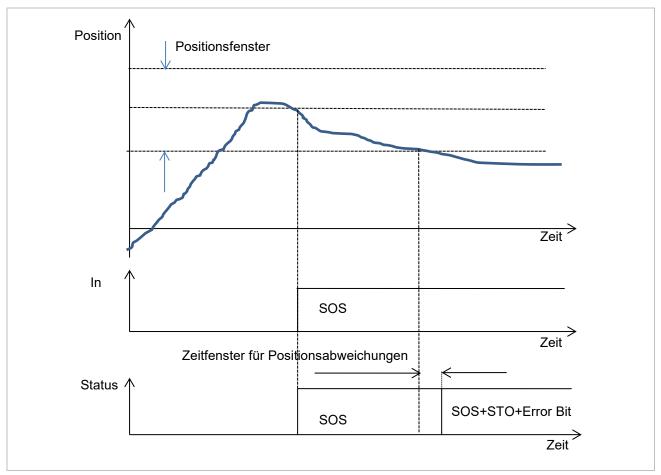


Abbildung 55: SOS Sicherheitsfunktion

Die Funktion SOS überwacht, ob der Antrieb in seiner Stillstandsposition verharrt und externen Momenten widersteht. Da zur Positionserfassung analoge Sensorsignale verarbeitet werden und selbst bei absolutem Stillstand keine statischen Sensorsignale anliegen, ist die Festlegung eines Toleranzfensters durch einen Parameter erforderlich.

Störungen werden über einen weiteren Parameter ausgeblendet, der eine maximal, tolerierbare Zeit für kurzzeitige Abweichungen vom Toleranzfenster definiert.

11.7.1 Aktivierung der Sicherheitsfunktion SOS

Die Schaltung funktioniert zweikanalig. Dabei kann die Sicherheitsfunktion nur dann von der Steuerung im COMBIVERT verlassen werden, wenn beide Hardware Eingänge Spannung erhalten oder wenn ein entsprechender Statuswechsel über ein sicheres Bussystem empfangen wurde. Der SOS Status wird in Parameter SOS Status im Statusbit 5 angezeigt.

11.7.2 Konfigurationsparameter der Sicherheitsfunktion SOS

Parameter	Wert	Einheit
SOS: Sicherer Betriebshalt		
Positions fenster	0	BpU
Zeitfenster für Positionsabweichungen	0.000000	s

Abbildung 56: Konfigurationsparameter für die Sicherheitsfunktion SOS

Parametrierung

Positionsfenster:

Dieses ist das Positionsfenster, welches der Antrieb nicht verlassen darf.

• Zeitfenster für Positionsabweichungen

Wird das Positionsfenster länger als das Zeitfenster für Positionsabweichungen verlassen, dann wird die Sicherheitsfunktion STO ausgeführt. Der Zähler wird inkrementiert, wenn sich die Drehzahl außerhalb der Geschwindigkeitsgrenze befindet. Wenn sich die Geschwindigkeit wieder innerhalb der Geschwindigkeitsgrenze befindet, wird der Zähler dekrementiert.

11.7.3 Fehlerreaktionszeiten SOS- Funktion

Technische Daten der SOS-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms

11.8 Funktionsbeschreibung Sicher begrenzte Geschwindigkeit (SLS)

Durch die Sicherheitsfunktion SLS wird sichergestellt, dass der Antrieb die obere Geschwindigkeitsgrenze nicht überschreitet und die untere Geschwindigkeitsgrenze nicht unterschreitet.

Störungen werden über einen weiteren Parameter ausgeblendet, der eine maximal, tolerierbare Zeit für kurzzeitige Abweichungen vom Toleranzfenster definiert.

Im Fehlerfall wird eine einstellbare Fehlerfunktion ausgelöst.

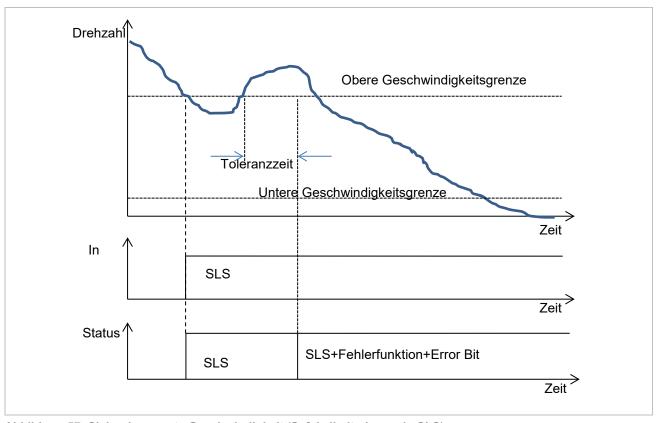


Abbildung 57: Sicher begrenzte Geschwindigkeit (Safely limited speed - SLS)

11.8.1 Aktivierung der Sicherheitsfunktion SLS

Die Schaltung funktioniert zweikanalig. Dabei kann die Sicherheitsfunktion nur dann von der Steuerung im COMBIVERT verlassen werden, wenn beide Hardwareeingänge zusammen Spannung erhalten oder wenn ein entsprechender Statuswechsel über ein sicheres Bussystem empfangen wurde. Der SLS Status wird im Statusbit 9 (=> 11.2) angezeigt.

11.8.2 Konfigurationsparameter der Sicherheitsfunktion SLS

Parameter	Wert	Einheit		
SLS: Sicher begrenzte Geschwindigkeit [1]				
Obere Geschwindigkeitsgrenze	60000.000000	1/min		
Untere Geschwindigkeitsgrenze	-60000.000000	1/min		
Toleranzzeit	0.000000	s		
Fehlerfunktion	STO STO			

Abbildung 58: Konfigurationsparameter für die Sicherheitsfunktion SLS

Parametrierung

• Obere Geschwindigkeitsgrenze:

Die maximale erlaubte Drehzahl.

• Untere Geschwindigkeitsgrenze:

Die minimal erlaubte Drehzahl.

Toleranzzeit:

Dieses ist die Zeit, in welcher die Schwelle für die obere oder untere Geschwindigkeitsgrenze überschritten werden darf. Der Zähler wird inkrementiert, wenn sich die Drehzahl außerhalb der Geschwindigkeitsgrenze befindet. Wenn sich die Geschwindigkeit wieder innerhalb der Geschwindigkeitsgrenze befindet, wird der Zähler dekrementiert.

• Fehlerfunktion:

Bei Überschreitung der eingestellten, maximalen Drehzahl um die Toleranzzeit wird diese Fehlerfunktion ausgeführt. Entweder STO oder SS1.

11.8.3 Fehlerreaktionszeiten SLS- Funktion

Technische Daten der SLS-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms

11.9 Funktionsbeschreibung SLP: Referenzposition

Die Funktion SLP Referenz Position setzt die Referenzposition für die Sicherheitsfunktion "Sicher begrenzte Position (SLP)". Nach der Neukonfiguration des Sicherheitsmoduls muss erneut eine Referenzpunktfahrt durchgeführt werden.

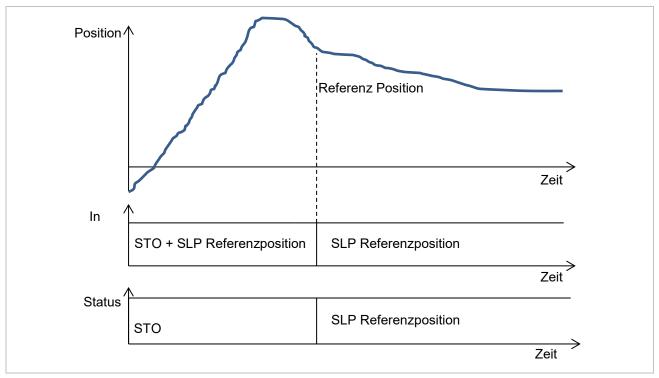


Abbildung 59: SLP Referenz Position

11.9.1 Aktivierung der Funktion SLP Referenz Position

- 1. Damit die Sicherheitsfunktion "Sicher begrenzte Position (SLP)" ausgeführt werden kann, muss vorher eine Referenzposition gesetzt werden. Dabei ist folgendes Verhalten zu beachten.
 - a. Die Referenzposition kann nur gesetzt werden, wenn keine höher priorisierte Sicherheitsfunktion aktiv ist, => 11.1. Es kann keine Referenzposition gesetzt werden, wenn STO über die Eingänge aktiviert ist.
 - b. Die Referenzposition kann nur einmal gesetzt werden.
 - c. Die Referenzposition wird genau dann gesetzt, wenn keine Spannung an den konfigurierten Eingängen anliegt oder die Anforderung über ein sicheres Bussystem gegeben wurde.
- 2. Wenn die Referenzposition gesetzt wurde, wird im Status des Sicherheitsmoduls das Bit SLP Set Reference Position (=> <u>11.2</u>) dauerhaft gesetzt.
- 3. Wenn ein Ausgang für die Funktion SLP: Referenzposition konfiguriert wurde, so wird dieser Ausgang nach dem Setzen der Referenzposition dauerhaft geschaltet.

Ist die SLP Referenzposition gesetzt, wird dies im Parameter SLP Referenzposition gesetzt Status im Statusbit 12 angezeigt.

11.9.2 Konfigurationsparameter SLP Referenz Position

Parameter	Wert	Einheit
SLP: Referenz Position		
Absolute Referenzposition	0	Ps

Abbildung 60: Konfigurationsparameter der Funktion SLP Referenz Position

Parametrierung

• Absolute Referenzposition:

Dieses ist die Referenzposition, von welcher die maximale und minimale Antriebsposition bestimmt wird. Bei der Verschaltung muss ein Taster für SLP Referenzposition vorgehalten werden und ein weiterer für SLP. Die Sicherheitsfunktion SLP kann nur dann ausgeführt werden, wenn vorher per Taster die Referenzposition eingestellt wurde.

11.10 Funktionsbeschreibung Sicher begrenzte Position (SLP)

- 1. Die Sicherheitsfunktion SLP stellt sicher, dass die Antriebswelle die parametrierten, absoluten Lagebegrenzungen nicht überschreitet.
- 2. Mit den Parametern "max. Positionsgrenze" und "min. Positionsgrenze" wird der maximale, begrenzte Bewegungsbereich des Antriebs festgelegt.
- 3. Die Erfassung der Referenzposition erfolgt z. B. über einen Positionsschalter, der einen sicheren Eingang des Sicherheitsmoduls belegt. Während der Erfassung des Positionsschalters durch den Eingang des Sicherheitsmoduls wird der in der Parametrierung hinterlegte absolute Wert der Referenzposition als aktuelle Absolutposition übernommen. Die Positionsgrenzen werden anhand der Geberinkremente zweikanalig überwacht.

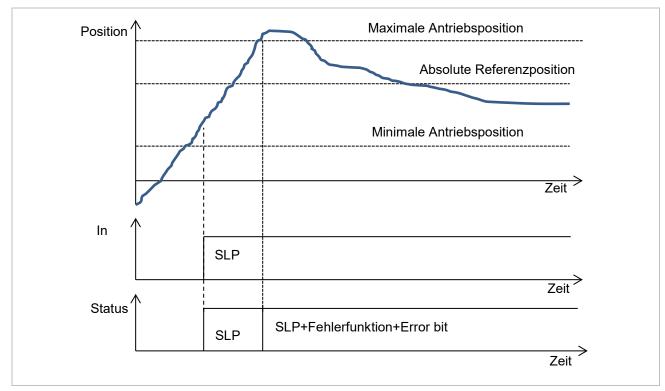


Abbildung 61: Sicher begrenzte Position (Safely-limited position - SLP)

11.10.1 Funktionsbeschreibung Safe Emergency Limits (SEL)

Zusätzlich zu SLP kann die Sicherheitsfunktion SEL (Safe Emergency Limits) aktiviert werden. Sobald die SEL Differenzposition auf einen Wert größer 0 eingestellt ist, ist SEL aktiviert.

Ab der Differenzposition darf die Geschwindigkeit das eingestellte SEL Limit für die Geschwindigkeit nicht mehr übersteigen. Dabei nimmt die zulässige Geschwindigkeit mit Annäherung an die SLP maximale- oder minimale Antriebsposition quadratisch ab. Hier gilt die Formel:

$$Geschwindigkeits limit = SEL\ Limit * \sqrt{\frac{Positions differenz}{SEL\ Differenz position}})$$

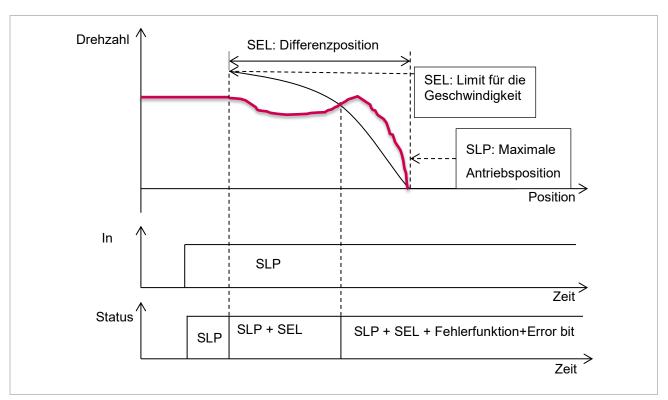


Abbildung 62: Safe emergency limits (SEL)

11.10.2 Aktivierung der Sicherheitsfunktion SLP

Die Schaltung funktioniert zweikanalig. Dabei kann die Sicherheitsfunktion nur dann von der Steuerung im COMBIVERT verlassen werden, wenn beide Eingänge Spannung erhalten (Funktion1 oder Funktion2-Eingänge => 4). Wenn beide Eingänge nicht gesetzt sind, wird im Status folgendes angezeigt:

- SLP Status im Statusbit 12 angezeigt.
- SEL Status im Statusbit 13 angezeigt.

11.10.3 Konfigurationsparameter der Sicherheitsfunktion SLP

Parameter	Wert	Einheit
SLP: Sicher begrenzte Position [1]		
Maximale Antriebsposition	0	Ps
Minimale Antriebsposition	0	Ps
Fehlerfunktion	ST0	
SEL: Differenzposition	0	Ps
SEL: Limit für die Geschwindigkeit	0.000000	1/min

Abbildung 63: Konfigurationsparameter für die Sicherheitsfunktion SLP

Parametrierung

• Absolute Referenzposition:

Dieses ist die Referenzposition, von welcher die maximale und minimale Antriebsposition bestimmt wird. Bei der Verschaltung muss ein Taster für SLP Referenzposition vorgehalten werden und ein weiterer für SLP. Die Sicherheitsfunktion SLP kann nur dann ausgeführt werden, wenn vorher per Taster die Referenzposition eingestellt wurde.

• Maximale Antriebsposition:

Dieses ist die maximal mögliche Antriebsposition, welche der Motor nie überschreiten darf. Die Einstellung ist abhängig von der absoluten Referenzposition.

Minimale Antriebsposition:

Dieses ist die minimal mögliche Antriebsposition, welche der Motor nie unterschreiten darf. Die Einstellung ist abhängig von der absoluten Referenzposition.

Fehlerfunktion:

Bei Überschreitung der eingestellten, maximalen oder minimalen Antriebsposition wird diese Fehlerfunktion ausgeführt. Entweder STO oder SS1.

• SEL: Differenzposition:

Sobald die Differenzposition zu der maximalen oder minimalen Position erreicht ist, wird die Sicherheitsfunktion SEL aktiviert. Wenn diese Sicherheitsfunktion aktiviert ist, dann darf die Geschwindigkeit des Antriebs das eingestellte SEL Limit für die Geschwindigkeit nicht mehr überschreiten.

• SEL: Limit für die Geschwindigkeit:

Wenn die Sicherheitsfunktion SEL aktiviert ist, dann darf die Geschwindigkeit des Antriebs nicht mehr über das Limit erhöht werden. Dieses ist eine Rampe bis zu SLP maximale Antriebsposition.

11.10.4 Fehlerreaktionszeiten SLP- Funktion

Technische Daten der SLP-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms

11.11 Funktionsbeschreibung Sicher begrenztes Schrittmaß (SLI)

Die Sicherheitsfunktion verhindert, dass die Antriebswelle die festgelegte Begrenzung eines Lageschrittmaßes überschreitet. Die Aktivierung eines mit der Funktion SLI konfigurierten Eingangs des Sicherheitsmoduls bewirkt zunächst den Stillstand des Antriebes in der Funktion SOS.

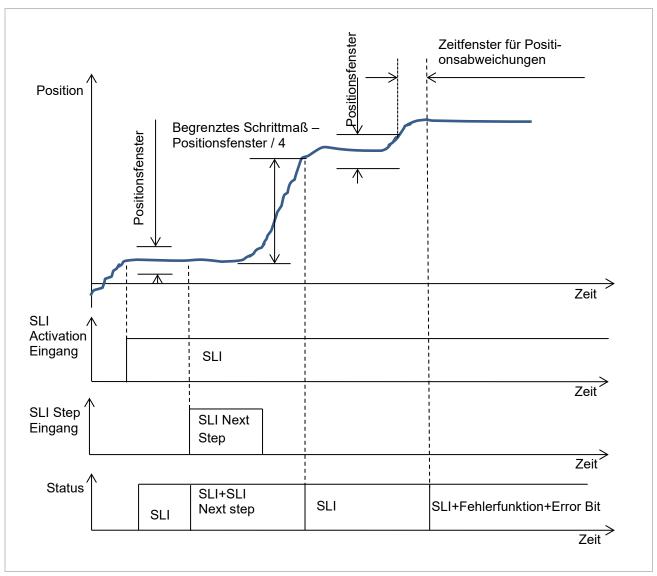


Abbildung 64: Sicher begrenztes Schrittmaß (Safely-Limited Increment – SLI)

Beim Verlassen der Positionsfenster wird eine Fehlerfunktion aufgerufen, durch die entweder die Funktion STO oder die Funktion SS1 ausgelöst wird.

SLI Next Step kann nur verwendet werden, wenn SLI zuvor aktiviert wurde.

11.11.1 Aktivierung der Sicherheitsfunktion SLI

Die Schaltung funktioniert zweikanalig. Dabei kann die Sicherheitsfunktion nur dann von der Steuerung im COMBIVERT verlassen werden, wenn beide Hardwareeingänge Spannung erhalten oder wenn ein entsprechender Statuswechsel über ein sicheres Bussystem empfangen wurde. Der SLI Status wird im Status folgendermaßen angezeigt:

- SLI Status im Statusbit 14 angezeigt.
- SLI Next Step Aktivierung Status im Statusbit 15 angezeigt.

11.11.2 Konfiguration der SLI-Funktion

Parameter	Wert	Einheit
SLI: Sicher begrenztes Schrittmaß [1]		
Begrenztes Schrittmaß	0	Ps
Minimale Verweildauer im Positionsfenster	0.000000	S
Fehlerfunktion	ST0	
Positionsfenster	0	Ps
Zeitfenster für Positionsabweichung	0.000000	S

Abbildung 65: Konfigurationsparameter für die Sicherheitsfunktion SLI

Parametrierung

Begrenztes Schrittmaß:

Sobald der nächste Schritt aktiviert wurde, wartet das Sicherheitsmodul bis der Schritt ausgeführt wurde. Dieses ist dann der Fall, wenn die neue Position das begrenzte Schrittmaß - (Positionsfenster / 4) erreicht hat bei positiver Drehrichtung. Bei negativer Drehrichtung wird die nächste Position erreicht, sobald das begrenzte (-Schrittmaß) + (Positionsfenster / 4) erreicht ist.

• Minimale Verweildauer in SOS:

Dieses ist die minimale Verweildauer in der Sicherheitsfunktion SOS nachdem ein Schritt durchgeführt wurde.

• Fehlerfunktion:

Entweder wird im Fehlerfall STO oder SS1 ausgeführt.

Positionsfenster:

Das Positionsfenster, in welchem sich die Position bewegen darf, wenn kein Schritt ausgeführt wird.

• Zeitfenster für Positionsabweichung:

Kurzzeitig darf die Position von dem Positionsfenster abweichen. Wenn die Positionsabweichung länger als dieses Zeitfenster dauert, dann wird die Fehlerfunktion ausgeführt. Der Zähler wird inkrementiert, wenn sich die Drehzahl außerhalb der Geschwindigkeitsgrenze befindet. Wenn sich die Geschwindigkeit wieder innerhalb der Geschwindigkeitsgrenze befindet, wird der Zähler dekrementiert.

11.11.3 Fehlerreaktionszeiten SLI- Funktion

Technische Daten der SLI-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms

11.12 Funktionsbeschreibung Sichere Bewegungsrichtung (SDI)

Die Sicherheitsfunktion SDI stellt sicher, dass die Antriebswelle die durch den Eingang angewählte Drehrichtung einhält.

Wird die festgelegte Drehrichtung des Antriebes nicht eingehalten, wird eine Fehlerfunktion aufgerufen, durch die entweder die Funktion STO oder die Funktion SS1 ausgelöst wird.

11.12.1 Aktivierung der Sicherheitsfunktion SDI

Die Schaltung funktioniert zweikanalig. Dabei kann die Sicherheitsfunktion nur dann von der Steuerung im COMBIVERT verlassen werden, wenn beide Hardware Eingänge Spannung erhalten oder wenn ein entsprechender Statuswechsel über ein sicheres Bussystem empfangen wurde. Der SDI Status wird im Status folgendermaßen angezeigt:

- SDI Vorwärts wird im Status im Statusbit 6 angezeigt.
 - o Positive Drehzahlen führen nicht zum Auslösen der Sicherheitsfunktion.
- SDI Rückwärts wird im Status im Statusbit 7 angezeigt
 - Negative Drehzahlen führen nicht zum Auslösen der Sicherheitsfunktion.

11.12.2 Konfiguration der SDI Funktion

Parameter	Wert	Einheit	
SDI: Sichere Bewegungsrichtung			
Fehlerfunktion	ST0		
Positionsfenster bei Motorstillstand	0	Ps	
Zeitfenster der Drehrichtung	0.000000	S	

Abbildung 66: Konfigurationsparameter für die Sicherheitsfunktion SDI

Parametrierung

Fehlerfunktion:

Die Fehlerfunktion wird dann ausgeführt, wenn die falsche Drehrichtung detektiert wurde. Entweder kann STO oder SS1 eingestellt werden.

• Positionsfenster bei Motorstillstand:

Im Stillstand kann die Position geringfügig variieren. Dadurch kann eine falsche Drehrichtung detektiert werden. Dieser Parameter erlaubt das Einstellen einer Positionsdifferenz bei Motorstillstand.

Zeitfenster der Drehrichtung:

Hier kann eine Zeitspanne eingestellt werden, in welcher der Motor von der sicheren Drehrichtung abweichen darf.

11.12.3 Fehlerreaktionszeiten SDI- Funktion

Technische Daten der SDI-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms

11.13 Funktionsbeschreibung Sichere Geschwindigkeitsüberwachung (SSM)

Die Sicherheitsfunktion liefert ein sicheres Ausgangssignal, wenn die Drehzahl einen definierten Wert nicht überschreitet. Wird der Wert der parametrierten Drehzahl zuzüglich der Hysterese überschritten, wird der sichere Ausgang abgeschaltet. Erst bei Unterschreitung der parametrierten Drehzahl zuzüglich der Hysterese wird der sichere Ausgang gesetzt.

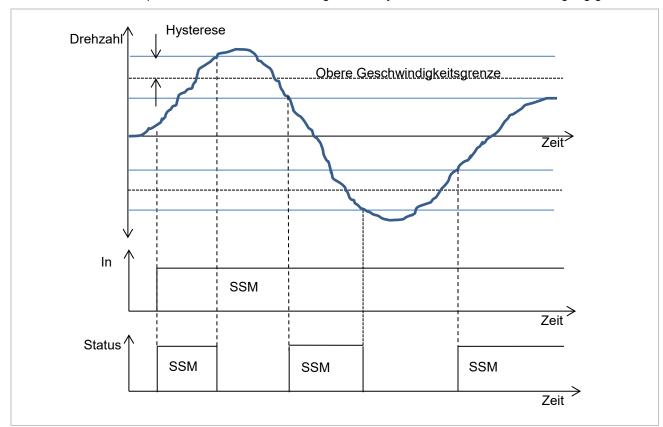


Abbildung 67: Sichere Geschwindigkeitsüberwachung (Safe Speed Monitor - SSM)

11.13.1 Aktivierung der Sicherheitsfunktion SSM

Die Schaltung funktioniert zweikanalig. Dabei kann die Sicherheitsfunktion nur dann von der Steuerung im COMBIVERT verlassen werden, wenn beide Hardware Eingänge Spannung erhalten oder wenn ein entsprechender Statuswechsel über ein sicheres Bussystem empfangen wurde. Der SSM Status wird im Statusbit 16 angezeigt.

11.13.2 Konfiguration der SSM- Funktion

Parameter	Wert	Einheit	
SSM: Sichere Geschwindigkeitsüberwachung [1]			
Obere Geschwindigkeitsgrenze	60000.000000	1/min	
Untere Geschwindigkeitsgrenze	-60000.000000	1/min	
Hysterese	0.000000	1/min	
Überwachung immer aktiv	aus		

Abbildung 68: Konfigurationsparameter für die Sicherheitsfunktion SSM

Parametrierung

• Obere Geschwindigkeitsgrenze:

Oberer Drehzahlpegel ab welchem der SSM Status gesetzt werden soll.

• Untere Geschwindigkeitsgrenze:

Unterer Drehzahlpegel ab welchem der SSM Status gesetzt werden soll.

Hysterese:

Bei Überschreitung der Hysterese + Drehzahlpegel wird der SSM Status zurückgesetzt. Wenn die Drehzahlgrenze – Hysterese unterschritten wird, wird der SSM Status wieder gesetzt.

• Überwachung immer aktiv:

Auch ohne die Konfiguration eines Eingangs für die Funktion SSM kann der Drehzahlpegel überwacht werden.

11.13.3 Fehlerreaktionszeiten SSM- Funktion

Technische Daten der SSM-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms

11.14 Funktionsbeschreibung Sichere maximale Geschwindigkeit (SMS)

Durch die Sicherheitsfunktion SMS wird sichergestellt, dass der Antrieb die obere Geschwindigkeitsgrenze nicht überschreitet und die untere Geschwindigkeitsgrenze nicht unterschreitet.

Störungen werden über einen weiteren Parameter ausgeblendet, der eine maximal, tolerierbare Zeit für kurzzeitige Abweichungen vom Toleranzfenster definiert.

Im Fehlerfall wird eine einstellbare Fehlerfunktion ausgelöst.

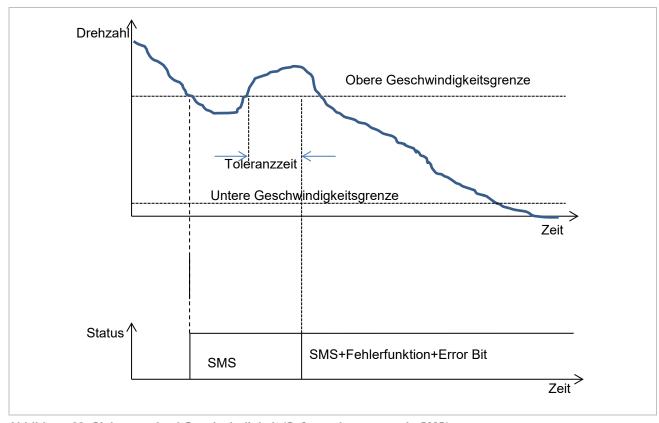


Abbildung 69: Sicher maximal Geschwindigkeit (Safe maximum speed - SMS)

11.14.1 Aktivierung der Sicherheitsfunktion SMS

SMS ist immer aktiviert. Wenn die Geschwindigkeitsgrenzen so gesetzt werden, dass diese der maximal zulässigen Geschwindigkeit des Sicherheitsmoduls entsprechen, so ist SMS faktisch ausgeschaltet. Der SMS Status wird in Parameter SMS Status im Statusbit 17 angezeigt.

11.14.2 Konfigurationsparameter der Sicherheitsfunktion SMS

Parameter	Wert	Einheit
SMS: Sichere maximale Geschwindigkeit [1]		
Obere Geschwindigkeitsgrenze	60000.000000	1/min
Untere Geschwindigkeitsgrenze	-60000.000000	1/min
Toleranzzeit	0.000000	S
Fehlerfunktion	ST0	

Abbildung 70: Konfigurationsparameter für die Sicherheitsfunktion SMS

Parametrierung

• Obere Geschwindigkeitsgrenze:

Die maximale erlaubte Drehzahl.

• Untere Geschwindigkeitsgrenze:

Die minimal erlaubte Drehzahl.

• Toleranzzeit:

Zeit, in welcher die Schwelle für die maximale oder minimale Drehzahl überschritten werden darf. Der Zähler wird inkrementiert, wenn sich die Drehzahl außerhalb der Geschwindigkeitsgrenze befindet. Wenn sich die Geschwindigkeit wieder innerhalb der Geschwindigkeitsgrenze befindet, wird der Zähler dekrementiert.

• Fehlerfunktion:

Bei Überschreitung der eingestellten maximalen Drehzahl um die Toleranzzeit wird diese Fehlerfunktion ausgeführt. Entweder STO oder SS1.

11.14.3 Fehlerreaktionszeiten SMS- Funktion

Technische Dat	en der SMS-Funktion	
Maximale Ausso	chaltverzögerung	< 2 ms

11.15 Funktionsbeschreibung Sicher begrenzte Beschleunigung (SLA)

Durch die Sicherheitsfunktion SLA wird sichergestellt, dass der Antrieb eine maximale Beschleunigung nicht überschreitet und eine untere Beschleunigungsgrenze nicht unterschreitet. Dieses gilt sowohl in die positive als auch die negative Drehrichtung.

Im Fehlerfall wird eine einstellbare Fehlfunktion ausgeführt.

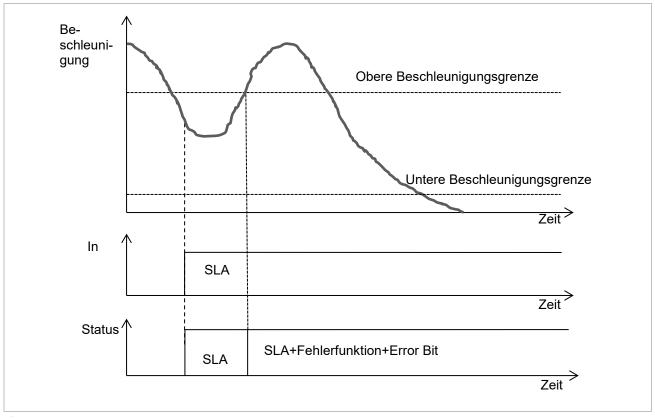


Abbildung 71: Sichere maximale Beschleunigung (Safe maximum acceleration - SLA)

11.15.1 Beschleunigungsgrenzen

Die oberen und unteren Beschleunigungsgrenzen haben eine Abhängigkeit zur Drehzahlabtastzeit und Drehzahl PT1-Zeit. Die in Kapitel 10.5 beschriebenen Parameter gelten auch für die SLA Funktion.

Die SLA Sicherheitsfunktion überprüft die Beschleunigung in einem 250 µs Raster. Hierbei gilt folgende Formel:

Limit / 4000 * 60 > V2 - V1.

V2-V1 werden vom Sicherheitsmodul in einem 250 µs Raster in der Einheit 1/min berechnet.

Beispiel:

Bei einem oberen Beschleunigungslimit von 2000 1/s² darf die Differenzgeschwindigkeit 30 1/min je 250 µs Raster nicht übersteigen. Berechnung: (Limit / 4000) * 60 > V2 – V1.

Vorgehen bei Auslösung der Fehlerfunktion:

Schwankungen der Geschwindigkeit sind bei SLA sehr viel problembehafteter als bei anderen Sicherheitsfunktionen, da immer die Differenz der Drehzahl zwischen zwei Abtastschritten (250us) untersucht wird. Eine hohe PT1 Filterzeit kann das Verhalten verbessern (z.B. 100ms). Aber Achtung, eine hohe PT1 Filterzeit wirkt sich nachteilig auf das Verhalten der

anderen drehzahlbehafteten Sicherheitsfunktionen aus. Diese lösen später aus, bzw. erkennen sehr kurzzeitige Überdrehzahlen nicht.

Zur Erkennung der Beschleunigung vom Sicherheitsmodul kann das Log ausgewertet werden.

Position	Speed	Time slots per 62.5 µs	Details
261856	253.5122 1/min	13647	66179: STO + Brake closed + Fail safe + SLA + SMS
-2147483648	252.7471 1/min	13643	513: STO + Brake open + SLA + SMS

Abbildung 72 Log Einträge bei der Sicherheitsfunktion SLA

Sobald eine Beschleunigung oberhalb der eingestellten Grenzen erkannt wird, werden 2 Logeinträge generiert. Der oberste Logeintrag zeigt die Auslösung von SLA mit dem Fail Safe Bit und der nächste Logeintrag 250us bevor der Fehler erkannt wurde.

Hieraus lässt sich die Beschleunigung errechnen mit der Formel:

(Speed 1 - Speed 2) / 60s / 250us = Beschleunigung

In diesem Beispiel bedeutet dass:

 $(253.5122 \text{ 1/min} - 252.7471 \text{ 1/min}) /60s /0.00025s = 51 \text{ 1/s}^2$. Die eingestellte obere Beschleunigungsgrenze betrug 50 1/s².

Die Position zum Zeitpunkt Speed2 wird nicht aufgezeichnet. Deshalb wird diese immer mit -2147483648 angegeben.

11.15.2 Aktivierung der Sicherheitsfunktion SLA

Die Schaltung funktioniert zweikanalig. Dabei kann die Sicherheitsfunktion nur dann von der Steuerung im COMBIVERT verlassen werden, wenn beide Hardwareeingänge Spannung erhalten oder wenn ein entsprechender Statuswechsel über ein sicheres Bussystem empfangen wurde. Der SLA Status wird im Statusbit 10 angezeigt.

11.15.3 Konfigurationsparameter der Sicherheitsfunktion SLA

Parameter	Wert	Einheit	
SLA: Sicher begrenzte Beschleunigung [1]			
Obere Beschleunigungsgrenze	0.000000	1/s²	
Untere Beschleunigungsgrenze	0.000000	1/s²	
Fehlerfunktion	ST0		

Abbildung 73: Konfigurationsparameter für die Sicherheitsfunktion SLA

Parametrierung

• Obere Beschleunigungsgrenze:
Die maximale erlaubte Beschleunigung.

Untere Beschleunigungsgrenze Die minimale erlaubte Beschleunigung.

Fehlerfunktion:

Bei Überschreitung der eingestellten oberen Beschleunigungsgrenze oder Unterschreiten der unteren Beschleunigungsgrenze wird diese Fehlerfunktion ausgeführt. Entweder STO oder SS1.

Funktionsbeschreibung Sicher begrenzte Beschleunigung (SLA)

11.15.4 Fehlerreaktionszeiten SLA- Funktion

Technische Daten der SLA-Funktion	
Maximale Einschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms
Maximale Ausschaltverzögerung (+ Filterzeit für den Sicherheitseingang + Pulslänge für die Eingangsanalyse)	< 2 ms

12 Safety over EtherCAT® (FSoE)

12.1 Einstellen der Feldbusadresse

Neben der Sicherheitsmoduladresse gibt es noch die Feldbusadresse. Diese kann auf der Statusseite von COMBIVIS eingestellt werden.

Die Feldbusadresse sollte immer vor dem Download von Konfigurationsdaten eingestellt werden, da mit der Änderung der Feldbusadresse das Sicherheitsmodul in den Fehlerzustand wechselt, welcher erst wieder verlassen wird, wenn eine Konfiguration mit derselben Feldbusadresse heruntergeladen wird.

12.2 FSoE Buseinstellungen

Parameter	Wert	Einheit		
Buseinstellungen				
Bustyp	Kein Bus			
Sicherheitsmodul Adresse	0			
Sichere Busdatenlänge	11			

Abbildung 74: Sicherheitsmodul Adresse in der Konfiguration

Parametrierung

Bustyp:

Dieses ist die Auswahl des sicheren Bustyps. Die Auswahlparameter sind "Kein Bus" oder "FSoE".

Kein Bus bedeutet, dass kein sicheres Bussystem verwendet wird und das Sicherheitsmodul einzig über die Eingänge gesteuert wird.

FSoE bedeuetet, dass das Bussystem Safety over Ethercat® verwendet wird.

• Sicherheitsmoduladresse:

Die Sicherheitsmoduladresse muss mit der Feldbusadresse übereinstimmen, welche im Sicherheitsmodul gesetzt ist. Standardmäßig ist diese Adresse auf den Wert 0 gesetzt.

Sichere Busdatenlänge:

Wenn ein sicheres Bussystem ausgewählt wurde, so kann hier die Länge der sicheren Daten eingestellt werden. Diese muss mit der Konfiguration in der sicheren Steuerung übereinstimmen. Im Falle von FSoE sind nur folgende Einstellungen zulässig: 6 Byte, 7 Byte, 11 Byte oder 15 Byte.

12.3 FSoE Funktionsbeschreibung und Parametrierung

Dafür wurde ein eigenes Dokument erstellt, welche die Funktionsweise von FSoE im Zusammenhang mit dem Sicherheitsmodul Typ 3 aufzeigt.

13 Beschaltungsvorschläge

13.1 Beispiel für eine Beschaltung von Taktausgängen mit Eingängen

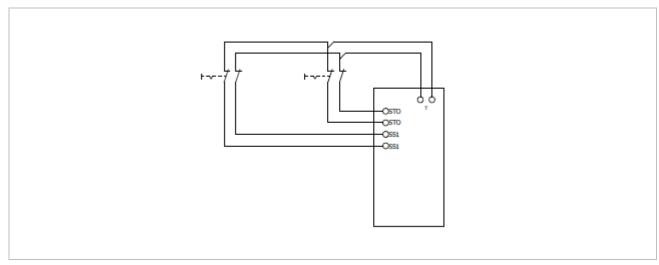


Abbildung 75: Taktausgänge mit Eingängen beschaltet

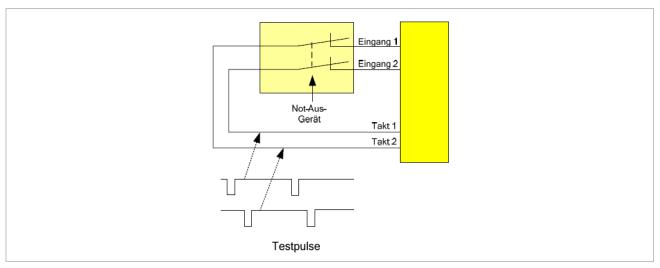


Abbildung 76: Testpulse der Taktausgänge

Abbildung 75 zeigt ein Beispiel für eine Beschaltung von den Taktausgängen mit dem STO und SS1 Eingang.

Zur Erkennung von gefährlichen, externen Leitungskurzschlüssen zwischen zwei zusammengehörigen Eingängen und zu Spannungsversorgungspotentialen werden mechanische Kontaktpaare über phasenversetzte Taktausgänge versorgt. Das Modul stellt zwei Taktsignale zur Verfügung.

ACHTUNG

Leitungskurzschlüsse vermeiden!

➤ Da externe Leitungskurzschlüsse zu Eingängen mit gleicher Phasenlage der Taktpulse nicht erkannt werden können, sind bei der Verdrahtung des Systems Vorkehrungen zur Vermeidung dieses Fehlers zu treffen.

13.1.1 Parametrierung der Taktausgänge und Eingänge

Die Parametrierung der Taktsignal Ein- und Ausgänge werden in Abbildung 77 und Abbildung 78 gezeigt.

Parameter	Wert	Einheit
Taktsignal Eingangskonfiguration	·	·
Testsignal-Periodendauer	7.000000	s
Testpulslänge	0.001000	s
Auswertung des Testsignals für die STO-Eingänge	ein	
Auswertung des Testsignals für die SBC-Eingänge	aus	
Auswertung des Testsignals für die Funktion1-Eingänge	ein	
Auswertung des Testsignals für die Funktion2-Eingänge	aus	

Abbildung 77: Konfiguration der Taktsignal Eingänge

Parameter	Wert	Einheit
Takt Ausgangskonfiguration		
Periodendauer der Taktausgänge	7.000000	s
Pulslänge der Taktausgänge	0.001000	s

Abbildung 78: Konfiguration der Takt Ausgänge

13.2 Beispiel für eine Ripple Kette

13.2.1 Geschlossene Ripple Kette mit 2 Sicherheitsmodulen Anlaufverhalten

Abbildung 79: Geschlossene Ripple Kette mit 2 Sicherheitsmodulen Anlaufverhalten

13.2.2 Geschlossene Ripple Kette mit 3 Sicherheitsmodulen

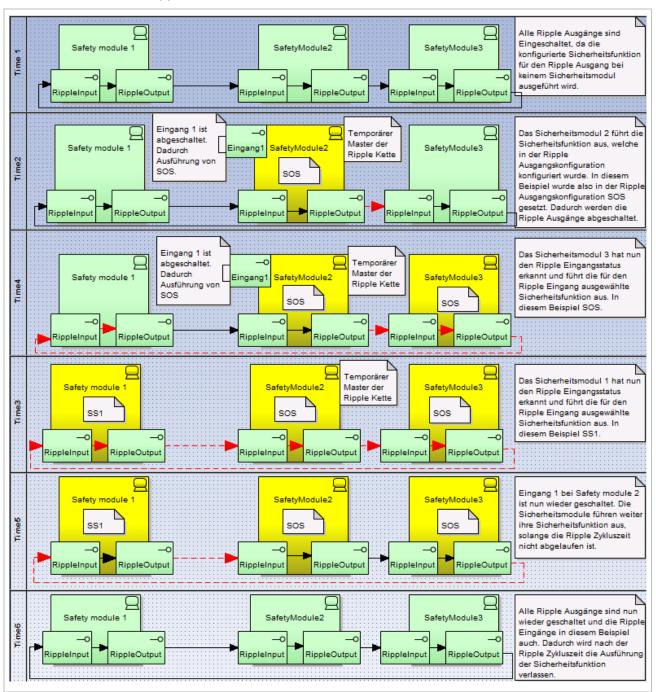


Abbildung 80: Ripple Kette mit 3 Sicherheitsmodulen

13.3 Schaltungsbeispiel mit STO, SS1 und SS2 und der Ripple Kette

Dieses ist ein Schaltungsbeispiel für eine Ripple Kette mit sechs COMBIVERT.

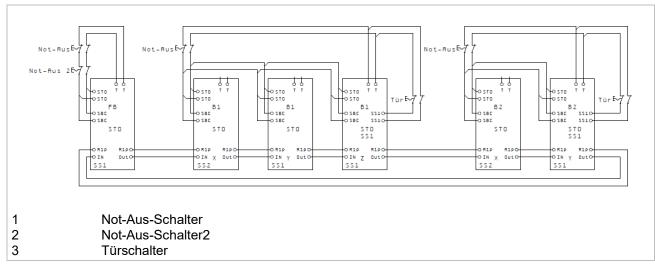


Abbildung 81: Schaltungsbeispiel mit Not-Aus, Tür, STO, SS1 und SS2

13.3.1 Parametrierung für COMBIVERT FB

Wie Abbildung 81 bei dem ersten COMBIVERT FB ersichtlich, sind die Ripple Eingänge als SS1 Sicherheitsfunktion zu konfigurieren. Die Fehlerzeit für den Eingang wird auf dem Standardwert gelassen, siehe Abbildung 82.

- Die Ripple Ausgangskonfiguration wird wie in Abbildung 83 eingestellt. Dabei gilt:
 - Ripple Zykluszeit pro COMBIVERT sind 3,2ms (siehe Kapitel <u>9.2</u>) (hier wird 4ms genommen) * 6 COMBIVERT = 24ms. Die Ripple Ausgangskonfiguration wird auf STO gesetzt und dieser COMBIVERT ist nicht der Ripple Master. Achtung, hier muss noch die Filterzeit für die Ripple Eingänge hinzuaddiert werden.
- Weiterhin muss die Taktsignal Eingangskonfiguration konfiguriert werden, siehe Abbildung 84. Hier muss die Auswertung des Taktsignals für den STO und SBC Eingang eingeschaltet werden.
- Zusätzlich zu diesen beiden Einstellungen muss auch noch der Geber konfiguriert und die SS1 Sicherheitsfunktion parametriert werden.

Parameter	Wert	Einheit
Ripple Eingangskonfiguration		
Belegung der Ripple-Eingänge	SS1	
Toleranzzeit der Ripple-Eingänge	0.010000	s

Abbildung 82: Ripple Eingangskonfiguration für den COMBIVERT FB

Parameter	Wert	Einheit
Ripple Ausgangskonfiguration		
Ripple Ausgangskonfiguration	1	
Ripple Master	aus	
Zykluszeit	0.024000	s

Abbildung 83: Ripple Ausgangskonfiguration für den COMBIVERT FB

Parameter	Wert	Einheit
Taktsignal Eingangskonfiguration		
Testsignal-Periodendauer	10.000000	s
Testpulslänge	0.001000	s
Auswertung des Testsignals für die STO-Eingänge	ein	
Auswertung des Testsignals für die SBC-Eingänge	ein	
Auswertung des Testsignals für die Funktion1-Eingänge	aus	
Auswertung des Testsignals für die Funktion2-Eingänge	aus	

Abbildung 84: Taktsignal Eingangskonfiguration für den COMBIVERT FB

13.3.2 Parametrierung für den COMBIVERT B1X

- Die Ripple Eingangskonfiguration wird auf die Sicherheitsfunktion SS2 gesetzt und die Fehlerzeit für den Eingang wird auf dem Standardwert gelassen, => Abbildung 85.
- Die Ripple Ausgangskonfiguration entspricht der vom COMBIVERT FB, siehe Abbildung 73.
- Die Taktsignal Eingangskonfiguration wird auf die Periodendauer von 5 s gestellt, da diese Periodendauer dann zum COMBIVERT FB unterschiedlich ist und Verdrahtungsfehler vom Sicherheitsmodul erkannt werden können, => Abbildung 86. Die Auswertung des Taktsignals wird für den STO und SBC Eingang eingeschaltet.
- Zusätzlich zu diesen beiden Einstellungen muss auch noch der Geber konfiguriert und die SS2 Sicherheitsfunktion parametriert werden.

Parameter	Wert	Einheit
Ripple Eingangskonfiguration		
Belegung der Ripple-Eingänge	SS2	
Toleranzzeit der Ripple-Eingänge	0.010000	S

Abbildung 85: Ripple Eingangskonfiguration für den COMBIVERT B1X

Parameter	Wert	Einheit
Taktsignal Eingangskonfiguration		
Testsignal-Periodendauer	5.000000	s
Testpulslänge	0.001000	s
Auswertung des Testsignals für die STO-Eingänge	ein	
Auswertung des Testsignals für die SBC-Eingänge	ein	
Auswertung des Testsignals für die Funktion1-Eingänge	aus	
Auswertung des Testsignals für die Funktion2-Eingänge	aus	

Abbildung 86: Taktsignal Eingangskonfiguration für den COMBIVERT B1X

13.3.3 Parametrierung für den COMBIVERT B1Y

- Wie Abbildung 81 bei dem dritten COMBIVERT B1Y ersichtlich, sind die Ripple Eingänge als SS1 Sicherheitsfunktion zu konfigurieren. Die Fehlerzeit für den Eingang wird auf dem Standardwert gelassen, => Abbildung 82.
 - Die Ripple Ausgangskonfiguration entspricht der vom COMBIVERT FB, => Abbildung 83
 - Die Taktsignal Eingangskonfiguration entspricht der vom COMBIVERT B1X, => Abbildung 86.
- Zusätzlich zu diesen beiden Einstellungen muss auch noch der Geber konfiguriert und die SS1 Sicherheitsfunktion parametriert werden.

13.3.4 Parametrierung für den COMBIVERT B1Z

- Wie Abbildung 81 bei dem vierten COMBIVERT B1Z ersichtlich, sind die Ripple Eingänge als SS1 Sicherheitsfunktion zu konfigurieren. Die Fehlerzeit für den Eingang wird auf dem Standardwert gelassen, => Abbildung 82.
- Für die Ripple Ausgangskonfiguration gilt: Sowohl bei STO als auch bei SS1 muss der Ripple Ausgang zurückgesetzt werden. Für die Ripple Ausgangskonfiguration wird der Wert 5 (STO Wert 1 + SS1 Wert 4) eingestellt, => Abbildung 87.
- Die Taktsignal Eingangskonfiguration entspricht der vom COMBIVERT B1X, mit einer Ausnahme:
 - Für Eingang1 wird auch die Auswertung des Taktsignals eingeschaltet, => Abbildung 88.
- Die Taktausgangskonfiguration wird auf die Periodendauer 5s und die Pulslänge 0,001s eingestellt. Dieses stimmt dann mit den anderen 2 COMBIVERT überein, für welche die Auswertung des Taktsignals eingestellt wurde. Parametrierung => Abbildung 89.
- Die Eingang1 Eingangskonfiguration wird auf die Konfiguration SS1 gesetzt und die Fehlerzeit auf dem Standardwert gelassen. Der Eingangsstatus ist Äquivalent, da beide Schalter gleich geschaltet werden. Parametrierung => Abbildung 90.
- Zusätzlich zu diesen beiden Einstellungen muss auch noch der Geber konfiguriert und die SS1 Sicherheitsfunktion parametriert werden.

Parameter	Wert	Einheit
Ripple Ausgangskonfiguration		
Ripple Ausgangskonfiguration	5	
Ripple Master	aus	
Zykluszeit	0.024000	S

Abbildung 87: Ripple Ausgangskonfiguration für den COMBIVERT B1Z

Parameter	Wert	Einheit
Taktsignal Eingangskonfiguration		
Testsignal-Periodendauer	5.000000	S
Testpulslänge	0.001000	S
Auswertung des Testsignals für die STO-Eingänge	ein	
Auswertung des Testsignals für die SBC-Eingänge	ein	
Auswertung des Testsignals für die Funktion1-Eingänge	ein	
Auswertung des Testsignals für die Funktion2-Eingänge	aus	

Abbildung 88: Taktsignal Eingangskonfiguration für den COMBIVERT B1Z

Parameter	Wert	Einheit
Takt Ausgangskonfiguration		
Periodendauer der Taktausgänge	5.000000	S
Pulslänge der Taktausgänge	0.001000	S

Abbildung 89: Taktausgangskonfiguration für den COMBIVERT B1Z

Parameter	Wert	Einheit
Funktion1 Eingangskonfiguration		
Belegung der Funktion1-Eingänge	SS1	
Toleranzzeit der Funktion1-Eingänge	0.010000	s
Status der Funktion1-Eingänge	äquivalent	

Abbildung 90: Eingang1 Eingangskonfiguration für den COMBIVERT B1Z

13.3.5 Parametrierung für den COMBIVERT B2X

- Die Ripple Eingangskonfiguration wird auf die Sicherheitsfunktion SS2 gesetzt und die Fehlerzeit für den Eingang wird auf dem Standardwert gelassen, => Abbildung 85.
- Die Ripple Ausgangskonfiguration entspricht der vom COMBIVERT FB, => Abbildung
 83
- Die Taktsignal Eingangskonfiguration wird auf die Periodendauer von 7s gestellt, da diese Periodendauer dann zum COMBIVERT FB und B1 unterschiedlich ist und Verdrahtungsfehler vom Sicherheitsmodul erkannt werden können, => Abbildung 91. Die Auswertung des Taktsignals wird für den STO und SBC Eingang eingeschaltet.
- Zusätzlich zu diesen beiden Einstellungen muss auch noch der Geber konfiguriert und die SS2 Sicherheitsfunktion parametriert werden.

Parameter	Wert	Einheit
Taktsignal Eingangskonfiguration		
Testsignal-Periodendauer	7.000000	S
Testpulslänge	0.001000	s
Auswertung des Testsignals für die STO-Eingänge	ein	
Auswertung des Testsignals für die SBC-Eingänge	ein	
Auswertung des Testsignals für die Funktion1-Eingänge	aus	
Auswertung des Testsignals für die Funktion2-Eingänge	aus	

Abbildung 91: Taktsignal Eingangskonfiguration für den COMBIVERT B2X

13.3.6 Parametrierung für den COMBIVERT B2Y

- Wie in Abbildung 81 bei dem sechsten COMBIVERT B2Y ersichtlich, sind die Ripple Eingänge als SS1 Sicherheitsfunktion zu konfigurieren. Die Fehlerzeit für den Eingang wird auf dem Standardwert gelassen, => Abbildung 82.
- Für die Ripple Ausgangskonfiguration gilt: Sowohl bei STO als auch bei SS1 muss der Ripple Ausgang zurückgesetzt werden. Für die Ripple Ausgangskonfiguration wird der Wert 5 (STO Wert 1 + SS1 Wert 4) eingestellt, => Abbildung 85.
- Die Taktsignal Eingangskonfiguration entspricht der vom COMBIVERT B1X, mit einer Ausnahme: Für Eingang1 wird auch die Auswertung des Taktsignals eingeschaltet, => Abbildung 92.
- Die Taktausgangskonfiguration wird auf die Periodendauer 7s und die Pulslänge 0,001s eingestellt. Dieses stimmt dann mit dem COMBIVERT B2X überein, für welche die Auswertung des Taktsignals eingestellt wurde. Parametrierung => Abbildung 89.
- Die Eingang1 Eingangskonfiguration wird auf die Konfiguration SS1 gesetzt und die Fehlerzeit auf dem Standardwert gelassen. Der Eingangsstatus ist Äquivalent, da beide Schalter gleich geschaltet werden. Parametrierung => Abbildung 94.
- Zusätzlich zu diesen beiden Einstellungen muss auch noch der Geber konfiguriert und die SS1 Sicherheitsfunktion parametriert werden.

Schaltungsbeispiel mit STO, SS1 und SS2 und der Ripple Kette

Parameter	Wert	Einheit
Taktsignal Eingangskonfiguration		
Testsignal-Periodendauer	7.000000	s
Testpulslänge	0.001000	s
Auswertung des Testsignals für die STO-Eingänge	ein	
Auswertung des Testsignals für die SBC-Eingänge	ein	
Auswertung des Testsignals für die Funktion1-Eingänge	ein	
Auswertung des Testsignals für die Funktion2-Eingänge	aus	

Abbildung 92: Taktsignal Eingangskonfiguration für den COMBIVERT B2Y

Parameter	Wert	Einheit
Takt Ausgangskonfiguration		
Periodendauer der Taktausgänge	7.000000	s
Pulslänge der Taktausgänge	0.001000	s

Abbildung 93: Taktausgangskonfiguration für den COMBIVERT B2Y

Parameter	Wert	Einheit
Funktion1 Eingangskonfiguration		
Belegung der Funktion1-Eingänge	SS1	
Toleranzzeit der Funktion1-Eingänge	0.010000	s
Status der Funktion1-Eingänge	äquivalent	

Abbildung 94: Eingang1 Eingangskonfiguration für den COMBIVERT B2Y

14 Abnahmetests und Konfigurationsprüfung

Die DIN EN 61800-5-2 Kapitel 7.1 Punkt f) schreibt eine Konfigurationsprüfung der Sicherheitsfunktionen in Fällen vor, in denen die Integrität der Konfigurationsmittel einer Sicherheitsfunktion nicht gewährleistet werden kann.

COMBIVIS hat ein Konfigurationstool integriert, welches über eine Abnahme nach IEC 61800-5-2 verfügt und somit geeignet ist, die Konfiguration fehlerfrei anzuzeigen und auf das Sicherheitsmodul zu übertragen. Eine Abnahme der Konfiguration ist daher unnötig. Gleichwohl müssen die konfigurierten Sicherheitsfunktionen überprüft und dieses im Abnahmetest vermerkt werden.

14.1 Sinn des Abnahmetests

Der Abnahmetest dient dazu, die konfigurierte Sicherheitsfunktion hinsichtlich des Systemverhaltens zu validieren. Dazu werden gezielt die Grenzen der Sicherheitsfunktion verletzt und die Fehlerreaktion protokolliert. Wenn die Konfiguration verändert wird, dann muss ein erneuter Abnahmetest durchgeführt werden.

14.2 Prüfer

Es muss eine Person als Prüfer bestimmt werden, die aufgrund ihrer fachlichen Ausbildung und ihrer Kenntnis der konfigurierten Sicherheitsfunktionen die Prüfung durchführen kann.

14.3 Protokoll des Abnahmetests

Bei der Durchführung des Abnahmetests ist ein Protokoll zu erstellen.

ACHTUNG

Konfigurationsänderungen!

Wenn Konfigurationsparameter geändert werden, so muss die Prüfung wiederholt und das Ergebnis im Prüfprotokoll festgehalten werden

14.4 Durchführung des Abnahmetests und Umfang der Prüfung

- 1. Dokumentation der Anlage und der Sicherheitseinrichtungen
 - a. Beschreibung der Anlage einschließlich Übersichtsbild
 - Konfigurierte Sicherheitsfunktionen dokumentieren einschließlich Parameterversion und CRC.
- 2. Funktionalität der verwendeten Sicherheitsfunktionen überprüfen (Funktionsprüfung)
 - a. STO: Funktion "Sicher abgeschaltetes Moment" überprüfen.
 - b. SBC: Funktion "Sichere Bremsenansteuerung" überprüfen.
 - c. SS1: Funktion "Sicherer Stopp 1" überprüfen.
 - d. SS2: Funktion "Sicherer Stopp 2" überprüfen.
 - e. SOS: Funktion "Sicherer Betriebshalt" überprüfen.
 - f. SLS: Funktion "Sicher Begrenzte Geschwindigkeit" überprüfen.
 - g. SLP: Funktion "Sicher begrenzte Position" überprüfen.
 - h. SLI: Funktion "Sicher begrenztes Schrittmaß" überprüfen.
 - i. SDI: Funktion "Sichere Bewegungsrichtung" überprüfen.
 - j. SSM: Funktion "Sichere Geschwindigkeitsüberwachung" überprüfen.
 - k. SLA: Funktion "Sicher begrenzte Beschleunigung" überprüfen.
- 3. Ausfüllen des Prüfberichts und Festhalten der Prüfergebnisse

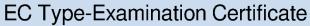
Durchführung des Abnahmetests und Umfang der Prüfung

- a. Dokumentieren der Funktionsprüfung.
- b. Festhalten der Prüfer einschließlich Unterschrift.
- c. Kontrolle der Eingestellten Benutzer im Sicherheitsmodul einschließlich der Rechte.
- d. Einfügen der Messprotokolle und weiterer Aufzeichnungen zum Prüfbericht.

15 Wartung und Modifikationen am Sicherheitsmodul

Reparaturen, Hardwareänderungen und Firmwareänderungen dürfen nur durch KEB erfolgen.

ACHTUNG


Manipulationen!

Durch einen Eingriff in das Gerät, z.B. Lötvorgänge, Austausch von Bauelementen, erlöschen die Sicherheitszulassung und die Gewährleistung seitens KEB.

Ein Austausch des Sicherheitsmoduls durch den Anwender ist nicht möglich. Wenden Sie sich dafür bitte an den Support von KEB.

16 Anhang zur Konformitätserklärung

Die Konformität wurde wie folgt bestätigt:

Reg.-Nr./No.: 01/205/5781.00/20

Sicherheitsmodule 2/3 für die Prüfgegenstand COMBIVERT Antriebsserie Safety Modules 2/3 for the COMBIVERT

drive series

Zertifikatsinhaber Certificate

KEB Automation KG Südstraße 38 32683 Barntrup Germany

Typbezeichnung

Details see attached "Revision List"

Prüfgrundlagen Codes and standards

IEC 61800-5-2:2016 IEC 61800-5-1:2016 IEC 61800-3:2017 IEC 61508 Parts 1-7:2010

EN ISO 13849-1:2015 EN 62061:2005 + AC:2010 + A1:2013 + A2:2015

IEC 61131-2:2017 (in extracts)

Bestimmungsgemäße Verwendung Intended application

Die Module erfüllen die Anforderungen der Prüfgrundlagen (Kat. 4 / PL e nach EN ISO 13849-1, SIL 3 / SILCL 3 nach IEC 61800-5-2 / IEC 61508 / EN 62061) und können in Anwendungen bis PL e nach EN ISO 13849-1 und SIL 3 nach EN 62061 / IEC 61508

Anwendunger loss Pt e hacr EN ISO 13849-1 und St. 3 hacr EN 92061 / IEC 61306 eingesetzt werden.

The modules compy with the requirements of the relevant standards (Cat. 4 / PL e acc. to EN ISO 13849-1, Sit. 3 / Sit.Ct. 3 acc. to IEC 61800-5-2 / IEC 61508 / EN 62061) and can be used in applications up to PL e acc. to EN ISO 13849-1 and Sit. 3 acc. to EN 62061 / IEC 61508.

Besondere Bedingungen Specific requirements

Die Hinweise in der zugehörigen Installations- und Betriebsanleitung sind zu beachten. The instructions of the associated Installation and Operating Manual shall be considered.

Es wird bestätigt, dass der Prüfgegenstand mit den Anforderungen nach Anhang I der Richtlinie 2006/42/EG über Maschinen

It is confirmed that the product under test complies with the requirements for machines defined in Annex I of the EC Directive

Gültig bis / Valid until 2025-05-28

Der Ausstellung dieses Zertifikates liegt eine Prüfung zugrunde, deren Ergebnisse im Bericht Nr. 968/FSP 2071.00/20 vom 28.05.2020 dokumentiert sind.

Dieses Zertifikat ist nur gültig für Erzeugnisse, die mit dem Prüfgegenstand übereinstimmen. The issue of this certificate is based upon an examination, whose results are documented in Report No. 968/FSP 2071.00/20 dated 2020-05-28.

This certificate is valid only for products which are identical with the product tested.

Köln, 2020-05-28

tified Bo Notified Body for Machinery, NB 0035

0035

Dipl.-Ing. Jelena Stenzel

www.fs-products.com www.tuv.com

Abbildung 95: Zertifikat Baumusterprüfung

10/222

17 Änderungshistorie

Revision:	Bemerkung:			
01	Vorserienversion			
01	Bilder durch Links ersetzt			
01	Änderungen in den Texten			
01	Firmware 1.1.3, Änderungen in den Texten; Umstellung auf Revision 02			
02	Sicherheitsmodul Typ 3 erste Version der Anleitung. Erstellung DokumentID 20148769			
03	Referenzierung Fw V3.0.0.0 Ergänzung FSoE Beschreibungen			
04	SS1 überarbeitet. Formel der PT1 Filterzeit vereinfacht.			
04	Kapitel 3.1 Gültigkeit Materialnummer angepasst. Kapitel 4.1 Anschlussklemme Beschreibung Schirm entfernt. Kapitel 11.11 SLI next step ohne SLI beschrieben. Kapitel 11.12.1 Beschreibung SDI konkretisiert.			
05	Serienversion der Anleitung Aufnahme der Baumusterprüfungsnummer Kapitel 3.3 Ergänzung SAR und SSR Kapitel 5.2.5 und 5.2.7 Hinweis zum Import aufgenommen.			
06	SICK SKM36S-HFA0-K02 Sinus / Cosinus-Geber als empfohlenen Geber aufgenommen			
07	Kapitel 3.3 SLR in SLS geändert Kapitel 8.3 bis 8.7 SLI Aktivierung und SLI Next Step korrigiert, Anwahl der Indizes über konfigurierbare Eingänge neu beschrieben. Kapitel 9.1 Hinweis auf Funktionstest der OSSD-Signale aufgenommen; Kapitel 11.2 Bit 8 und 9 getauscht Kapitel 11.5 SS1 Funktionen umbenannt Kapitel 11.15 Grafik geändert S.102 Redaktionelle Änderungen			
	01 01 01 01 02 03 04 04 04			

Belgien | KEB Automation KG Herenveld 2 9500 Geraardsbergen Belgien Tel: +32 544 37860 Fax: +32 544 37898 E-Mail: vb.belgien@keb.de Internet: www.keb.de

Brasilien | KEB SOUTH AMERICA - Regional Manager Rua Dr. Omar Pacheco Souza Riberio, 70 CEP 13569-430 Portal do Sol, São Carlos Brasilien Tel: +55 16 31161294 E-Mail: roberto.arias@keb.de

P.R. China KEB Power Transmission Technology (Shanghai) Co. Ltd. No. 435 QianPu Road Chedun Town Songjiang District 201611 Shanghai P.R. China
Tel: +86 21 37746688 Fax: +86 21 37746600
E-Mail: info@keb.cn Internet: www.keb.cn

Deutschland | Stammsitz

KEB Automation KG Südstraße 38 32683 Barntrup Deutschland Telefon +49 5263 401-0 Telefax +49 5263 401-116 Internet: www.keb.de E-Mail: info@keb.de

Deutschland | Getriebemotorenwerk

KEB Antriebstechnik GmbH
Wildbacher Straße 5 08289 Schneeberg Deutschland
Telefon +49 3772 67-0 Telefax +49 3772 67-281
Internet: www.keb-drive.de E-Mail: info@keb-drive.de

Frankreich | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel

94510 La Queue en Brie Frankreich

Tel: +33 149620101 Fax: +33 145767495

E-Mail: info@keb.fr Internet: www.keb.fr

Großbritannien | KEB (UK) Ltd.
5 Morris Close Park Farm Indusrial Estate
Wellingborough, Northants, NN8 6 XF Großbritannien
Tel: +44 1933 402220 Fax: +44 1933 400724
E-Mail: info@keb.co.uk Internet: www.keb.co.uk

Italien | KEB Italia S.r.I. Unipersonale
Via Newton, 2 20019 Settimo Milanese (Milano) Italien
Tel: +39 02 3353531 Fax: +39 02 33500790
E-Mail: info@keb.it Internet: www.keb.it

Japan | KEB Japan Ltd. 15 - 16, 2 - Chome, Takanawa Minato-ku Tokyo 108 - 0074 Japan Tel: +81 33 445-8515 Fax: +81 33 445-8215

E-Mail: info@keb.jp Internet: www.keb.jp

Österreich | KEB Antriebstechnik Austria GmbH Ritzstraße 8 4614 Marchtrenk Österreich Tel: +43 7243 53586-0 Fax: +43 7243 53586-21 E-Mail: info@keb.at Internet: www.keb.at

Russische Föderation | KEB RUS Ltd. Lesnaya str, house 30 Dzerzhinsky MO 140091 Moscow region Russische Föderation Tel: +7 495 6320217 Fax: +7 495 6320217 E-Mail: info@keb.ru Internet: www.keb.ru

Südkorea | KEB Automation KG Room 1709, 415 Missy 2000 725 Su Seo Dong Gangnam Gu 135- 757 Seoul Republik Korea Tel: +82 2 6253 6771 Fax: +82 2 6253 6770 E-Mail: vb.korea@keb.de

Spanien | KEB Automation KG c / Mitjer, Nave 8 - Pol. Ind. LA MASIA 08798 Sant Cugat Sesgarrigues (Barcelona) Spanien Tel: +34 93 8970268 Fax: +34 93 8992035 E-Mail: vb.espana@keb.de

USA | KEB America, Inc 5100 Valley Industrial Blvd. South Shakopee, MN 55379 USA Tel: +1 952 2241400 Fax: +1 952 2241499 E-Mail: info@kebamerica.com Internet: www.kebamerica.com

Automation mit Drive

www.keb.de

KEB Automation KG Südstsraße 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de