

COMBIVERT F5

GEBRAUCHSANLEITUNG | INSTALLATION ACTIVE INFEED CONVERTER

Originalanleitung
Dokument 20132138 DE 04

Vorwort

Die beschriebene Hard- und / oder Software sind Produkte der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

A GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

Weitere Symbole

- Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Hinweis auf weiterführende Dokumentation. www.keb.de/nc/de/suche

Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit der EU-Konformitätserklärung und dem CE-Zeichen auf dem Gerätetypenschild, dass es den grundlegenden Sicherheitsanforderungen entspricht.

Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden. Weitere Informationen befinden sich im Kapitel "Zertifizierung".

Gewährleistung und Haftung

Die Gewährleistung und Haftung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den allgemeinen Verkaufsbedingungen zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen. www.keb.de/de/agb

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über den bestimmungsgemäßen Gebrauch. Sie gelten jedoch nur als unverbindliche Hinweise und Änderungen sind insbesondere aufgrund von technischen Änderungen ausdrücklich vorbehalten. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter. Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der bestimmungsgemäßen Endverwendung des Produktes (Applikation) vom Kunden erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Dieses KEB-Produkt oder Teile davon können fremde Software, inkl. Freier und/oder Open Source Software enthalten. Sofern einschlägig, sind die Lizenzbestimmungen dieser Software in den Gebrauchsanleitungen enthalten. Die Gebrauchsanleitungen liegen Ihnen bereits vor, sind auf der Website von KEB zum Download frei verfügbar oder können bei dem jeweiligen KEB-Ansprechpartner gerne angefragt werden.

Andere Wort- und/oder Bildmarken sind Marken (™) oder eingetragene Marken (®) der jeweiligen Inhaber.

Inhaltsverzeichnis

	Vorwort	3
	Signalwörter und Auszeichnungen	3
	Weitere Symbole	3
	Gesetze und Richtlinien	4
	Gewährleistung und Haftung	4
	Unterstützung	4
	Urheberrecht	4
	Inhaltsverzeichnis	5
	Abbildungsverzeichnis	8
	Tabellenverzeichnis	9
	Glossar	10
	Normen für Antriebsstromrichter	12
	Produktnormen, die direkt für den Antriebsstromrichter gelten:	12
	Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:	12
	Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:	
1	Grundlegende Sicherheitshinweise	. 14
	1.1 Zielgruppe	
	1.2 Transport, Lagerung und sachgemäße Handhabung	
	1.3 Einbau und Aufstellung	
	1.4 Elektrischer Anschluss	
	1.4.1 EMV-gerechte Installation	17
	1.4.2 Spannungsprüfung	
	1.4.3 Isolationsmessung	
	1.5 Inbetriebnahme und Betrieb	
	1.6 Wartung	
	1.7 Instandhaltung	19
	1.8 Entsorgung	20
		- 4
2		
	2.1 Bestimmungsgemäßer Gebrauch	22
	2.1.1 Restgefahren	22
	2.2 Nicht bestimmungsgemäßer Gebrauch	22
	2.3 Typenschlüssel	23
3	Technische Daten	. 24
	3.1 Betriebsbedingungen	24
	3.1.1 Klimatische Umweltbedingungen	
	3.1.2 Mechanische Umweltbedingungen	
	3.1.3 Chemisch/Mechanisch aktive Stoffe	
	3.1.4 Elektrische Betriebsbedingungen	
	3.1.4.1 Geräteeinstufung	
	3.1.4.2 Elektromagnetische Verträglichkeit	
	Lioniagnoscio voltagnomok	20

INHALTSVERZEICHNIS

4	Gerätedaten	27
	4.1 Überlastkennlinien	30
	4.2 Zubehör	30
	4.2.1 AIC-, LCL- und EMV-Filter	30
	4.2.2 Sinus-EMV-Stufe	31
	4.2.3 DC-Sicherungen	32
	4.2.3.1 Alternative DC-Absicherung	32
	4.2.4 Zusätzlicher Vorladewiderstand bei Master-Slave Betrieb	
	4.3 Abmessungen und Gewichte	33
5	Installation	34
	5.1 EMV-gerechter Schaltschrankeinbau	34
	5.2 Einbauhinweise	
6	Anschluss des COMBIVERT F5-AIC	35
_	6.1 Beschreibung der Eingangsklemmen am Antriebsstromrichter	
	6.2 Klemmleisten der Geräte	36
	6.2.1 Querschnitte und Anzugsdrehmomente der Klemmen	
	6.3 Externe Lüfterversorgung für Gehäuse P und U	
	6.4 Temperaturerfassung T1, T2	
	6.4.1 Nutzung des Temperatureinganges im KTY-Modus	
	6.4.2 Nutzung des Temperatureinganges im PTC-Modus	
	6.5 Eingangs- und Vorladeschaltungen	
	6.6 Schaltungsbeispiele	
	6.6.1 Hinweise zum nachfolgendem Schaltungsbeispiel	
	6.6.2 Schaltungsbeispiel für den Leistungsteil mit AIC/LCL-Filter	
	6.6.3 Schaltungsbeispiel für den Leistungsteil mit AIC/LCL-Filter und EMV-Stufe	
	6.6.4 Schaltungsbeispiel für den Master-Slave Betrieb mit AlC/LCL-Filter und EMV-Stufe	
	6.6.5 Schaltungsbeispiel für den Steuerteil	
	6.6.6 Funktionsbeschreibung	48
7	Anschluss der Steuerung	49
	7.1 Steuerkarte für F5 AIC-Geräte	49
	7.1.1 Belegung der Klemmleiste X2A	49
	7.1.2 Anschluss der Steuerung	50
	7.1.3 Digitale Eingänge	50
	7.1.4 Analoge Eingänge	51
	7.1.5 Spannungseingang externe Versorgung	51
	7.1.6 Digitale Ausgänge	51
	7.1.7 Relaisausgänge	52
	7.1.8 Analoge Ausgänge	52
	7.1.9 Spannungsausgang	52

8	Bedienung der Steuerung	53
	8.1 Bedienung ohne Operator	53
	8.2 Bedienung mit Digitaloperator	53
	8.2.1 Tastaturbedienung	54
	8.2.1.1 Parameternummern und /-werte	54
	8.2.1.2 Rücksetzen von Fehlermeldungen	54
	8.2.1.3 Passworteingabe	54
	8.3 Interfaceoperator	
	8.3.1 Beschreibung der Diagnose- und Parametrierschnittstelle X6B	
	8.3.1.1 Erforderliches Zubehör	
	8.3.2 Beschreibung der RS232/485-Schnittstelle X6C	
	8.3.3 Anschluss der RS232-Schnittstelle	
	8.3.4 Anschluss der RS485-Schnittstelle	
	8.3.4.1 Verdrahtung RS485 vollduplex	
	8.3.4.2 Verdrahtung RS485 halbduplex	
	8.3.5 Fernbedienung	
	8.3.6 Weitere Operatoren	57
q	Dimensionierung	58
•		
	9.1 Dimensionierungshinweise	
	9.3 Technische Daten der COMBIVERT F5 AIC-Einheiten	
	3.0 Technisone Baten der Combiverti i CAIC-Enniciten	
10)Kühlsystem	62
	10.1 Einbau von flüssigkeitsgekühlten Geräten	
	10.1.1 Kühlkörper und Betriebsdruck	
	10.1.2 Materialien im Kühlkreis	
	10.1.3 Anforderungen an das Kühlmittel	
	10.1.4 Kühlmitteltemperatur	
	10.1.4.1 Betauung	
	10.1.4.2 Zuführung temperierter Kühlflüssigkeit	64
	10.1.5 Anschluss an das Kühlsystem	65
	10.1.5.1 Druckabfall des Kühlkörpers in Abhängigkeit der Durchflussmenge	
	10.1.5.2 Anschlussschema für einen Kühlkreislauf (Reihenschaltung)	67
	10.1.5.3 Volumenstrom in Abhängigkeit von Wärmeverlustleistung und Temperatur	d:ffc==== CO
	10.1.5.4 Anschlussschema für einen Kühlkreislauf (Parallelschaltung)	amerenz 68
	10.1.5.4 Anschlussschema für einen Kunikreislauf (Paralleischaltung)	
	10.1.6 Außerbetriebnahme	69
11	10.1.6 Außerbetriebnahme	69 69
11	10.1.6 Außerbetriebnahme Zertifizierung	69 69 70
11	10.1.6 Außerbetriebnahme	69 70
11	10.1.6 Außerbetriebnahme Zertifizierung	69 70

ABBILDUNGSVERZEICHNIS

Abbildungsverzeichnis

Abbildung 1:	Überlastkennlinien	30
Abbildung 2:	Klemmleisten Gehäuse E	36
Abbildung 3:	Klemmleisten Gehäuse G	36
Abbildung 4:	Klemmleisten Gehäuse H	36
Abbildung 5:	Klemmleisten Gehäuse R	37
Abbildung 6:	Klemmleisten Gehäuse U	37
Abbildung 7:	Klemmleisten Gehäuse P	38
Abbildung 8:	Externe Lüfterversorgung für Gehäuse P und U	40
Abbildung 9:	Schaltungsbeispiel für den Leistungsteil mit AIC/LCL-Filter	44
Abbildung 10:	Schaltungsbeispiel für den Leistungsteil mit AIC/LCL-Filter und EMV-Stufe	45
Abbildung 11:	Schaltungsbeispiel für den Master-Slave Betrieb mit AIC/LCL-Filter und EMV-Stufe	
Abbildung 12:	Schaltungsbeispiel für den Steuerteil	
Abbildung 13:	Ablaufdiagramm Einschaltvorgang	48
Abbildung 14:	Belegung der Klemmleiste X2A	
Abbildung 15:	Digitale Eingänge	50
Abbildung 16:	Analoge Eingänge	51
Abbildung 17:	Spannungseingang externe Versorgung	
Abbildung 18:	Digitale Ausgänge	
Abbildung 19:	Relaisausgänge	
Abbildung 20:	Analoge Ausgänge	
Abbildung 21:	Spannungsausgang	52
Abbildung 22:	Bedienung mit Digitaloperator	53
Abbildung 23:	Passworteingabe	55
Abbildung 24:	Interfaceoperator	55
Abbildung 25:	Erforderliches Zubehör	56
Abbildung 26:	Anschluss der RS232-Schnittstelle	56
Abbildung 27:	Verdrahtung RS485 vollduplex	57
Abbildung 28:	Verdrahtung RS485 halbduplex	
Abbildung 29:	Druckabfall des Kühlkörpers in Abhängigkeit der Durchflussmenge	
Abbildung 30:	Kühlmittelanschluss	
Abbildung 31:	Volumenstrom in Abhängigkeit von Wärmeverlustleistung und Temperaturdifferenz	
Abbildung 32:	Anschlussschema für einen Kühlkreislauf	69

Tabellenverzeichnis

Tabelle 1:	Typenschlüssel	23
Tabelle 2:	Klimatische Umweltbedingungen	24
Tabelle 3:	Mechanische Umweltbedingungen	25
Tabelle 4:	Chemisch/Mechanisch aktive Stoffe	25
Tabelle 5:	Geräteeinstufung	26
Tabelle 6:	Elektromagnetische Verträglichkeit	26
Tabelle 7:	Gerätedaten Gehäuse E, G, H, R	27
Tabelle 8:	Gerätedaten Gehäuse U, P	28
Tabelle 9:	Gerätedaten Gehäuse P-System	29
Tabelle 10:	AIC-, LCL- und EMV-Filter	30
Tabelle 11:	Sinus-EMV-Stufe	31
Tabelle 12:	Sinus-EMV-Filter und Netzdrosseln	31
Tabelle 13:	DC-Sicherungen	32
Tabelle 14:	Alternative DC-Absicherung	32
Tabelle 15:	Zusätzlicher Vorladewiderstand bei Master-Slave Betrieb	33
Tabelle 16:	Abmessungen und Gewichte	33
Tabelle 17:	EMV-gerechter Schaltschrankeinbau	34
Tabelle 18:	Beschreibung der Eingangsklemmen am Antriebsstromrichter	35
Tabelle 19:	Querschnitte und Anzugsdrehmomente der Klemmen	39
Tabelle 20:	Anschlussbeispiele im PTC-Modus	42
Tabelle 21:	Passworteingabe	54
Tabelle 22:	Beschreibung der RS232/485-Schnittstelle X6C	56
Tabelle 23:	Technische Daten von COMBIVERT Antriebsstromrichtern	60
Tabelle 24:	Technische Daten der KEB COMBIVERT F5 AlC-Einheiten	61
Tabelle 25:	Kühlkörper und Betriebsdruck	62
Tabelle 26:	Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff	63
Tabelle 27:	Anforderungen an das Kühlmittel	63
Tabelle 28:	Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit	65

Glossar

0V	Erdpotenzialfreier Massepunkt	FU	Antriebsstromrichter
1ph	1-phasiges Netz	Gebernachbil-	Softwaregenerierter Geberausgang
3ph	3-phasiges Netz	dung	
AC	Wechselstrom oder -spannung	GND	Bezugspotenzial, Masse
AFE	Ab 07/2019 ersetzt AIC die bisherige	GTR7	Bremstransistor
	Bezeichnung AFE	Hersteller	Der Hersteller ist KEB, sofern nicht
AFE-Filter	Ab 07/2019 ersetzt AIC-Filter die		anders bezeichnet (z.B. als Ma-
	bisherige Bezeichnung AFE-Filter		schinen-, Motoren-, Fahrzeug- oder
AIC	Active Infeed Converter		Klebstoffhersteller)
AIC-Filter	Filter für Active Infeed Converter	HF-Filter	Hochfrequenzfilter zum Netz
Applikation	Die Applikation ist die bestimmungs-	Hiperface	Bidirektionale Geberschnittstelle der
• •	gemäße Verwendung des KEB-		Fa. Sick-Stegmann
	Produktes	HMI	Visuelle Benutzerschnittstelle
ASCL	Geberlose Regelung von Asynchron-		(Touchscreen)
	motoren	HSP5	Schnelles, serielles Protokoll
Auto motor	Automatische Motoridentifikation;	HTL	Inkrementelles Signal mit einer Aus-
ident.	Einmessen von Widerstand und		gangsspannung (bis 30V) -> TTL
	Induktivität	IEC	Internationale Norm
AWG	Amerikanische Kodierung für Lei-	IP xx	Schutzart (xx für Level)
	tungsquerschnitte	KEB-Produkt	Das KEB-Produkt ist das Produkt
B2B	Business-to-business		welches Gegenstand dieser Anlei-
BiSS	Open-Source-Echtzeitschnittstelle		tung ist
	für Sensoren und Aktoren (DIN	KTY	Silizium Temperatursensor (gepolt)
	5008)	Kunde	Der Kunde hat ein KEB-Produkt von
CAN	Feldbussystem		KEB erworben und integriert das
CDM	Vollständiges Antriebsmodul inkl.		KEB-Produkt in sein Produkt (Kun-
	Hilfsausrüstung (Schaltschrank)		den-Produkt) oder veräußert das
COMBIVERT	KEB Antriebsstromrichter		KEB-Produkt weiter (Händler)
COMBIVIS	KEB Inbetriebnahme- und Paramet-	MCM	Amerikanische Maßeinheit für große
	riersoftware		Leitungsquerschnitte
DC	Gleichstrom oder -spannung	Modulation	Bedeutet in der Antriebstechnik,
DI	Demineralisiertes Wasser, auch als		dass die Leistungshalbleiter ange-
	deionisiertes (DI) Wasser bezeichnet		steuert werden
DIN	Deutsches Institut für Normung	MTTF	Mittlere Lebensdauer bis zum Ausfall
DS 402	CiA DS 402 - CAN-Geräteprofil für	NN	Normalnull
	Antriebe	Not-Aus	Abschalten der Spannungsversor-
ED	Einschaltdauer		gung im Notfall
EMS	Energy Management System	Not-Halt	Stillsetzen eines Antriebs im Notfall
EMV	Elektromagnetische Verträglichkeit		(nicht spannungslos)
EN	Europäische Norm	OC	Überstrom (Overcurrent)
EnDat	Bidirektionale Geberschnittstelle der	ОН	Überhitzung
	Fa. Heidenhain	OL	Überlast
Endkunde	Der Endkunde ist der Verwender des	OSSD	Ausgangsschaltelement; Ausgangs-
	Kunden-Produkts		signal, dass in regelmäßigen Ab-
EtherCAT	Echtzeit-Ethernet-Bussystem der Fa.		stände auf seine Abschaltbarkeit hin
	Beckhoff		geprüft wird. (Sicherheitstechnik)
Ethernet	Echtzeit-Bussystem - definiert Proto-	PDS	Leistungsantriebssystem inkl. Motor
	kolle, Stecker, Kabeltypen		und Meßfühler
FE	Funktionserde	PE	Schutzerde
FSoE	Funktionale Sicherheit über Ethernet	PELV	Sichere Schutzkleinspannung, ge-
			erdet

PFD Begriff aus der Sicherheitstechnik (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit Begriff aus der Sicherheitstechnik PFH (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit pro Stunde Pt100 Temperatursensor mit R0=100Ω Pt1000 Temperatursensor mit R0=1000Ω PTC Kaltleiter zur Temperaturerfassung **PWM** Pulsweitenmodulation (auch Pulsbreitenmodulation) Modulare Steckverbindung mit 8 RJ45 Leitungen Geberlose Regelung von Synchron-SCL motoren **SELV** Sichere Schutzkleinspannung, ungeerdet (<60V) SIL Der Sicherheitsintegritätslevel ist eine Maßeinheit zur Quantifizierung der Risikoreduzierung. Begriff aus der Sicherheitstechnik (EN 61508 -1...7) SPS Speicherprogrammierbare Steuerung SS1 Sicherheitsfunktion "Sicherer Halt 1" gemäß IEC 61800-5-2 SSI Synchron-serielle Schnittstelle für Geber STO Sicherheitsfunktion "sicher abgeschaltetes Drehmoment" gemäß IEC 61800-5-2 Inkrementelles Signal mit einer Aus-TTL gangsspannung bis 5V **USB** Universell serieller Bus VARAN Echtzeit-Ethernet-Bussystem

Normen für Antriebsstromrichter

Produktnormen, die direkt für den Antriebsstromrichter gelten:

EN61800-2 Drehzahlveränderbare elektrische Antriebe Teil 2: Allgemeine Anforderungen - Festlegungen für die Bemessung von Niederspannungs-Wechselstrom-Antriebssystemen mit einstellbarer Frequenz (VDE 0160-102, IEC 61800-2) Drehzahlveränderbare elektrische Antriebe. Teil 3: EMV-Anforderungen EN61800-3 einschließlich spezieller Prüfverfahren (VDE 0160-103, IEC 61800-3) EN 61800-5-1 Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-1: Anforderungen an die Sicherheit - Elektrische, thermische und energetische Anforderungen (VDE 0160-105-1, IEC 61800-5-1) Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-2: EN61800-5-2 Anforderungen an die Sicherheit – Funktionale Sicherheit (VDE 0160-105-2, UL61800-5-2, IEC 22G/264/CD) UL61800-5-1 Amerikanische Version der EN 61800-5-1 mit "National Deviations"

Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:

EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen - Grenzwerte und Messverfahren (IEC/CISPR 11)
EN 55021	Störung von Mobilfunkübertragungen in Gegenwart von Impulsstörgrößen - Verfahren zur Beurteilung der Beeinträchtigung und Maßnahmen zur Verbesserung der Übertragungsqualität (IEC/CISPR/D/230/FDIS)
EN 60529	Schutzarten durch Gehäuse (IP-Code) (VDE 0470, IEC 60529)
EN 60664-1	Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen Teil 1: Grundsätze, Anforderungen und Prüfungen (IEC 60664-1)
EN 60721-3-1	Klassifizierung von Umgebungsbedingungen - Teil 3-1: Klassifizierung von Einflussgrößen in Gruppen und deren Grenzwerte - Hauptabschnitt 1: Langzeitlagerung (IEC 60721-3-1)
EN 60721-3-2	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 2: Transport (IEC 60721-3-2)
EN 60721-3-3	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 3: Ortsfester Einsatz, wetterge- schützt (IEC 60721-3-3)
EN 61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems
EN 61000-2-4	Elektromagnetische Verträglichkeit (EMV) - Teil 2-4: Umgebungsbedingungen; Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in Industrieanlagen (IEC 61000-2-4)
EN 61000-4-2	Elektromagnetische Verträglichkeit (EMV) - Teil 4-2: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität (IEC 61000-4-2)
EN 61000-4-3	Elektromagnetische Verträglichkeit (EMV) - Teil 4-3: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder (IEC 61000-4-3)
EN 61000-4-4	Elektromagnetische Verträglichkeit (EMV) - Teil 4-4: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst (IEC 61000-4-4)
EN 61000-4-5	Elektromagnetische Verträglichkeit (EMV) - Teil 4-5: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen Stoßspannungen (IEC 61000-4-5)

DGUV Vorschrift 3

EN 61000-4-6	Elektromagnetische Verträglichkeit (EMV) - Teil 4-6: Prüf- und Messverfahren - Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder (IEC 61000-4-6)
EN 61000-4-34	Elektromagnetische Verträglichkeit (EMV) - Teil 4-34: Prüf- und Messver- fahren - Prüfungen der Störfestigkeit von Geräten und Einrichtungen mit einem Netzstrom > 16 A je Leiter gegen Spannungseinbrüche, Kurzzeitunterbre- chungen und Spannungsschwankungen (IEC 61000-4-34)
EN 61508-17	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme Teil 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme (VDE 0113-50, IEC 62061)
ENISO 13849-1	Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze (ISO 13849-1)

Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:

Elektrische Anlagen und Betriebsmittel

DOOV VOISOITHEO	Liekthoone 7 thagen and bethebornite
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
DIN EN 12502-15	Korrosionsschutz metallischer Werkstoffe - Teil 15
DINIEC 60364-5-54	Errichten von Niederspannungsanlagen - Teil 5-54: Auswahl und Errichtung elektrischer Betriebsmittel - Erdungsanlagen, Schutzleiter und Schutzpotential-ausgleichsleiter (IEC 364/1610/CD)
DIN VDE 0100-729	Errichten von Niederspannungsanlagen - Teil 7-729: Anforderungen für Betriebsstätten, Räume und Anlagen besonderer Art - Bedienungsgänge und Wartungsgänge (IEC 60364-7-729); Deutsche Übernahme HD 60364-7-729
EN 1037	Sicherheit von Maschinen - Vermeidung von unerwartetem Anlauf; Deutsche Fassung EN 1037
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Typgeprüfte und partiell typgeprüfte Kombinationen (IEC 60439-1)
EN 60947-7-1	Niederspannungsschaltgeräte - Teil 7-1: Hilfseinrichtungen - Reihenklemmen für Kupferleiter (IEC 60947-7-1:2009)
EN 60947-8	Niederspannungsschaltgeräte - Teil 8: Auslösegeräte für den eingebauten thermischen Schutz (PTC) von rotierenden elektrischen Maschinen (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken (IEC 61373)
EN 61439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Allgemeine Festlegungen (IEC 121B/40/CDV:2016); Deutsche Fassung FprEN 61439-1:2016
VGB R 455 P	Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen
DIN EN 60939-1	Passive Filter für die Unterdrückung von elektromagnetischen Störungen - Teil 1: Fachgrundspezifikation (IEC 60939-1:2005 + Corrigendum: 2005)

1 Grundlegende Sicherheitshinweise

Die Produkte sind nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Die Nichtbeachtung der Sicherheitshinweise durch den Kunden, Anwender oder sonstigen Dritten führt zum Verlust aller dadurch verursachten Ansprüche gegen den Hersteller.

ACHTUNG

Gefahren und Risiken durch Unkenntnis.

- ► Lesen Sie die Gebrauchsanleitung!
- ▶ Beachten Sie die Sicherheits- und Warnhinweise!
- ► Fragen Sie bei Unklarheiten nach!

1.1 Zielgruppe

Diese Gebrauchsanleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- Kenntnis und Verständnis der Sicherheitshinweise.
- Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über DIN IEC 60364-5-54.
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).

1.2 Transport, Lagerung und sachgemäße Handhabung

Der Transport ist durch entsprechend unterwiesene Personen unter Beachtung der in dieser Anleitung angegebenen Umweltbedingungen durchzuführen. Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen.

Transport von Antriebsstromrichtern mit einer Kantenlänge >75 cm

Der Transport per Gabelstapler ohne geeignete Hilfsmittel kann zu einer Durchbiegung des Kühlkörpers führen. Dies führt zur vorzeitigen Alterung bzw. Zerstörung interner Bauteile.

- ► Antriebsstromrichter auf geeigneten Paletten transportieren.
- Antriebsstromrichter nicht stapeln oder mit anderen schweren Gegenständen belasten.

Produkt enthält elektrostatisch gefährdete Bauelemente.

- Berührung vermeiden.
- ESD-Schutzkleidung tragen.

Lagern Sie das Produkt nicht

- in der Umgebung von aggressiven und/oder leitfähigen Flüssigkeiten oder Gasen.
- in Bereichen mit direkter Sonneneinstrahlung.
- außerhalb der angegebenen Umweltbedingungen.

1.3 Einbau und Aufstellung

▲ GEFAHR

Nicht in explosionsgefährdeter Umgebung betreiben!

▶ Das Produkt ist nicht für den Einsatz in explosionsgefährdeter Umgebung vorgesehen.

A VORSICHT

Bauartbedingte Kanten und hohes Gewicht!

Quetschungen und Prellungen!

- ▶ Nie unter schwebende Lasten treten.
- Sicherheitsschuhe tragen.
- ▶ Produkt beim Einsatz von Hebewerkzeugen entsprechend sichern.

Um Schäden am und im Produkt vorzubeugen:

- Darauf achten, dass keine Bauelemente verbogen und/oder Isolationsabstände verändert werden.
- Bei mechanischen Defekten darf das Produkt nicht in Betrieb genommen werden. Die Einhaltung angewandter Normen ist nicht mehr gewährleistet.
- Es darf keine Feuchtigkeit oder Nebel in das Produkt eindringen.
- Das Eindringen von Staub ist zu vermeiden. Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- Einbaulage und Mindestabstände zu umliegenden Elementen beachten. Lüftungsöffnungen nicht verdecken.
- Produkt entsprechend der angegebenen Schutzart montieren.
- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile (Bohrspäne, Schrauben usw.) in das Produkt fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Geräteanschlüsse auf festen Sitz prüfen, um Übergangswiderstände und Funkenbildung zu vermeiden.
- Produkt nicht begehen.
- Die Sicherheitshinweise sind aufzubewahren!

1.4 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät!

Lebensgefahr durch Stromschlag!

- ▶ Niemals am offenen Gerät arbeiten oder offen liegende Teile berühren.
- ▶ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten und gegen Einschalten sichern.
- ► Trotz fehlender Versorgungsspannung kann der Active Infeed Converter weiter modulieren, z.B. im generatorischen Betrieb. Die Spannungsfreiheit ist zu überprüfen.
- ➤ Warten bis alle Antriebe zum Stillstand gekommen sind, damit keine generatorische Energie erzeugt werden kann.
- ► Kondensatorentladezeit (5 Minuten) abwarten, ggf. DC-Spannung an den Klemmen messen.
- ➤ Sofern Personenschutz gefordert ist, für Antriebsstromrichter geeignete Schutzvorrichtungen einbauen.
- ► Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken.
- ► Schutzleiter immer an Antriebsstromrichter und Motor anschließen.
- ➤ Zum Betrieb alle erforderlichen Abdeckungen und Schutzvorrichtungen anbringen.
- ► Schaltschrank im Betrieb geschlossen halten.

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der angegebenen Minimal-/ Maximalwerte für die Anwendung durch den Anwender zu dimensionieren.
- Antriebsstromrichter sind für einen festen Anschluss bestimmt. Querschnitte von Schutzleitern sind gemäß DIN IEC 60364-5-54 auszulegen.
- Stromversorgungssysteme bei denen ein Außenleiter geerdet ist (z.B. Deltanetze) sind für den Active Infeed Converter nicht zulässig.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit PELV die Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß *EN 61800-5-1*) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.
- Ausschließlich die von KEB angegebenen AIC-/LCL-Filter verwenden.

 Bei Anschluss von mehreren Antriebsstromrichtern an das COMBIVERT F5-AIC sind die maximal zulässigen Zwischenkreiskapazitäten oder die Ladeströme aller angeschlossenen Antriebsstromrichter, sowie deren Verschaltung zu beachten.

Wenn beim Errichten von Anlagen Personenschutz gefordert ist, müssen für Antriebsstromrichter geeignete Schutzvorrichtungen benutzt werden.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_general/ti_rcd_0400_0002_deu.pdf

Anlagen, in die Antriebsstromrichter eingebaut sind, müssen ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen gemäß den jeweils gültigen Sicherheitsbestimmungen, z.B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw. ausgerüstet werden. Diese Hinweise sind auch bei CE gekennzeichneten Antriebsstromrichtern stets zu beachten.

1.4.1 EMV-gerechte Installation

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Kunden.

Hinweise zur EMV-gerechten Installation sind hier zu finden.

www.keb.de/fileadmin/media/Manuals/emv/0000ndb0000.pdf

1.4.2 Spannungsprüfung

Eine Prüfung mit AC-Spannung (gemäß *EN 60204-1* Kapitel 18.4) darf nicht durchgeführt werden, da eine Gefährdung für die Leistungshalbleiter im Antriebsstromrichter besteht.

Aufgrund der Funkentstörkondensatoren wird sich der Prüfgenerator sofort mit Stromfehler abschalten.

Nach *EN 60204-1* ist es zulässig, bereits getestete Komponenten abzuklemmen. Antriebsstromrichter der KEB Automation KG werden gemäß Produktnorm zu 100% spannungsgeprüft ab Werk geliefert.

1.4.3 Isolationsmessung

Eine Isolationsmessung (gemäß *EN 60204-1* Kapitel 18.3) mit DC 500 V ist zulässig, wenn alle Anschlüsse im Leistungsteil (netzgebundenes Potenzial) und alle Steueranschlüsse mit PE gebrückt sind. Der Isolationswiderstand des jeweiligen Produkts ist in den technischen Daten zu finden.

1.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

A WARNUNG

Softwareschutz und Programmierung!

Gefährdung durch ungewolltes Verhalten des Antriebes!

- ► Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichters prüfen, ob Parametrierung zur Applikation passt.
- ▶ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- ► Motoren gegen selbsttätigen Anlauf sichern.

A VORSICHT

Hohe Temperaturen an Kühlkörper und Kühlflüssigkeit!

Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.
- ▶ Oberfläche und Kühlflüssigkeitsleitungen vor Berührung prüfen.
- ► Vor jeglichen Arbeiten Gerät abkühlen lassen.
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.
- Nur für das Gerät zugelassenes Zubehör verwenden.
- Anschlusskontakte, Stromschienen oder Kabelenden nie berühren.

Sofern ein Antriebsstromrichter mit Elektrolytkondensatoren im Gleichspannungszwischenkreis (=> technische Daten) länger als ein Jahr nicht in Betrieb war, beachten Sie folgende Hinweise.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_gene-ral/ti_format_capacitors_0400_0001_deu.pdf

Schalten am Eingang

Bei Applikationen, die zyklisches Aus- und Einschalten des Antriebsstromrichters erfordern, muss nach dem letzten Einschalten eine Zeit von mindestens 5 min vergangen sein. Werden kürzere Taktzeiten benötigt, setzen Sie sich bitte mit der KEB Automation KG in Verbindung.

Kurzschlussfestigkeit

Die Antriebsstromrichter sind bedingt kurzschlussfest. Nach dem Zurücksetzen der internen Schutzeinrichtungen ist die bestimmungsgemäße Funktion gewährleistet.

Ausnahmen:

- Treten am Eingang wiederholt Erd- oder Kurzschlüsse auf, kann dies zu einem Defekt am Gerät führen.
- Der COMBIVERT F5-AIC ist am Netzeingang bei einem Fehler oder im Status nOP nicht kurzschlussfest! Mit einer Halbleitersicherung ist ein bedingter Schutz am Netzeingang möglich.
- Der Kurzschlussschutz am DC-Ausgang ist durch externe aR bzw. gR-Sicherungen sicher zu stellen.

1.6 Wartung

Die folgenden Wartungsarbeiten sind nach Bedarf, mindestens jedoch einmal pro Jahr, durch autorisiertes und eingewiesenes Personal durchzuführen.

- ▶ Anlage auf lose Schrauben und Stecker überprüfen und ggf. festziehen.
- ► Antriebsstromrichter von Schmutz und Staubablagerungen befreien. Dabei besonders auf Kühlrippen und Schutzgitter von Ventilatoren achten.
- ▶ Ab- und Zuluftfilter vom Schaltschrank überprüfen bzw. reinigen.
- ► Funktion der Ventilatoren des Antriebsstromrichters überprüfen. Bei hörbaren Vibrationen oder Quietschen sind die Ventilatoren zu ersetzen.
- ▶ Bei flüssigkeitsgekühlten Antriebsstromrichtern ist eine Sichtprüfung des Kühlkreislaufs auf Dichtigkeit und Korrosion durchzuführen. Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

1.7 Instandhaltung

Bei Betriebsstörungen, ungewöhnlichen Geräuschen oder Gerüchen informieren Sie eine dafür zuständige Person!

▲ GEFAHR

Unbefugter Austausch, Reparatur und Modifikationen!

Unvorhersehbare Fehlfunktionen!

- ▶ Die Funktion des Antriebsstromrichters ist von seiner Parametrierung abhängig. Niemals ohne Kenntnis der Applikation austauschen.
- Modifikation oder Instandsetzung ist nur durch von der KEB Automation KG autorisiertem Personal zulässig.
- ► Nur originale Herstellerteile verwenden.
- ➤ Zuwiderhandlung hebt die Haftung für daraus entstehende Folgen auf.

GRUNDLEGENDE SICHERHEITSHINWEISE

Im Fehlerfall wenden Sie sich an den Maschinenhersteller. Nur dieser kennt die Parametrierung des eingesetzten Antriebsstromrichters und kann ein entsprechendes Ersatzgerät liefern oder die Instandhaltung veranlassen.

1.8 Entsorgung

Elektronische Geräte der KEB Automation KG sind für die professionelle, gewerbliche Weiterverarbeitung bestimmt (sog. B2B-Geräte).

Hersteller von B2B-Geräten sind verpflichtet, Geräte, die nach dem 14.08.2018 hergestellt wurden, zurückzunehmen und zu verwerten. Diese Geräte dürfen grundsätzlich nicht an kommunalen Sammelstellen abgegeben werden.

Sofern keine abweichende Vereinbarung zwischen Kunde und KEB getroffen wurde oder keine abweichende zwingende gesetzliche Regelung besteht, können so gekennzeichnete KEB-Produkte zurückgegeben werden. Firma und Stichwort zur Rückgabestelle sind u.a. Liste zu entnehmen. Versandkosten gehen zu Lasten des Kunden. Die Geräte werden daraufhin fachgerecht verwertet und entsorgt.

In der folgenden Tabelle sind die Eintragsnummern länderspezifisch aufgeführt. KEB Adressen finden Sie auf unserer Webseite.

Rücknahme durch	WEEE-Registrierungsnr.		Stichwort:
Deutschland			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Frankreich			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Italien			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Österreich			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
Spanien			
KEB Automation KG	RII-AEE	7427	Palabra clave "Retirada RAEE"
Tschechische Republik			
KEB Automation KG	RETELA	09281/20-ECZ	Klíčové slovo "Zpětný odběr OEEZ"

Die Verpackung ist dem Papier- und Kartonage-Recycling zuzuführen.

2 Produktbeschreibung

Der COMBIVERT F5-AIC basiert auf der Hardware von COMBIVERT F5 Antriebsstromrichtern, die mit einer speziellen AIC Sondersoftware programmiert werden. Die Haupteinsatzbereiche sind Industrieanwendungen, Einzelachs-Anwendungen, Testsysteme und Sonderprojekte.

Merkmale:

- Wandelt eine dreiphasige Eingangsspannung in eine regelbare Gleichspannung um.
- Hochsetzsteller zur Stabilisierung der Zwischenkreisspannung.
- Geringere Netzrückwirkungen, Oberschwingungen und Kommutierungseinbrüche.
- · Keine Synchronisationseinheit erforderlich.
- Einfache Vorladung des Zwischenkreises über AC-Eingang.
- Führt überschüssige Energie aus generatorischen Betrieb in das Versorgungsnetz zurück.
- Ersetzt Bremswiderstand und Bremstransistor; reduziert somit die Wärmeabgabe; optional als Schutz bei Netzausfall jedoch möglich.
- Speist KEB Antriebsstromrichter einzeln oder nach Rücksprache über einen DC-Verbund.
- Aktive Leistungsfaktor-Korrektur (PFC) und cos Phi-Regelung möglich.
- Interner Schutz gegen Überstrom, Erdschluss und Übertemperatur.
- Schutz gegen Kurzschluss am DC-Kreis mit entsprechend dimensionierten DC-Sicherungen.

Voraussetzungen zum Betrieb:

- AIC/LCL-Filter.
- Symmetrisches Dreileiter-System mit geerdetem Sternpunkt.
- EMV-Filter (zur Einhaltung der EMV-Normung).
- Antriebsstromrichter ohne Zwischenkreis-Erdimpedanz (Ableitkondensatoren).

ACHTUNG

Betrachtungsweise eines Active Infeed Converter

Die Klemmen eines Active Infeed Converter können abhängig vom aktuellen Betriebsstatus (Ein- oder Rückspeisung) entweder Eingang oder Ausgang sein. Zur Vereinheitlichung der Sichtweise wird die Netzseite immer als Eingang und die Gleichspannungsseite immer als Ausgang betrachtet.

2.1 Bestimmungsgemäßer Gebrauch

Der COMBIVERT F5 Active Infeed Converter (im weiteren nur F5-AIC genannt) ist eine eigenständige Ein- und Rückspeiseeinheit ausschließlich für gleichspannungsversorgte Antriebsstromrichter des Industriebereichs. Sie sorgt netzseitig für eine sinusförmige Stromaufnahme. Der Betrieb ist nur an symmetrischen Dreileitersystemen in Verbindung mit speziellen LCL- oder AIC-Filtern zulässig.

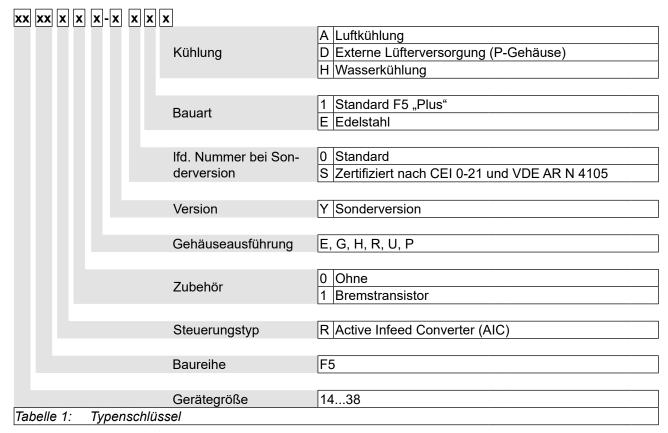
Die bei KEB eingesetzten Halbleiter und Bauteile sind für den Einsatz in industriellen Produkten entwickelt und ausgelegt, wie auch der Active Infeed Converter.

Einschränkung

Wenn das Produkt in Maschinen eingesetzt wird, die unter Ausnahmebedingungen arbeiten, lebenswichtige Funktionen, lebenserhaltende Maßnahmen oder eine außergewöhnliche Sicherheitsstufe erfüllen, ist die erforderliche Zuverlässigkeit und Sicherheit durch den Maschinenbauer sicherzustellen und zu gewährleisten.

2.1.1 Restgefahren

Trotz bestimmungsgemäßen Gebrauch kann der Active Infeed Converter im Fehlerfall, bei falscher Parametrierung, durch fehlerhaften Anschluss oder nicht fachmännische Eingriffe und Reparaturen unvorhersehbare Betriebszustände annehmen. Dies können sein:


- · Automatischer Anlauf
- Überspannung am Netzanschlusspunkt beim Ausfall des Versorgungsnetzes

2.2 Nicht bestimmungsgemäßer Gebrauch

Der Betrieb anderer elektrischer Verbraucher ist untersagt und kann zur Zerstörung der Geräte führen. Der Betrieb unserer Produkte außerhalb der in den technischen Daten angegebenen Grenzwerte führt zum Verlust jeglicher Schadensersatzansprüche. Insbesondere entfallen diese bei Anwendungen mit erneuerbaren Energien bzw. Inselnetzen.

2.3 Typenschlüssel

3 Technische Daten

Sofern nicht anders gekennzeichnet, beziehen sich alle elektrischen Daten im folgenden Kapitel auf ein 3-phasiges Wechselspannungsnetz.

3.1 Betriebsbedingungen

3.1.1 Klimatische Umweltbedingungen

Lagerung		Norm	Klasse	Bemerkungen
Umgebungstemperatur		EN 60721-3-1	1K4	-2555°C
Relative Luftfeuchte)	EN 60721-3-1	1K3	595% (ohne Kondensation)
Lagerungshöhe		_	_	Max. 3000 m über NN
Transport		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-2	2K3	-2570°C
Relative Luftfeuchte	•	EN 60721-3-2	2K3	95% bei 40°C (ohne Kondensation)
Betrieb		Norm	Klasse	Bemerkungen
				540 °C (erweitert auf -1045 °C)
Umgebungstemperatur		EN 60721-3-3	3K3	Ab 45°C bis max. 55°C ist eine Leistungsreduzierung von 5% pro 1K zu berücksichtigen.
Kühlmitteleintritts-	Luft	_	_	040°C (-1045°C)
temperatur	Wasser	_	_	540°C
Relative Luftfeuchte		EN 60721-3-3	3K3	585% (ohne Kondensation)
		EN 60529	IP20	Schutz gegen Fremdkörper > ø12,5 mm
Bau- und Schutzart				Kein Schutz gegen Wasser
Bau- und Schutzart		EN 00329	11 20	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist.
				Max. 2000 m über NN
Aufstellhöhe		_	-	Ab 1000 m ist eine Leistungsreduzierung von 1 % pro 100 m zu berücksichtigen.
				Ab 2000 m hat die Steuerkarte zum Netz nur noch Basisisolation. Es sind zusätzli- che Maßnahmen bei der Verdrahtung der Steuerung vorzunehmen.
Tabelle 2: Klimatische Umweltbedingungen				

3.1.2 Mechanische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen	
Cabusinassaaaaaaaaa	EN 60704 2 4	1M2	Schwingungsamplitude 1,5 mm (29 Hz)	
Schwingungsgrenzwerte	EN 60721-3-1		Beschleunigungsamplitude 5 m/s² (9200 Hz)	
Schockgrenzwerte	EN 60721-3-1	1M2	40 m/s²; 22 ms	
Transport	Norm	Klasse	Bemerkungen	
			Schwingungsamplitude 3,5 mm (29 Hz)	
Schwingungsgrenzwerte	EN 60721-3-2	2M1	Beschleunigungsamplitude 10 m/s² (9200 Hz)	
			Beschleunigungsamplitude 15 m/s² (200500 Hz)	
Schockgrenzwerte	EN 60721-3-2	2M1	100 m/s²; 11 ms	
Betrieb	Norm	Klasse	Bemerkungen	
	EN 60721-3-3	3M4	Schwingungsamplitude 3,0 mm (29 Hz)	
Cobwingungagran worta			Beschleunigungsamplitude 10 m/s² (9200 Hz)	
Schwingungsgrenzwerte	EN 61800-5-1	_	Schwingungsamplitude 0,075 mm (1057 Hz)	
			Beschleunigungsamplitude 10 m/s² (57150 Hz)	
Schockgrenzwerte	EN 60721-3-3	3M4	100 m/s²; 11 ms	
Druck im Wasserkühler	_	_	Max. Betriebsdruck: 10 bar	
Tabelle 3: Mechanische Umweltbedingungen				

3.1.3 Chemisch/Mechanisch aktive Stoffe

Lagerung		Norm	Klasse	Bemerkungen	
Kontamination	Gase	EN 60704 0 4	1C2	-	
Kontamination	Feststoffe	EN 60721-3-1	1S2	-	
Transport		Norm	Klasse	Bemerkungen	
Kontamination	Gase	EN 60721-3-2	2C2	-	
Kontamination	Feststoffe		2S2	_	
Betrieb		Norm	Klasse	Bemerkungen	
Kontamination	Gase	EN 60721-3-3	3C2	-	
Kontamination	Feststoffe	EN 00721-3-3	3S2	_	
Tabelle 4: Chemisch/Mechanisch aktive Stoffe					

3.1.4 Elektrische Betriebsbedingungen

3.1.4.1 Geräteeinstufung

Anforderung	Norm	Klasse	Bemerkungen
Überspannungskategorie	EN 61800-5-1	III	-
Oberspannungskategorie	EN 60664-1	111	-
Verschmutzungsgrad	EN 60664-1	2	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist
Tabelle 5: Geräteeinstufung			

3.1.4.2 Elektromagnetische Verträglichkeit

Die angegebenen Werte gelten nur für Geräte mit externem Filter.

EMV-Störaussendung	Norm	Klasse	Bemerkungen
Leitungsgebundene Störungen	EN 61800-3	C2	-
Abgestrahlte Störungen	EN 61800-3	C2	-
Störfestigkeit	Norm	Pegel	Bemerkungen
Stationho Entladungan	EN 61000-4-2	8kV	AD (Luftentladung)
Statische Entladungen	EN 61000-4-2	4 kV	CD (Kontaktentladung)
Burst - Anschlüsse für pro- zessnahe Mess- und Regel- funktionen und Signalschnitt- stellen	EN 61000-4-4	2kV	_
Burst - Leistungsschnittstellen	EN 61000-4-4	4 kV	-
Surge Leistungeschnittstellen	EN 61000-4-5	1kV	Phase-Phase
Surge - Leistungsschnittstellen	EN 61000-4-5	2kV	Phase-Erde
Leitungsgeführte Störgrößen, induziert durch hochfrequente Felder	EN 61000-4-6	10 V	0,1580 MHz
		10 V/m	80 MHz1 GHz
Elektromagnetische Felder	EN 61000-4-3	3 V/m	1,42 GHz
		1 V/m	22,7 GHz
Spannungsschwankungen/	EN 61000-2-1		-15%+10%
-einbrüche	EN 61000-4-34		90%
Frequenzänderungen	EN 61000-2-4	_	≤ 2 %
Spannungsabweichungen	EN 61000-2-4		±10%
Spannungsunsymmetrien	EN 61000-2-4	_	≤ 3 %
Tabelle 6: Elektromagnetisch	he Verträglichkeit		

4 Gerätedaten

Hinweise zur Dimensionierung => "Dimensionierungshinweise".

Gerätegröße		14	16	18	20	2	2
Gehäusegröße			G	Н	R	F	₹
Kühlungsart (L=Luft; W=Wasser)		L	L	L	L	L	W
Eingangsdaten							
Netzphasen				3			
Zugelassene Netzformen 1)				TN-N	etz		
Eingangsbemessungsspannung	Un / V			400)		
Eingangsspannungsbereich	Uin / V		(34048	0 ± 0%		
Netzfrequenz	<i>f</i> ∧ / Hz			50/60	±5		
Eingangsbemessungsleistung	Sn / kVA	11	23	35	52	8	0
Eingangsbemessungsstrom	In / A	16,5	33	50	75 ²⁾	11:	5 ²⁾
Max. zulässige Netzsicherung Typ gR/aR		25	50	80	100	16	30
Ausgangsdaten							
Ausgangsbemessungsspannung	UoutN_dc / V			680)		
Ausgangsspannungsbereich 3)	<i>U_dc</i> / V	530840					
Überspannungsabschaltung (E.OP)	UOP_dc / V	840					
Ein-/Rückspeisebemessungsstrom 4)	loutN_dc / A	16,5	33	50	75	11	15
Max. DC-Rückspeisestrom 30s	lout_max_dc / A	29,7	49,5	75	112	172	207
Bemessungsschaltfrequenz 5)	<i>f</i> s∧ / kHz			8			
Max. Schaltfrequenz	fs_max / kHz			16			
Sonstige Daten (bezogen auf die Bemessu	ıngsdaten)						
Überstromabschaltung (E.OC)	loc/%	216	180	180	180	180	216
Überlaststrom (E.OL) 30s	IOL / %	180	150	150	150	150	180
Max. zulässige Zwischenkreiskapazität	Cext / mF	_	-	_	50	5	0
Max. AIC Ladestrom (=> 6.5)	laic / A	29 ⁶⁾	57	29	226	22	26
Max. externer Ladestrom (=> 6.5)	lext / A	75 ⁶⁾	135	322	_	-	_
Max. zulässiger Gesamtladestrom (=> 6.5)	Ipre / A	104 ⁶⁾	192	351	226	22	26
Netzeingangsschaltung (=> 6.5)	Тур	A1	A2	A1		D1	
Zulässige DC-Sicherungen => "DC-Sicheru				nerunger	ı"		
Kurzschlussfaktor am Anschlusspunkt (Skn/SN)			•	15 < Skn"	< 350		
Verlustleistung bei Bemessungsbetrieb	P _{BR} / W	295	449	525	830	14	00
Max. Kühlkörpertemperatur	<i>t</i> HS_max / °C	90	90	90	90	90	60
Tabelle 7: Gerätedaten Gehäuse E, G, H, F	?						

Der Betrieb an einem lokal begrenzten IT-Netz mit Sinus EMV-Filter ist möglich.

² Der Eingangsstrom des Antriebsstromrichters ist ggf. auf den Bemessungsstrom des AIC/LCL-Filter zu begrenzen.

³ Der Betrieb ist abhängig vom Spannungssollwert und der Uop-Grenze (=> Programmierhandbuch).

⁴⁾ Gemessen bei einer Referenzspannung von 680 VDC.

Muss für den Betrieb als AIC auf 8kHz eingestellt werden (Werkseinstellung 4kHz)!

⁶⁾ Bei Umgebungstemperatur Ta von 45°C.

GERÄTEDATEN

Gerätegröße		24	2	6	27	28	29
Gehäusegröße			ι	J	U	Р	Р
Kühlungsart (L=Luft; W=Wasser)		L	L	W	L W	L	W
Anzahl der Module bei Master/Slave		-	-	ı	_	_	-
Eingangsdaten							
Netzphasen					3		
Zugelassene Netzformen				TN-	Netz		
Eingangsbemessungsspannung	Un / V			4	00		
Eingangsspannungsbereich	Uin / V			3404	80 ± 0%		
Netzfrequenz	f _N / Hz			50/6	30 ±5		
Eingangsbemessungsleistung	Sn / kVA	125	17	73	208	256	319
Eingangsbemessungsstrom	In / A	180	25	50	300 1)	370	460
Max. zulässige Netzsicherung Typ gR/aR		250	35	50	400	500	630
Ausgangsdaten							
Ausgangsbemessungsspannung UoutN_dc / V			680				
Ausgangsspannungsbereich 2)	U_dc / V	530840					
Überspannungsabschaltung (E.OP)	UOP_dc / V	840					
Ein-/Rückspeisebemessungsstrom ³⁾	loutN_dc / A	180	250 300 4)			370	460
Max. DC-Rückspeisestrom 30s	lout_max_dc / A	270	31	13	375	462	575
Bemessungsschaltfrequenz	fsn / kHz	8	4	8	4 8	4 ⁵⁾	4 ⁵⁾
Max. Schaltfrequenz	fs_max / kHz	8	8	8	8 8	4	4
Sonstige Daten (bezogen auf die Bemess	ungsdaten)						
Überstromabschaltung (E.OC)	loc/%	180	15		150	150	150
Überlaststrom (E.OL) 30s	10L / %	150	12	25	125	125	125
Max. zulässige Zwischenkreiskapazität	Cext / mF	45	4	3	40	35	35
Max. AIC Ladestrom (=> 6.5)	Iaic / A	226	22	26	226	98	98
Max. externer Ladestrom (=> 6.5)	lext / A	_	_	=	_	_	=
Max. zulässiger Gesamtladestrom (=> 6.5)	Ipre / A	226	22	26	226	98	98
Netzeingangsschaltung (=> 6.5) Typ			D	1		D	1
Zulässige DC-Sicherungen			=>	"DC-Si	cherung		
Kurzschlussfaktor am Anschlusspunkt (Skn/SN)			15 < S _{kn} " / < 350			-	
Verlustleistung bei Bemessungsbetrieb	P _{BR} / W	2230	2550	3500	4500	3000	3800
Max. Kühlkörpertemperatur	t _{HS_max} / °C	90	90	60	90 60	90 6) 7)	90 6)
Tabelle 8: Gerätedaten Gehäuse U, P							

Der Eingangsstrom des Antriebsstromrichters ist ggf. auf den Bemessungsstrom des AIC/LCL-Filter zu begrenzen.

²⁾ Der Betrieb ist abhängig vom Spannungssollwert und der Uop-Grenze (=> Programmierhandbuch).

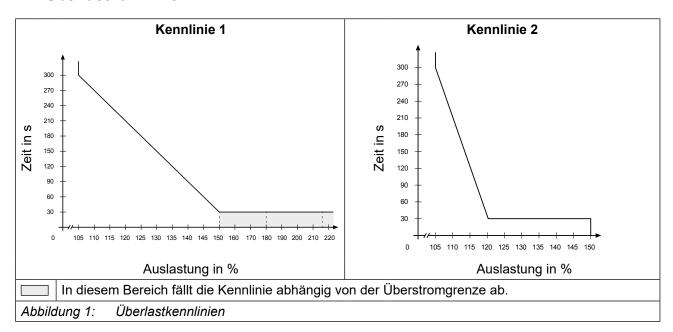
³⁾ Gemessen bei einer Referenzspannung von DC 680 V.

Begrenzt durch den Bemessungsstrom der DC-Klemme! Bei Eingangsspannungen kleiner 400 V ist der Eingangsstrom auf 300 A zu begrenzen.

Muss für den Betrieb als AIC auf 4kHz eingestellt werden (Werkseinstellung 2kHz)!

⁹ Für diese Gerätegrößen sind spezielle Einstellungen erforderlich (Reduzierung der max. Kühlkörpertemperatur auf 85°C, => Programmierhandbuch).

⁷⁾ Maximale Umgebungstemperatur T_a von 35 °C.



Gerätegröße			33	34	38
Gehäusegröße			Р	Р	Р
Kühlungsart (L=Luft; W=Wasser)			L	W	W
Anzahl der Module bei Master/Slave		2	3	2	3
Eingangsdaten					
Netzphasen				3	
Zugelassene Netzformen			TN-I	Netz	
Eingangsbemessungsspannung	Un / V		40	00	
Eingangsspannungsbereich	Uin / V		3404	80 ±0%	
Netzfrequenz	f _N / Hz		50/6	0 ±5	
Eingangsbemessungsleistung	Sn / kVA	395	554	616	1005
Eingangsbemessungsstrom	In / A	2x285	3x267	2x445	3x483
Max. zulässige Netzsicherung Typ gR/aR		2x400	3x350	2x630	3x630
Ausgangsdaten					
Ausgangsbemessungsspannung	UoutN_dc / V	utN_dc / V 680			
Ausgangsspannungsbereich 2)	U_dc / V		530.	840	
Überspannungsabschaltung (E.OP)	UOP_dc / V		84	40	
Ein-/Rückspeisebemessungsstrom 3)	loutN_dc / A	570	800	890	1450
Max. DC-Rückspeisestrom 30s	lout_max_dc / A	712	1000	1112	1813
Bemessungsschaltfrequenz	fsn / kHz	4 ⁵⁾	4 ⁵⁾	4 ⁵⁾	4 ⁵⁾
Max. Schaltfrequenz	fs_max / kHz	4	4	4	4
Sonstige Daten (bezogen auf die Bemessur					
Überstromabschaltung (E.OC)	loc / %	150	150	150	150
Überlaststrom (E.OL) 30s	10L / %	125	125	125	125
Max. zulässige Zwischenkreiskapazität	Cext / mF	150 ⁶⁾	250 ⁶⁾	150 ⁶⁾	250 ⁶⁾
Max. AIC Ladestrom (=> 6.5)	Iaic / A	98 ⁶⁾	145 ⁶⁾	98 ⁶⁾	146 ⁶⁾
Max. externer Ladestrom (=> 6.5)	lext / A	_	_	_	_
Max. zulässiger Gesamtladestrom (=> 6.5)	Ipre / A	98 ⁶⁾	145 ⁶⁾	98 ⁶⁾	146 ⁶⁾
Netzeingangsschaltung (=> 6.5)	Тур	D1			
Zulässige DC-Sicherungen		=> "DC-Sicherungen"			
Kurzschlussfaktor am Anschlusspunkt (Skn/SN) 10 < $Skn''/<350$					
Verlustleistung bei Bemessungsbetrieb	P _{BR} / W	4700	6900	7400	12000
Max. Kühlkörpertemperatur	tHS_max / °C	90 7)	90 7)	90 7)	90 7)
Tabelle 9: Gerätedaten Gehäuse P-System					

¹⁾ Der Eingangsstrom des Antriebsstromrichters ist ggf. auf den Bemessungsstrom des AIC/LCL-Filter zu begrenzen.

- ²⁾ Der Betrieb ist abhängig vom Spannungssollwert und der Uop-Grenze (=> Programmierhandbuch).
- ³⁾ Gemessen bei einer Referenzspannung von DC 680 V.
- ⁴⁾ Begrenzt durch den Bemessungsstrom der DC-Klemme! Bei Eingangsspannungen kleiner 400 V ist der Eingangsstrom auf 300A zu begrenzen.
- Muss für den Betrieb als AIC auf 4kHz eingestellt werden (Werkseinstellung 2kHz)!
- ⁶ Option Vorladewiderstand => "Zusätzlicher Vorladewiderstand bei Master-Slave Betrieb".
- Für diese Gerätegrößen sind spezielle Einstellungen erforderlich (Reduzierung der max. Kühlkörpertemperatur auf 85°C, => Programmierhandbuch).

4.1 Überlastkennlinien

Bei Überschreiten einer Auslastung von 105% startet ein Überlastintegrator. Bei Unterschreiten wird rückwärts gezählt. Erreicht der Integrator die dem Antriebsstromrichter entsprechende Überlastkennlinie, wird der Fehler E.OL ausgelöst.

4.2 Zubehör

4.2.1 AIC-, LCL- und EMV-Filter

Die netzseitigen AIC- bzw. LCL-Filter sind für die Ausprägung der sinusförmigen Ströme erforderlich. Sie filtern die Schaltfrequenz des Antriebsstromrichters. Der grundsätzliche Aufbau beinhaltet zwei Induktivitäten und Kondensatoren (LCL-Filter). Bei den AIC-Filtern ist zusätzlich ein EMV-Filter integriert.

			AIC-/LCL-Filter			EMV-Filter	
Größe	Gehäuse	Kühlung	Materialnummer	fsn/ kHz	In/ A	Materialnummer	In/ A
14	Е	Luft	14H6J4E-1000	8	16,5	integriert	_
16	G	Luft	19H6J4E-1000	8	36	integriert	_
18	Н	Luft	19H6J4F-1000	8	60	integriert	_
20 1)	R	Luft	19H6J4F-1000	8	60	integriert	_
20	R	Luft	21H6J4F-1001	8	90	integriert	_
22 1)	R	Luft/Wasser	24H6J4F-1000	8	108	integriert	_
24	U	Luft	24H6J4G-1000	8	180	integriert	_
26	U	Luft/Wasser	26Z1K04-1000	4/8	250	26E4T60-1001	300
27 1)	U	Luft/Wasser	26Z1K04-1000	4/8	275	26E4T60-1001	300
28	Р	Luft	29Z1K04-A000	4	460	28E4T60-1001	410
29	Р	Wasser	29Z1K04-A000	4	460	30U5A0W-3000	650
Tabelle 1	0: AIC-, LCI	L- und EMV-Filte	r				

¹⁾ LCL-Filter begrenzt den AIC-Strom.

Die sekundären LCL-Filteranschlüsse der Größe 14...24H6 sind mit geschirmten Leitungen für U, V, W und Fan 1/2 (AWG 16), FT 1/2 (AWG 18) ausgeführt. Bei der Größe 26Z1 sind Ringkabelschuhe M8 und zwei Klemmblöcke (4mm²) für Lüfter und Temperatursensor (KTY +/-) / –schalter (T1/T2) verbaut.

Bei der Größe 29Z1 sind Ringkabelschuhe M10 (Anschluss PE M12) und zwei Klemmblöcke (4mm²) für Lüfter und Temperatursensor (KTY +/-) / – schalter (T1/T2) verbaut.

4.2.2 Sinus-EMV-Stufe

Die Sinus-EMV-Stufe reduziert den Ableitstrom und den Ripplestrom durch Ankopplung an den DC-Bus. Sie besteht aus einer Kompensationsdrossel und einem Kondensatorsatz.

Größe	Gehäuse	Filterkombination	fsn/	In/	Bestehend aus	
Große	Genause	Fillerkombination	kHz	Α	AIC-/LCL-Filter	Sinus-EMV-Stufe
22	R	22Z1I04-1000	816	115	24H6J4F-1001	22Z1H04-1000
26	U	_	416	250	26Z1K04-1000	26Z1H04-1000
29	Р	29Z1I04-1000	416	460	29Z1K04-1000	29Z1H04-1000
Tabelle 1	1: Sinus-EM	IV-Stufe				

Alternativ können Sinus-EMV-Filter mit DC-Rückführung und Netzdrosseln genutzt werden.

Sinus-EMV-Filter	Netzdrosseln	Bemessungsstrom In/ A	Schaltfrequenz fs/ kHz
0DZ1I05-1001	12Z1B04-1000	9,5	
0HZ1I05-1001	14Z1B04-1000	16,5	
0LZ1I05-1001	18Z1B04-1000	50	816
0PZ1I05-1001	22Z1B04-1000	115	
0SZ1I05-1001	24Z1B04-1000	180	
0XZ1I05-1001	27Z1B04-1000	300	1 16
0YZ1I05-1001	29Z1B04-1000	460	416
Tabelle 12: Sinus-EMV-F	Filter und Netzdrosseln		

Weitere Informationen unter folgendem Link:

Installation Sinus-EMV-Filter.

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_z1-inst-sinus-emv-filter_20146892_de.pdf

Programmierhandbuch COMBIVERT F5-AIC. www.keb.de/fileadmin/media/Manuals/f5afe/prog/F5_AFE_programm 20104270 deu.pdf

GERÄTEDATEN

4.2.3 DC-Sicherungen

Größe	Bausatz (Halter und Sicherungen)	Sicherung	Sicherungskör- per in mm	U/ VDC	I/ A
14	14U42EG-3W00	2 x 0090249-5419	Ø27 x 60,3	660	25
16	16U42GH-3W00	2 x 0090249-5459	Ø27 x 60,3	660	50
18	18U420H-3W00	2 x 0090249-5519	Ø27 x 60,3	660	80
19	19U42HR-3W00	2 x 0090249-5529	Ø27 x 60,3	660	100
20	20U420R-3W00	4 x 0090249-5479	Ø27 x 60,3	660	63
22	22U420R-3W00	4 x 0090249-5529	Ø27 x 60,3	660	100
24	24U42RU-5W00	2 x 0090249-5609	129 x 60	750	250
26	26U420U-5W00	2 x 0090249-5639	129 x 60	750	350
27	27U420U-5W00	2 x 0090249-5659	129 x 60	750	400
28	28U420W-5W00	2 x 0090249-5679	129 x 75	750	500
29	29U420W-5W00	2 x 0090249-5689	129 x 75	750	630
30	2 x 27U420U-5W00	4 x 0090249-5659	129 x 60	750	400
33	2 x 29U420W-5W00	6 x 0090249-5659	129 x 60	750	400
34	2 x 29U420W-5W00	4 x 0090249-5689	129 x 75	750	630
38	3 x 29U420W-5W00	6 x 0090249-5689	129 x 75	750	630
Tabelle 13	3: DC-Sicherungen				

4.2.3.1 Alternative DC-Absicherung

Größe	Sicherungshalter mit Schutzhaube für NH00 und NH000	Sicherung	Sicherungskörper	U/ VDC	I/ A
14	2 x 0090574-0001	2 x 009025H-3459	NH000	690	50
16	2 x 0090574-0001	2 x 0090256-4531	NH000	700	100
18	2 x 0090574-0001	2 x 009025H-3559	NH000	690	125
20	2 x 0090574-0001	2 x 009025H-3559	NH000	690	125
22	2 x 0090574-0001	2 x 00902564581 / 0090256-4621	NH000	700	200/315
24	2 x 0090574-0001	2 x 009025H-4651 ¹⁾	NH00	690	400
Tabelle 14	1: Alternative DC-Absicherung	1			

¹⁾ Aufgrund der Grifflaschen kann die Schutzhaube von 0090574-0001 nicht verwendet werden. Der kompatible Mikroschalter hat die folgende Materialnummer: 0090278-0001.

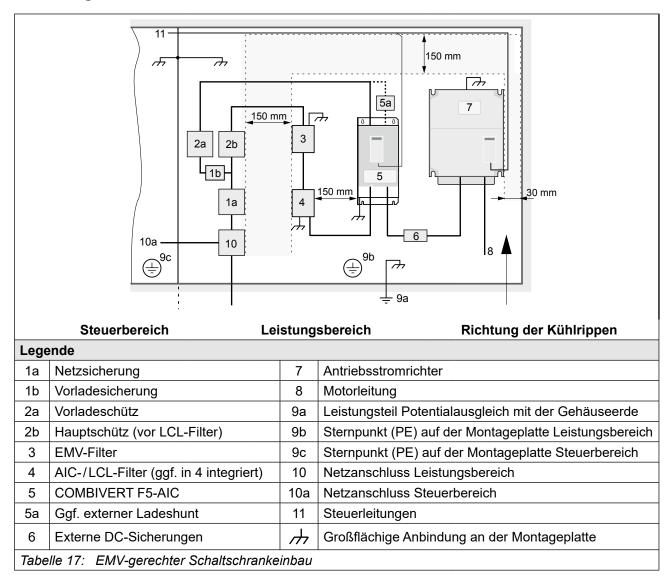
4.2.4 Zusätzlicher Vorladewiderstand bei Master-Slave Betrieb

Der externe Vorladewiderstand ist ab Gehäusegröße 29 erforderlich. Der Widerstand dient zur zusätzlichen Energieaufnahme und Begrenzung des Ladestromes. Der externe Widerstand wird in die Phase L1 am Vorladeeingang geschaltet (=> "Schaltungsbeispiel für den Master-Slave Betrieb mit AIC/LCL-Filter und EMV-Stufe").

Materialnummer	Widerstand Rv	Leistung	Spannung
0090013-0048	5,8Ω	165 W	1100 V
Tabelle 15: Zusätzlicher Vorladewich	derstand bei Master-Slav	ve Betrieb	

4.3 Abmessungen und Gewichte

Die COMBIVERT F5-AlC haben baugleiche Gehäuse mit den COMBIVERT F5 Antriebsstromrichtern. Abmessungen, Gewichte und Klemmenbeschreibungen können den folgenden Betriebsanleitungen entnommen werden:


Größe	Gehäuse	Betriebsanleitung		
14	Е	Gehäuse E		
16	G	Gehäuse G		
18	Н	Gehäuse H		
20, 22	R	Gehäuse R		
24, 26, 27	U	Gehäuse U		
28, 29, 30, 33, 34, 38	Р	Gehäuse P		
Tabelle 16: Abmessungen und Gewichte				

Die Betriebsanleitungen finden Sie unter den angegebenen Links oder unter www.keb.de/de/service/downloads.

5 Installation

5.1 EMV-gerechter Schaltschrankeinbau

5.2 Einbauhinweise

- COMBIVERT stationär installieren und erden.
- Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- In explosionsgefährdeten Räumen ist der COMBIVERT unter Beachtung der örtlichen Vorschriften in ein entsprechendes Gehäuse einzubauen.
- Der COMBIVERT ist gegen leitfähige und aggressive Gase und Flüssigkeiten zu schützen.
- Das AIC-/LCL-Filter ist in unmittelbarer Umgebung des AIC zu platzieren.
- Die Antriebsstromrichter sind in unmittelbarer Umgebung des AIC zu platzieren.
- Die DC-Verbindungsleitungen müssen möglichst kurz gehalten werden.
- Der Einsatz von Ferriten auf der DC-Leitung ist nicht zulässig.

6 Anschluss des COMBIVERT F5-AIC

6.1 Beschreibung der Eingangsklemmen am Antriebsstromrichter

ACHTUNG

Einschaltstrombegrenzung

Beim Anschluss von Antriebsstromrichtern an einen Gleichspannungsverbund ist unbedingt auf die interne Beschaltung der Gleichspannungseingänge zu achten! Antriebsstromrichter, bei denen die Gleichspannungsklemmen vom Zwischenkreis herausgeführt sind, müssen so in den DC-Verbund integriert werden, dass die Begrenzung des Einschaltstroms durch das/die speisende(n) Gerät(e) erfolgt.

Maximale Zwischenkreiskapazität

Die maximale Zwischenkreiskapazität ergibt sich durch Addition der Zwischenkreiskapazitäten aller Antriebsstromrichter im DC-Verbund => "Technische Daten von COMBIVERT Antriebsstromrichtern". Der AIC muss für diesen Wert geeignet sein.

Klemme	Beschreibung		
++,	Gleichspannungseingang mit Einschaltstrombegrenzung; als Ausgang nur verwendbar, wenn alle vom DC-Bus gespeisten Geräte eine Einschaltstrombegrenzung am Gleichspannungseingang haben.		
+(PA), -	Gleichspannungsausgang mit Einschaltstrombegrenzung; als Eingang nur verwendbar, wenn der Einschaltstrom durch die speisende Quelle begrenzt wird.		
PA, PB	Anschluss für Bremswiderstand; optional, nur wenn ein Bremstransistor eingebaut ist. In diesem Fall sind weitere Klemmen zur Überwachung des Bremstransistors vorhanden. Gegebenenfalls Rücksprache mit KEB halten!		
L1, L2, L3	Netzeingang 3-phasig		
U, V, W	Motoranschluss bzw. Eingangsklemmen für AIC-Geräte		
Tabelle 18: Beschreibung der Eingangsklemmen am Antriebsstromrichter			

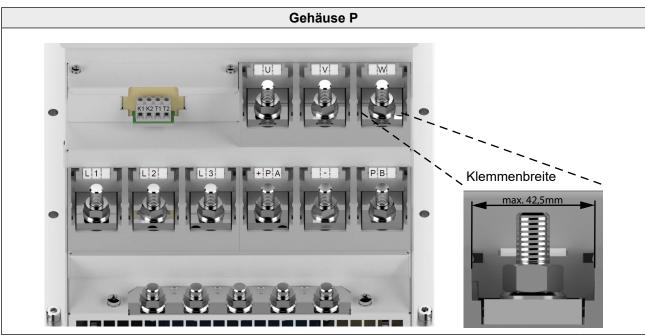
6.2 Klemmleisten der Geräte

Die Zuordnung der Nummerierung unter "Klemme" für Querschnitte und Anzugsdrehmomente => "Querschnitte und Anzugsdrehmomente der Klemmen".

Der + Kontakt der Temperaturauswertung muss an die Anschlussklemme T1 an Klemmleiste X1A angeschlossen werden! Für weitere Informationen => "Temperaturerfassung T1, T2".

Gehäuse E	Name	Funktion	Klemme
	L1, L2, L3	3-phasiger Netzanschluss	
ATTEMPT OF THE PARTY OF THE PARTY.	U, V, W	AIC-Netzanschluss] ,
L1 L2 L3 ++ PB U V W	++, PB	Anschluss für Bremswiderstand	
	++,	Anschluss für DC-Verbund	
	T1, T2	Anschluss für Temperatursensor	2
	PE,	Anschluss für Schutzerdung	3
Abbildung 2: Klemmleisten Gehäuse E			

Gehäuse G	Name	Funktion	Klemme
	L1, L2, L3	3-phasiger Netzanschluss	
L1 L2 L3 ++ PB U V W	U, V, W	AIC-Netzanschluss	4
	++, PB	Anschluss für Bremswiderstand	
	++,	Anschluss für DC-Verbund	
	T1, T2	Anschluss für Temperatursensor	2
	PE, 🖶	Anschluss für Schutzerdung	3
Abbildung 3: Klemmleisten Gehäuse G			

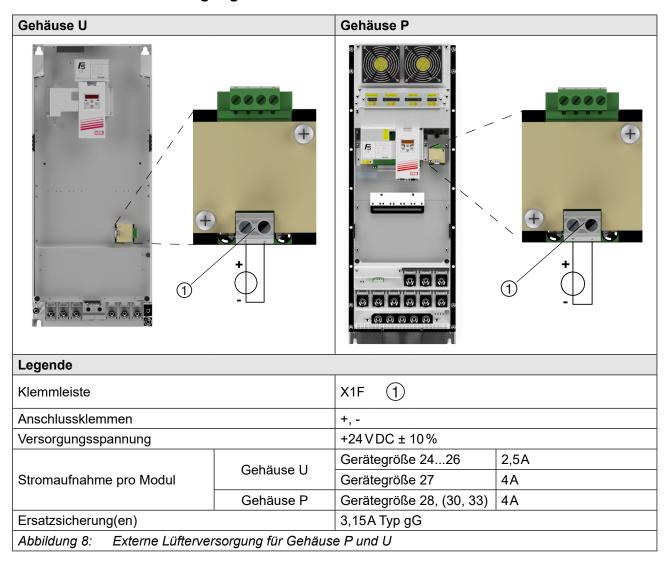

Gehäuse H	Name	Funktion	Klemme
L1 L2 L3 PE PE ++ PB TI 12	L1, L2, L3	3-phasiger Netzanschluss	
	U, V, W	AIC-Netzanschluss	5
	++, PB	Anschluss für Bremswiderstand	5
	++,	Anschluss für DC-Verbund	
	T1, T2	Anschluss für Temperatursensor	6
	PE, 🖶	Anschluss für Schutzerdung	5
Abbildung 4: Klemmleisten Gehäuse H			

Gehäuse R	Name	Funktion	Klemme
	L1, L2, L3	3-phasiger Netzanschluss	
	U, V, W	AIC-Netzanschluss	7/8
€ KN2 71 72	+PA, PB	Anschluss für Bremswiderstand	110
	+PA, –	Anschluss für DC-Verbund	
	T1, T2	Anschluss für Temperatursensor	
L1 L2 L3 · +PA - PB · U V W	K1, K2	Überwachung des Bremstransistors in Verbindung mit den Klemmen T1, T2 (nur bei Wasserkühlung)	9
	PE,	Anschluss für Schutzerdung	10
Abbildung 5: Klemmleisten Gehäuse R			

Gehäuse U	Name	Funktion	Klemme
	L1, L2, L3	3-phasiger Netzanschluss	12
€ KIKZ T1172	U, V, W	AIC-Netzanschluss	12
۵ ۵	+, -	Anschluss für DC-Verbund	
+ -	T1, T2	Anschluss für Temperatursensor	9
	K1, K2	Überwachung des Bremstransistors	9
L1 L2 L3 U V W	PE,	Anschluss für Schutzerdung	10
Abbildung 6: Klemmleisten Gehäuse U			

ANSCHLUSS DES COMBIVERT F5-AIC

Klemmleiste	Name	Funktion	Klemme			
	L1, L2, L3	3-phasiger Netzanschluss				
X1A	U, V, W	AIC-Netzanschluss	13			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+PA, PB	Anschluss für Bremswiderstand	13			
+PA, –		Anschluss für DC-Verbund				
	T1, T2	Anschluss für Temperatursensor (nur Master)				
X1D K1, K2		Überwachung des Bremstransistors (nur bei wassergekühlten Geräten)	9			
X1A	PE,	Anschluss für Schutzerdung	13			
Abbildung 7:	bbildung 7: Klemmleisten Gehäuse P					

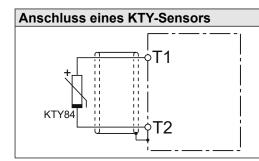

6.2.1 Querschnitte und Anzugsdrehmomente der Klemmen

	Zulässige	er Querschnitt f	Anzugsdrehmomente			
	mı	m²	Al	NG	N	lh inch
Nr.	min	max	min	max	Nm	lb inch
1	0,25	4	24	10	0,6	5
2	0,25	1,5	26	14	0,6	5
3		Schraube M4 füı	Ringkabelschu	h	1,3	11
4	6	16	22	8	1,2	11
5	2,5	35	12	2	4,5	40
6	0,5	2,5	21	12	0,6	6
7 1)	16	50	6 AWG	1/0 MCM	68	75
82)	35	95	4 AWG	2/0 MCM	1520	180
9	0,2	4	24 AWG	10 AWG	0,6	5,3
10	10	mm Stehbolzen	für Ringkabelsc	huh	25	220
11	50	150	1/0 AWG	300 MCM	2530	270
12	10 mm Stehbolzen für Ringkabelschuh und für DC-Anschluss 50150 gmm					
13	12 mm Stehbolzen für Ringkabelschuh max. 2 Ringkabelschuhe mit je 240 mm² 35 310					
Tabelle	19: Querschnitt					<u> </u>

¹⁾ Zeile gilt für F5 Gehäuse R Gerätegröße 20.

²⁾ Zeile gilt für F5 Gehäuse R Gerätegröße 22.

6.3 Externe Lüfterversorgung für Gehäuse P und U



6.4 Temperaturerfassung T1, T2

ACHTUNG

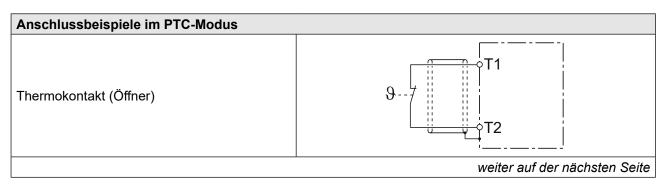
- KTY- oder PTC-Kabel vom Motor bzw. AIC-/LCL-Filter (auch geschirmt) nicht zusammen mit Steuerkabel verlegen!
- KTY- oder PTC-Kabel innerhalb vom Motorkabel nur mit doppelter Abschirmung zulässig!

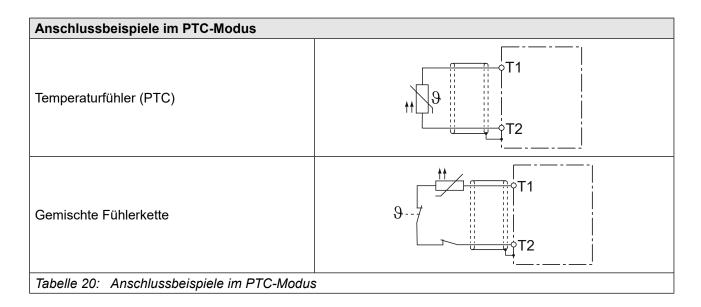
6.4.1 Nutzung des Temperatureinganges im KTY-Modus

KTY-Sensoren sind gepolte Halbleiter und müssen Durchlassrichtung betrieben werden! Dazu die Anode an T1 anschließen! Nichtbeachtung führt zu Fehlmessungen im oberen Temperaturbereich. Ein Schutz der Motorwicklung ist dann nicht mehr gewährleistet.

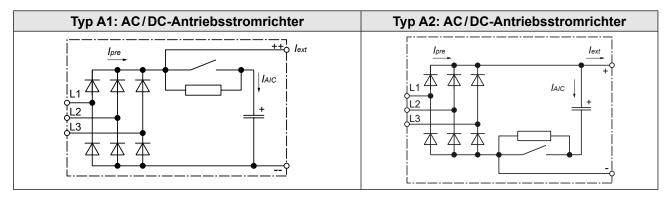
ACHTUNG

Kein Schutz der Motorwicklung bei falschem Anschluss!

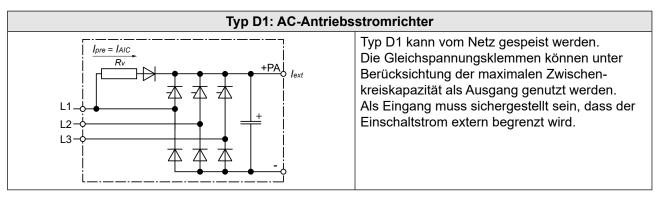

- ► KTY-Sensoren in Durchlassrichtung betreiben.
- ► KTY-Sensoren nicht mit anderen Erfassungen kombinieren.



Beispiele zum Aufbau und zur Programmierung einer Temperaturregelung mit KTY84-Auswertung können Sie dem F5-AIC *Programmierhandbuch* entnehmen.


6.4.2 Nutzung des Temperatureinganges im PTC-Modus

Wenn der Temperatureingang im PTC-Modus betrieben wird, stehen dem Anwender alle Möglichkeiten innerhalb des spezifizierten Widerstandsbereiches zur Verfügung. Dies können sein:



6.5 Eingangs- und Vorladeschaltungen

Typ A1 oder A2 kann sowohl vom Netz, als auch vom DC-Kreis gespeist werden. Die Einschaltstrombegrenzung ist nach den Eingangsklemmen angeordnet. Bei Verwendung als Ausgang müssen parallelgeschaltete Antriebsstromrichter eine eigene Einschaltstrombegrenzung am Gleichspannungseingang besitzen. Der max. Ladestrom ist zu berücksichtigen.

=> "Dimensionierungshinweise".

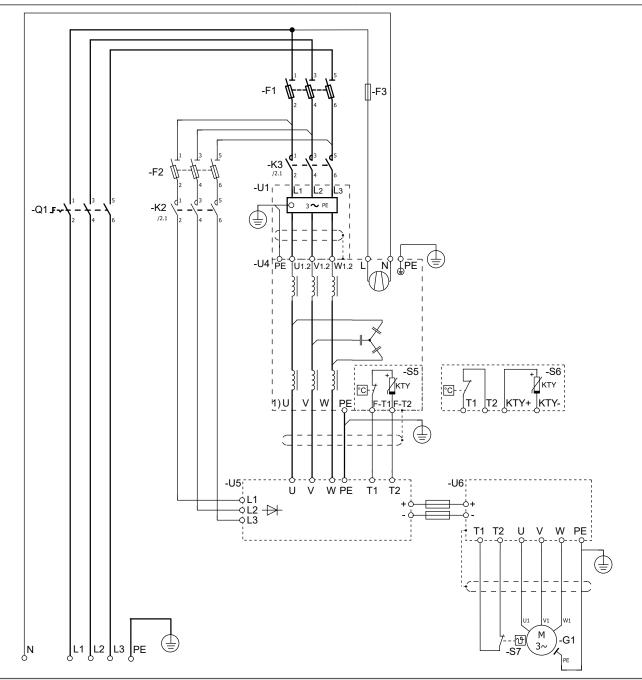
ACHTUNG

Ableitkondensatoren gegen Erde im Zwischenkreis

Antriebsstromrichter mit Ableitkondensatoren im Gleichspannungszwischenkreis gegen Erde sind für den Betrieb an einer F5-AIC nicht zulässig und können zerstört werden. Es dürfen nur durch KEB freigegebene Geräte angeschlossen werden.

6.6 Schaltungsbeispiele

6.6.1 Hinweise zum nachfolgendem Schaltungsbeispiel

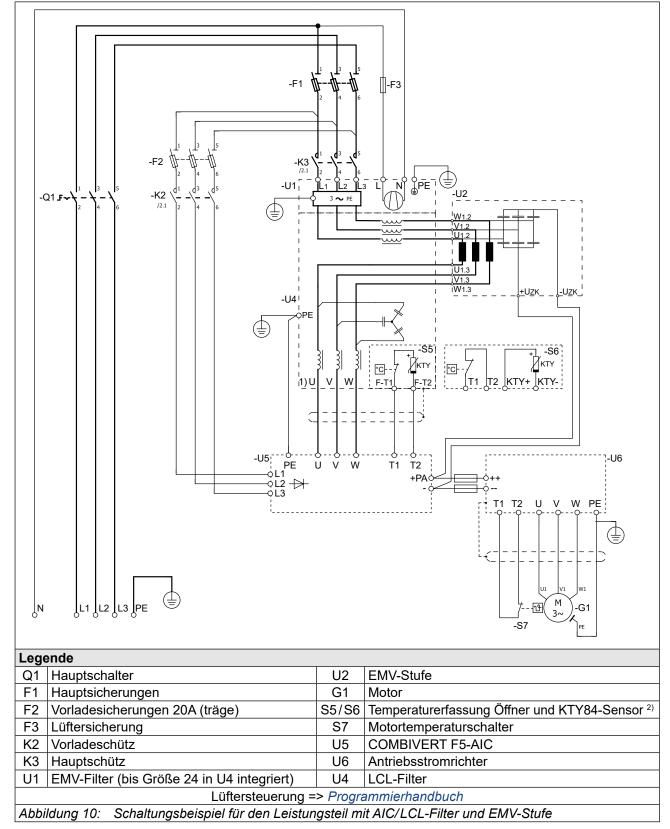

Im nachfolgenden Schaltungsbeispiel ist der Antriebsstromrichter über das F5-AIC mit einem LCL-Filter ans Versorgungsnetz angeschlossen. Die Temperaturüberwachung des LCL-Filters erfolgt durch das F5-AIC.

Die Ein- und Ausgänge sind für nachfolgendes Schaltungsbeispiel vorprogrammiert.

ACHTUNG

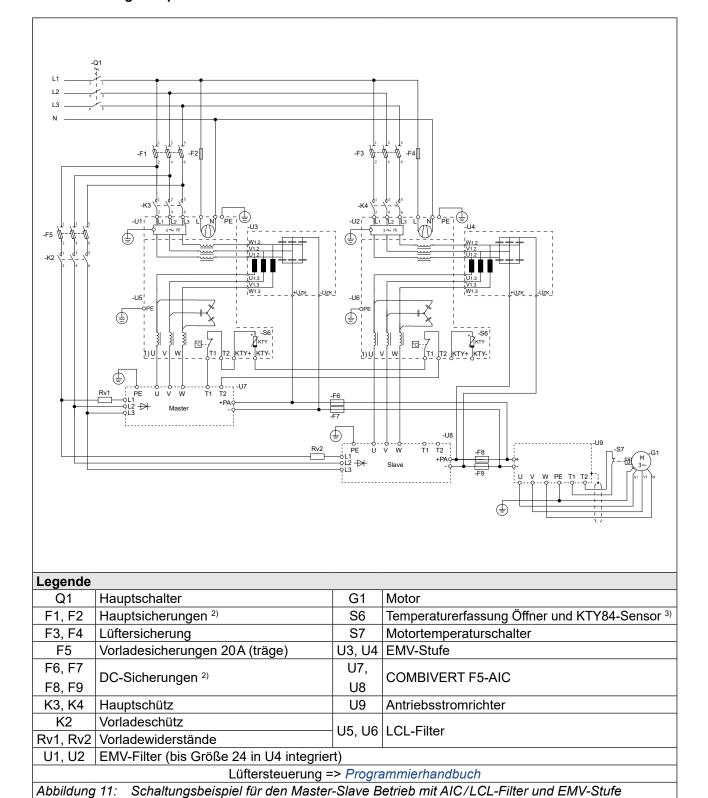
Für eine sichere Funktion des AIC-Systems sind für die Leistungsschütze K2 und K3 (Vorlade- und Hauptschütz) Modelle mit zwangsgeführten Hilfskontakten zu verwenden. Damit ist auch im Fehlerfall bei einem defekten Schütz eine sichere Verriegelung gewährleistet.

6.6.2 Schaltungsbeispiel für den Leistungsteil mit AIC/LCL-Filter


Lege	Legende						
Q1	Hauptschalter	S5/S6	Temperaturerfassung Öffner und KTY84-Sensor 2)				
F1	F1 Hauptsicherungen		Motortemperaturschalter				
F2	Vorladesicherungen 20A (träge)	U5	COMBIVERT F5-AIC				
F3	F3 Sicherung für Filterlüfter		Antriebsstromrichter				
K2	K2 Vorladeschütz		Motor				
K3	Hauptschütz	U4	LCL-Filter				
U1	U1 EMV-Filter (bis Größe 24 in U4 integriert) Lüftersteuerung => Programmierhandbuch						
Abbi	Abbildung 9: Schaltungsbeispiel für den Leistungsteil mit AIC/LCL-Filter						

¹⁾ Ausgangsklemmen U, V, W bei Größe 26 und 29 => U2, V2, W2.

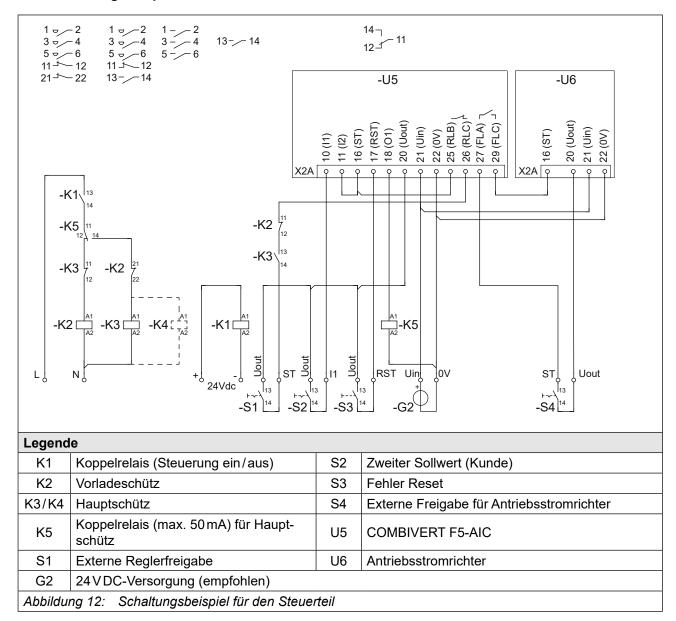
²⁾ Ausführung abhängig von Filtergröße. Achtung, Polung beachten!


6.6.3 Schaltungsbeispiel für den Leistungsteil mit AIC/LCL-Filter und EMV-Stufe

¹⁾ Ausgangsklemmen U, V, W bei Größe 26 und 29 => U2, V2, W2.

²⁾ Ausführung abhängig von Filtergröße. Achtung, Polung beachten!

6.6.4 Schaltungsbeispiel für den Master-Slave Betrieb mit AIC/LCL-Filter und EMV-Stufe


¹⁾ Ausgangsklemmen U, V, W bei Größe 26 und 29 => U2, V2, W2.

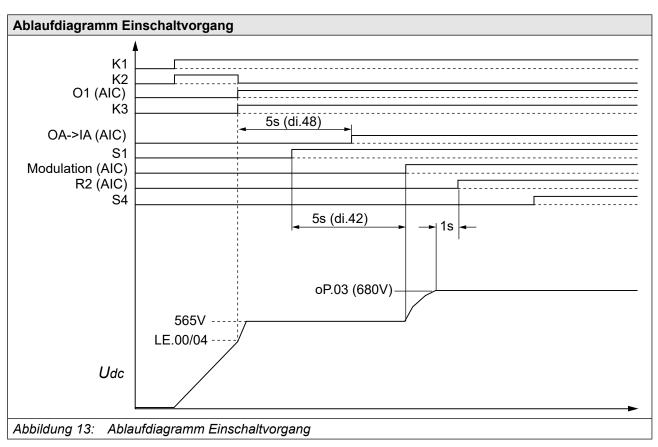
²⁾ Netz- und DC-Sicherungen sind zu überwachen.

³⁾ Ausführung abhängig von Filtergröße. Achtung, Polung beachten!

6.6.5 Schaltungsbeispiel für den Steuerteil

Vermeidung von Überspannung am Netzanschlusspunkt bei Netzausfall

Zur Abschaltung der Modulation (ST+I2) bei Netzausfall kann auch anstatt des Steuerkartenrelais R1 ein Netz- und Anlagenschutz oder eine externe Steuerung verwendet werden. Diese zwei Arten der Abschaltung der Modulation obliegen dem Kunden.


6.6.6 Funktionsbeschreibung

Durch Anlegen einer 24VDC-Spannung an das Koppelrelais (K1) wird das Vorladeschütz (K2) geschaltet. Erreicht die Zwischenkreisspannung einen einstellbaren Wert (480VDC bei Werkseinstellung LE.04), wird der Ausgang O1 gesetzt und schaltet das Koppelrelais (K5). K5 trennt das Vorladeschütz K2 und schaltet das Hauptschütz K3 ein. Die weitere Aufladung des Zwischenkreises erfolgt nun über das Hauptschütz und den AIC- bzw. LCL-Filter.

Über interne Programmierung (OA,IA) wird die Modulation solange unterdrückt, bis ein einstellbarer Schwellwert (LE.04) erreicht ist und eine entsprechende Wartezeit (di.48) abgelaufen ist.

Die Reglerfreigabe durch den Schalter (S1) wird gesetzt, wenn das Vorladeschütz K2 abgefallen und das Hauptschütz angezogen hat. Gleichzeitig mit der Reglerfreigabe startet durch den Eingang I2 eine Verzögerungszeit (di.42) nach der die Modulation freigegeben wird.

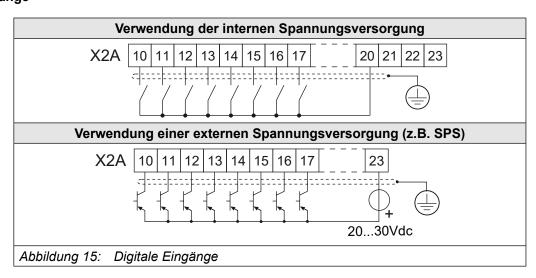
Jetzt werden Phasenlage und Drehfeld (links/rechts) der Netzspannung detektiert. Danach wird die Zwischenkreisspannung auf den vorgegebenen Sollwert (oP.03) geregelt. Ist dieser Wert erreicht, schaltet nach einer Sekunde der Relaisausgang 2 (R2). Wird die externe Reglerfreigabe des Antriebsstromrichters (S4) gesetzt, kann der Antriebsstromrichter modulieren.

7 Anschluss der Steuerung

7.1 Steuerkarte für F5 AIC-Geräte

7.1.1 Belegung der Klemmleiste X2A

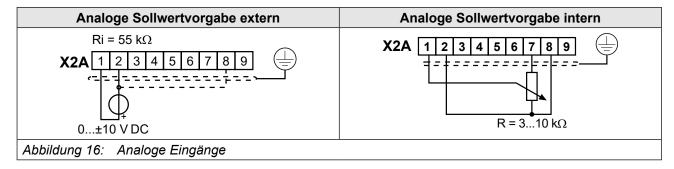
	1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1 </th								
PIN	Funktion	Name	Defaultbelegung	Beschreibung					
1	+ Sollwerteingang 1	AN1+		Das Eingangssignal 0±10V;					
2	- Sollwerteingang 1	AN1-		0±20 mA u.					
3	+ Sollwerteingang 2	AN2+	_	420 mA wird mit An.00 / An.10					
4	- Sollwerteingang 2	AN2-		festgelegt. Auflösung: 12 Bit, <i>Ri</i> = 30 kΩ, Abtastzeit: 1 ms/bei schneller Sollwertvorgabe: 250 μs					
5	Analogausgang 1	ANOUT1	_	Die am Analogausgang ausgege-					
6	Analogausgang 2	ANOUT2	_	bene Grösse wird mit An.31/ An.36 festgelegt. Spannungsbereich: 0 \pm 10 V, R_i = 100 Ω , Auflösung: 10 Bit, PWM-Frequenz: 3,4 kHz, Grenzfrequenz Filter 1. Ordnung: 178 Hz					
7	+10 V Ausgang	CRF	_	Referenzspannungsausgang +10V DC +5% / max. 4 mA für Soll- wertpotentiometer					
8	Analoge Masse	СОМ	_	Masse für analoge Ein- und Aus- gänge					
10	Progr. Eingang 1	l1	Sollwert der Regel- spannung						
11	Progr. Eingang 2	12	Einschaltverzögerung, Reglerfreigabe ST	Alle digitalen Eingänge sind frei pro-					
12	Progr. Eingang 3	13	_	grammierbar. Die Reglerfreigabe ist					
13	Progr. Eingang 4	14	_	fest mit dem Eingang ST verknüpft,					
14	Progr. Eingang Vorwärts	F		kann aber mit zusätzlichen Funktio-					
15	Progr. Eingang Rück- wärts	R	_	nen belegt werden. $R_i = 2,1 \text{ k}\Omega$ Abtastzeit: 1 ms					
16	Progr. Eingang Regler- freigabe	ST	ST						
17	Progr. Eingang Reset	RST	RST						
18	Transistorausgang 1	01	Steuerung Hauptschütz (DC > level)	Es stehen max. 50 mA DC für beide Ausgänge zur verfügung.					
19	Transistorausgang 2	O2	Betriebsbereit (<i>Uic</i> loaded)						
20	+24 V-Ausgang	U out	_	ca. 24V DC-Ausgang (max.100 mA),					
21	2030 V-Eingang	Uin	_	Spgs. eingang für ext. Versorgung, Bezugspotential 0V X2A.22/23					
	weiter auf der nächsten Seite								

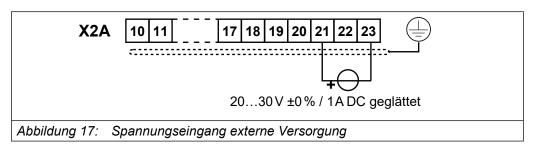

	1 2 3 4 5 6 7 8 9 1 0 1						
PIN	Funktion	Name	Defaultbelegung	Beschreibung			
22	Digitale Masse	0V		Bezugspotential für digitale Ein-/			
23	Digitale Masse	UV	_	Ausgänge			
24	Relais 1 / Schließer	RLA		Programmierbarer Relaisausgang			
25	Relais 1 / Öffner	RLB	Fehlermeldungen (error)	(Klemme X2A.2426);			
26	Relais 1 / Schaltkontakt	RLC	(CITOI)	Programmierbarer Relaisausgang 2			
27	Relais 2 / Schließer	FLA		(Klemme X2A.2729)			
28	Relais 2 / Öffner	FLB	Betriebsbereit (<i>Uic</i> loaded)	Spezifikation, Ansteuerung und Programmierung der Relaisausgän-			
29	Relais 2 / Schaltkontakt	FLC	(Oic idaded)	ge max. 30VDC, 0,011A			
Abbilo	dung 14: Belegung der K	lemmleiste X	ZA				

7.1.2 Anschluss der Steuerung

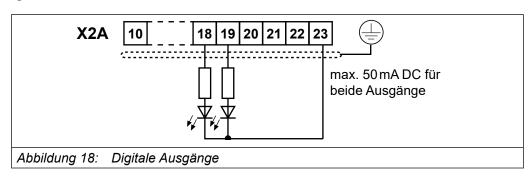
Um Fehlfunktionen durch Störspannungseinspeisung an den Steuereingängen zu vermeiden, sollten Sie folgende Hinweise beachten:

- Abgeschirmte/verdrillte Leitungen verwenden.
- Schirm einseitig am Antriebsstromrichter auf Erdpotential legen.
- Steuer- und Leistungskabel **getrennt** verlegen (ca.10...20 cm Abstand); Kreuzungen im rechten Winkel verlegen.


7.1.3 Digitale Eingänge

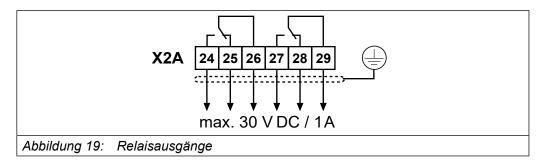

7.1.4 Analoge Eingänge

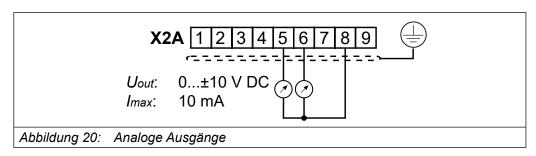
Um Sollwertschwankungen zu vermeiden, nicht beschaltete Sollwerteingänge mit der analogen Masse verbinden!



7.1.5 Spannungseingang externe Versorgung

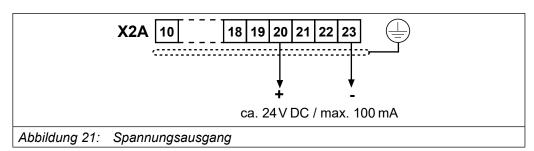
Durch die Versorgung der Steuerkarte mit einer externen Spannungsquelle bleibt die Steuerung auch bei abgeschaltetem Leistungsteil in Betrieb. Um undefinierte Zustände bei externer Versorgung zu vermeiden, sollte grundsätzlich erst die Versorgung und dann die AIC-Einheit eingeschaltet werden.


7.1.6 Digitale Ausgänge


ANSCHLUSS DER STEUERUNG

7.1.7 Relaisausgänge

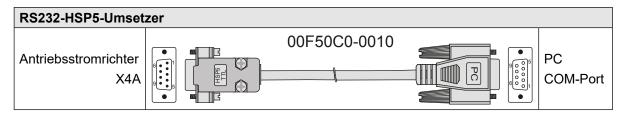
Bei induktiver Last an den Relaisausgängen ist eine Schutzbeschaltung vorzusehen (z.B. Freilaufdiode)!



7.1.8 Analoge Ausgänge

7.1.9 Spannungsausgang

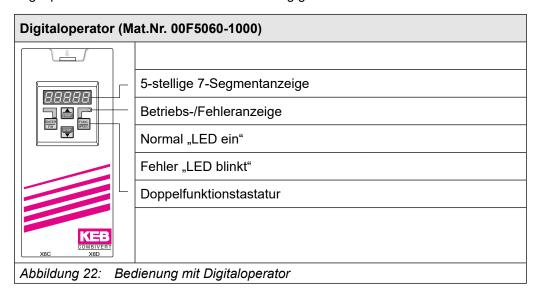
Der Spannungsausgang dient zur Ansteuerung der digitalen Eingänge sowie zur Versorgung externer Steuerelemente. Der maximale Ausgangsstrom von 100 mA darf nicht überschritten werden.



8 Bedienung der Steuerung

8.1 Bedienung ohne Operator

Für die Bedienung des COMBIVERT ohne Operator ist ein spezielles HSP5-Kabel (Materialnummer 00F50C0-0010) erhältlich. Es wird zwischen der HSP5-Schnittstelle X4A und einer seriellen RS232-PC-Schnittstelle (COM1 oder COM2) angeschlossen. Die Bedienung erfolgt über das Programm COMBIVIS 5. Für COMBIVIS 6 ist der KEB-USB-Wandler oder der Port-Expander erforderlich.



ACHTUNG

Das RS232-HSP5-Servicekabel hat einen integrierten Pegelumsetzer. Der Anschluss eines seriellen Standardkabels würde die PC-Schnittstelle zerstören.

8.2 Bedienung mit Digitaloperator

Als Zubehör zur lokalen Bedienung des COMBIVERT ist ein Digitaloperator erhältlich. Um Fehlfunktionen zu vermeiden, muss der Antriebsstromrichter vor dem Aufstecken/Abziehen des Operators in den Status noP (Reglerfreigabe öffnen) gebracht werden. Bei der Inbetriebnahme des Antriebsstromrichters wird immer mit den zuletzt abgespeicherten Werten bzw. Werkseinstellung gestartet.

53

8.2.1 Tastaturbedienung

8.2.1.1 Parameternummern und /-werte

Beim Einschalten des COMBIVERT F5 erscheint auf der Anzeige der Wert des Kundenparameters CP.1.

Mit der Funktionstaste wird zwischen Parameterwert und Parameternummer gewechselt.

Mit UP (▲) und DOWN (▼) wird die Parameternummer oder bei veränderbaren Parametern der Wert erhöht / verringert.

Grundsätzlich werden Parameterwerte beim Verändern sofort übernommen und nichtflüchtig gespeichert. Bei einigen Parametern ist es jedoch nicht sinnvoll, dass der eingstellte Wert sofort übernommen wird. Bei diesen Parametern wird durch ENTER der eingestellte Wert übernommen und nichtflüchtig gespeichert. Wenn ein solcher Parameter verändert wird, erscheint hinter der letzten Stelle ein Punkt.

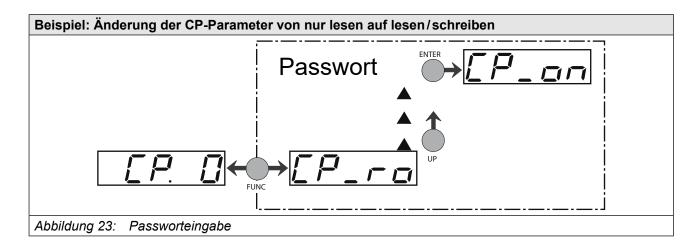
Durch "ENTER" wird der eingestellte Wert übernommen und nichtflüchtig gespeichert.

8.2.1.2 Rücksetzen von Fehlermeldungen

Tritt während des Betriebes eine Störung auf, wird die aktuelle Anzeige mit der Fehlermeldung überschrieben. Durch ENTER wird die Fehlermeldung zurückgesetzt.

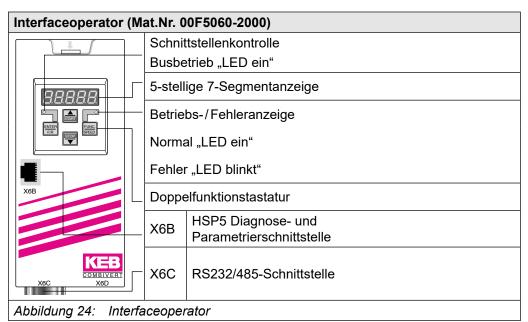
Durch ENTER wird nur die Fehlermeldung in der Anzeige zurückgesetzt. Um den Fehler selbst zurückzusetzen, muss erst die Ursache behoben werden und ein Reset oder ein Kaltstart erfolgen.

8.2.1.3 Passworteingabe


Der COMBIVERT ist mit einem umfassenden Passwortschutz ausgestattet. Abhängig vom eingegebenen Passwort sind folgende Modis möglich:

Anzeige	Modus
CP_ro	Endkundenmenü (CP-Parameter) nur lesen
CP_on	Endkundenmenü (CP-Parameter) lesen/schreiben
CP_SE	Servicemenü (wie Endkundenmenü, jedoch mit den Ursprungsparametern)
APPL	Applikationsmenü (alle Parametergruppen und Parameter sichtbar)
-	Drivemodus (COMBIVERT kann über die Tastatur in Betrieb genommen werden)
Tabelle 21:	Passworteingabe

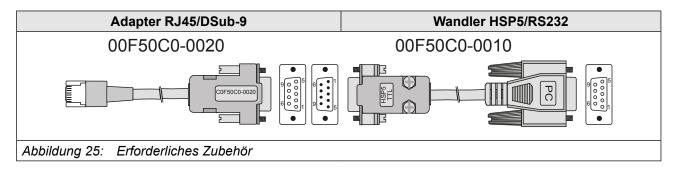
Das für die Anwendung zulässige Menü wird vom Maschinenbauer festgelegt.


Die Passworteingabe erfolgt generell über den Parameter CP.0. Das eingestellte Passwort/Menü bleibt auch nach dem Ausschalten erhalten.

8.3 Interfaceoperator

Der Interfaceoperator entspricht dem Funktionsumfang des Digitaloperators. Er ist jedoch um eine serielle RS232/485-Schnittstelle sowie ein Diagnose-/Parametrierschnittstelle erweitert.

8.3.1 Beschreibung der Diagnose- und Parametrierschnittstelle X6B

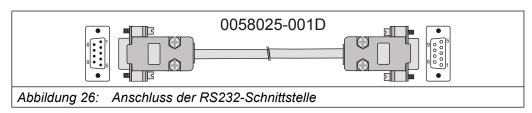

Die HSP5-Schnittstelle (X6B) ermöglicht einen Zugang zum Antriebsstromrichter für Diagnose- oder Programmieraufgaben. Die HSP5-Schnittstelle ist als RJ45-Buchse ausgeführt. Die Diagnoseschnittstelle wird an einen PC über den Adapter (00F50C0-0020) und ein HSP5-Kabel (00F50C0-0010) angeschlossen. Über die PC-Software COMBIVIS 5 kann nun auf die Antriebsstromrichterparameter im Applikationsmodus zugegriffen werden. Für COMBIVIS 6 ist der KEB-USB-Wandler oder der Port-Expander erforderlich. Die Operator-Parameter können ebenfalls ausgelesen und eingestellt oder mittels Download parametriert werden.

ACHTUNG

Zerstörung der PC-Schnittstelle!

Das RS232-HSP5-Servicekabel hat einen integrierten Pegelumsetzer. Der Anschluss eines seriellen Standardkabels würde die PC-Schnittstelle zerstören.

8.3.1.1 Erforderliches Zubehör



8.3.2 Beschreibung der RS232/485-Schnittstelle X6C

X6C	PIN	RS485	Signal	Beschreibung
	1	-	-	Reserviert
	2	-	TxD	Sendesignal RS232
	3	-	RxD	Empfangssignal RS232
	4	A'	RxD-A	Empfangssignal A RS485
5 4 3 2 1	5	B'	RxD-B	Empfangssignal B RS485
	6	-	VP	Versorgungsspannung +5V
				$(I_{max} = 50 \mathrm{mA})$
	7	C/C'	DGND	Datenbezugspotential
	8	Α	TxD-A	Sendesignal A RS485
	9	В	TxD-B	Sendesignal B RS485
Tabelle 22: Beschreibung der I	RS232/	485-Schnitts	telle X6C	

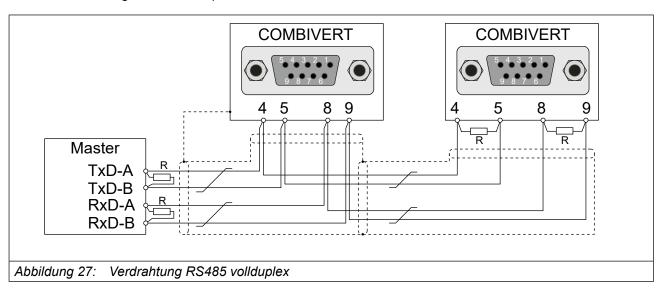
8.3.3 Anschluss der RS232-Schnittstelle

Zur Verbindung des Interfaceoperators mit einem PC ist ein RS232-Kabel erforderlich.

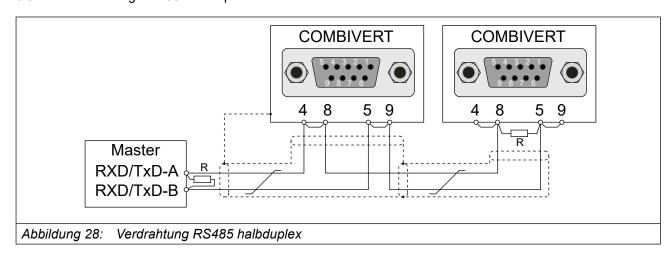
8.3.4 Anschluss der RS485-Schnittstelle

Um Störungen an der RS485-Schnittstelle vorzubeugen sind folgende Hinweise unbedingt zu beachten:

- CAT 5-Kabel verwenden (paarweise, verdrilltes und geschirmtes Kabel)
- Einseitig Erden (vorrangig an störungsfreieren Seite)
- Abschlusswiderstände an beiden Enden des Busses von jeweils $120\,\Omega$ anbringen



Wenn abweichend von unserer Empfehlung CAT7-Kabel eingesetzt wird, so muss der innere Schirm jeweils am Sender aufgelegt werden.


Sollten weiterhin Störung auftreten besteht die Möglichkeit ein Biasing einzusetzen. Dies darf jedoch nur einmal am Bus erfolgen (vorzugsweise am Master).

8.3.4.1 Verdrahtung RS485 vollduplex

8.3.4.2 Verdrahtung RS485 halbduplex

8.3.5 Fernbedienung

Zur Fernbedienung des COMBIVERT F5 ist ein spezieller HSP5-Operator erhältlich. Der Operator wird hierbei abgesetzt vom Antriebsstromrichter z. B. in die Schaltschranktür integriert.

Operator	Materialnummer	Passendes Kabel
F5 HSP5/485 Anschluss DSUB-15	00F5060-9000	00F50C0-2xxx
F5 HSP5/485 Anschluss Schraubklemme	00F5060-9001	00F50C0-3xxx

xxx Die letzten drei Ziffern der Materialnummer bestimmen die Länge des Kabels in dm.

8.3.6 Weitere Operatoren

Zusätzlich zu den beschriebenen Operatoren kann der COMBIVERT mit weiteren Operatoren für spezielle Einsatzfälle (PROFIBUS, INTERBUS, Sercos, CAN) bestückt werden. Weitere Informationen => www.keb.de.

9 Dimensionierung

9.1 Dimensionierungshinweise

Die Auslegung des COMBIVERT F5 AIC erfolgt auf den maximal zulässigen Eingangsbemessungsstrom. Die Leistungsangaben beziehen sich auf 400 V Eingangsbemessungsspannung.

Der DC-Strom ist abhängig von der eingestellten DC-Spannung und wird nicht separat erfasst.

Vorladung

Je nach Netzeingangsschaltung des AIC-Gerätes ist entweder der "max. externe Ladestrom *lext*" oder die "max. zulässige Zwischenkreiskapazität *Cext*" zu beachten (=> "*Technische Daten von COMBIVERT Antriebsstromrichtern*")!

Weiterhin ist zum Schutz der Vorladewiderstände die erforderliche Wartezeit zwischen zwei Einschaltvorgängen zu beachten.

Netzeingangsschaltung Typ A:

Bei Typ A ist an den DC-Klemmen (Bezeichnung ++, --) keine Strombegrenzung für extern angeschlossene DC-Geräte vorhanden. Eine Strombegrenzung ist durch die extern angeschlossenen Geräte sicherzustellen. Der maximale externe Ladestrom darf nicht überschritten werden (=> "Gerätedaten").

Netzeingangsschaltung Typ D1:

Bei Typ D erfolgt die Strombegrenzung für die an den DC-Klemmen (Bezeichnung +PA, -) angeschlossenen Geräte durch die integrierte Ladestrombegrenzung. Durch die angeschlossenen Geräten darf die angegebene maximal zulässige Zwischenkreiskapazität nicht überschritten werden (=> "Gerätedaten").

Max. zulässiger Gesamtladestrom (/pre)

Der Strom gibt den maximal zu erwartenden Strom während des Vorladevorganges an und kann zur Auslegung des Vorladeschützes verwendet werden.

9.2 Technische Daten von COMBIVERT Antriebsstromrichtern

COMBIVERT F5 Antriebsstromrichter Vorladung durch AIC bei einer Umgebungstemperatur $T_a = 45$ °C und $U_{N_max} = 440$ V. Bei höheren Netzspannungen sind entsprechend höhere Ladeströme zu erwarten. In diesem Fall bitte Rücksprache mit KEB halten!

					Ladeshunt		Max.		
Größe	Gehäuse	PN	IN	Cint	R	Тур	Ladestrom		
400V		kW	Α	uF	Ω	_	Α		
5	В	0,37	1,3	180	33	NTC	19		
7	В	0,75	2,6	180	33	NTC	19		
9	В	1,5	4,1	300	33	NTC	19		
10	В	2,2	5,8	345	10	NTC	62		
12	В	4	9,5	470	10	NTC	62		
	•	•		•	•				
7	D	0,75	2,6	180	33	NTC	19		
9	D	1,5	4,1	300	10	NTC	62		
10	D	2,2	5,8	345	10	NTC	62		
12	D	4	9,5	470	10	NTC	62		
13	D	5,5	12	580	10	NTC	62		
14	D	7,5	16,5	650	10	NTC	62		
		•		•					
12	E	4	9,5	470	20	NTC	31		
13	E	5,5	12	580	20	NTC	31		
14	E	7,5	16,5	650	20	NTC	31		
15	E	11	24	940	20	NTC	31		
16	E	15	33	1290	20	NTC	31		
	•	•							
14	G	7,5	16,5	650	10	_	62		
15	G	11	24	940	10	_	62		
16	G	15	33	1290	10	_	62		
17	G	18,5	42	1640	10	_	62		
18	G	22	50	1875	6	_	104		
16	Н	15	33	1290	20	_	31		
17	Н	18,5	42	1640	20	_	31		
18	Н	22	50	1875	20	_	31		
19	Н	30	60	2700	20	_	31		
20	Н	37	75	3900	20	_	31		
18	R	22	50	1875	5,0	_	_		
19	R	30	60	2700	5,0	_	_		
20	R	37	75	3900	5,0	_	_		
21	R	45	90	4950	5,0	_	_		
	1		1			eiter auf de	r nächsten Seite		

DIMENSIONIERUNG

						Lade	shunt	Max.	
Grä	öße	Gehäuse	PN	IN	Cint	R	Тур	Ladestrom	
40	0V		kW	Α	uF	Ω	-	A	
2	2	R	55	115	4950	5,0	_	_	
2	3	R	75	150	6350	5,0	_	_	
2	4	R	90	180	8400	5,0	_	_	
2	3	U	75	150	6350	5,0	_	_	
2	4	U	90	180	8400	5,0	_	_	
2	5	U	110	210	9900	2,5	_	_	
2	6	U	132	250	11700	2,5	_	_	
2	7	U	160	300	14100	2,5	_	_	
2	8	U	200	370	16800	2,5	_	_	
2	8	Р	200	370	16200	5,8	_	_	
2	9	Р	250	460	19800	5,8	_	_	
3	0	Р	315	570	19800	5,8	_	_	
3	2	P (M/S)	400	710	39600	2,9	_	_	
3	3	P (M/S)	450	800	39600	2,9	_	_	
3	4	P (M/S)	500	890	39600	2,9	_	_	
3	5	P (M/S)	560	1000	39600	2,9	_	_	
3	6	P (M/S/S)	630	1150	59400	1,9	_	_	
Legend	е								
PN	Bemess	ungsleistung							
IN	Bemess	ungsstrom							
Cint	Reale K	apazität							
M/S	Master/Slave								
M/S/S	Master/	Slave/Slave							
Tabelle	23: Tech	nische Daten vo	on COMBIVE	ERT Antrieb	sstromrichter	'n			

ACHTUNG

Zerstörung der Kondensatoren! Minimale Wartezeit zwischen zwei Einschaltvorgängen 5 Minuten!

Beim AIC mit NTC ist ein Wiedereinschalten erst nach 5 Minuten erlaubt.

9.3 Technische Daten der COMBIVERT F5 AIC-Einheiten

Maximale Vorladung AIC bei einer Umgebungstemperatur $T_a = 45^{\circ}$ C und $U_{N_max} = 440 \text{V}/480 \text{V}$. Bei höheren Netzspannungen sind entsprechend höhere Ladeströme zu erwarten. In diesem Fall bitte Rücksprache mit KEB halten!

			Cext max		Max. externer Ladestrom bei	Max. Gesamt- ladestrom bei	
Größe	S	Cint	bei <i>U</i> _N =440V/480V	R	UN=440V/480V	U _N =440V/480V	Beschreibung
AIC	kVA	uF	uF	Ω	Α	Α	-
14	11	820	_	20	73/67	104	NTC als Shunt
16	23	1260	_	10	130/120	190	-
18	35	1800	_	20	320/315	350	ı
20	52	3900	40.000/35.000	2,5	_	250/270	_
22	80	4950	40.000/35.000	2,5	_	250/270	-
24	125	8250	35.000/30.000	2,5	_	250/270	_
26	173	11700	33.000/27.000	2,5	_	250/270	_
27	208	14100	30.000/24.000	2,5	_	250/270	_
28	256	19800	27.000/20.000	5,8	_	107/117 1)	-
29	319	19800	27.000/20.000	5,8	_	107/117	ı
30	395	39600	140.000/110.000	5,8 ¹⁾	_	107/117 1)	_
33	554	59400	230.000/180.000	3,9 1)	_	161/175 ¹⁾	_
34	616	39600	140.000/110.000	5,8 1)	_	107/117 ¹⁾	_
38	1005	59400	230.000/180.000	3,9 1)	_	161/175 ¹⁾	-
Legende	е						
S	Sch	einleistun	g				
Cint	Inte	Interne Kapazität					
Cextmax	Max	Maximale, anschließbare Kapazität					
R	Lad	Ladeshunt					
Tabelle 24: Technische Daten der KEB COMBIVERT F5 AIC-Einheiten							

Option Vorladewiderstand => "Zusätzlicher Vorladewiderstand bei Master-Slave Betrieb".

Zerstörung der Kondensatoren! Minimale Wartezeit zwischen zwei Einschaltvorgängen 5 Minuten!

Beim AIC mit NTC ist ein Wiedereinschalten erst nach 5 Minuten erlaubt.

10 Kühlsystem

10.1 Einbau von flüssigkeitsgekühlten Geräten

Flüssigkeitsgekühlte Antriebsstromrichter werden im Dauerbetrieb deutlich kühler betrieben als luftgekühlte Geräte. Dies hat positive Auswirkungen auf die Lebensdauer von Komponenten wie Lüfter, Zwischenkreiskondensatoren und Endstufen (IGBT). Auch die temperaturabhängigen Schaltverluste werden positiv beeinflusst. Bei Applikationen wo prozessbedingt Kühlflüssigkeit vorhanden ist, bietet sich die Anwendung von flüssigkitsgekühlten COMBIVERT Antriebsstromrichter in der Antriebstechnik an.

10.1.1 Kühlkörper und Betriebsdruck

Bauart	Material (Spannung)	max. Betriebsdruck	Anschlussstutzen				
Stranggusskühlkörper	Aluminium (-1,67 V)	10 bar	0000650-G140				
Kühlplatte mit		Char	auf Anfrage				
eingepressten Rohren	Edelstahl (-1,04V)	6 bar					
Tabelle 25: Kühlkörper und Betriebsdruck							

Die Aluminiumflüssigkeitskühler sind durch Dichtungsringe abgedichtet und verfügen in den Kanälen über einen Oberflächenschutz (eloxiert).

ACHTUNG

Verformung des Kühlkörpers!

- ► Um eine Verformung des Kühlkörpers und die damit verbundenen Folgeschäden zu vermeiden, darf der jeweils angegebene maximale Betriebsdruck auch von Druckspitzen kurzzeitig nicht überschritten werden.
- ► Es ist die Druckgeräterichtlinie 2014/68/EU über Druckgeräte zu beachten!

10.1.2 Materialien im Kühlkreis

Für die Verschraubungen und auch im Kühlkreis befindliche metallische Gegenstände, die mit der Kühlflüssigkeit (Elektrolyt) in Kontakt stehen, ist ein Material zu wählen, welches eine geringe Spannungsdifferenz zum Kühlkörper bildet, damit keine Kontaktkorrosion und/oder Lochfraß entsteht (elektrochemische Spannungsreihe, siehe Tabelle). Eine Aluminiumverschraubung oder ZnNi beschichtete Stahlverschraubung wird empfohlen. Andere Materialien sind jeweils vor dem Einsatz selbst zu prüfen. Der spezifische Einsatzfall ist in Abstimmung des gesamten Kühlkreislaufes vom Kunden selbst zu prüfen und hinsichtlich der Verwendbarkeit der eingesetzten Materialien entsprechend einzustufen. Bei Schläuchen und Dichtungen ist darauf zu achten, dass halogenfreie Materialien verwendet werden.

Eine Haftung für entstandene Schäden durch falsch eingesetzte Materialien und daraus resultierender Korrosion kann nicht übernommen werden!

Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff								
Material	gebildetes lon	Normpotenzial	Material	gebildetes Ion	Normpotenzial			
Lithium	ithium Li ⁺		Cobald	Co ²⁺	-0,28 V			
Kalium	K⁺	-2,93 V	Nickel	Ni ²⁺	-0,25 V			
Calcium	Ca ²⁺	-2,87 V	Zinn	Sn ²⁺	-0,14 V			
Natrium	Na⁺	-2,71 V	Blei	Pb ³⁺	-0,13 V			
Magnesium	Mg ²⁺	-2,38 V	Eisen	Fe ³⁺	-0,037 V			
Titan	Ti ²⁺	-1,75V	Wasserstoff	2H⁺	0,00 V			
Aluminium	Al ³⁺	-1,67 V	Kupfer	Cu ²⁺	0,34 V			
Mangan	Mn ²⁺	-1,05V	Kohlenstoff	C ²⁺	0,74 V			
Zink	Zn ²⁺	-0,76V	Silber	Ag⁺	0,80 V			
Chrom	Cr³+	-0,71 V	Platin	Pt ²⁺	1,20 V			
Eisen	Fe ²⁺	-0,44 V	Gold	Au ³⁺	1,42 V			
Cadmium	Cd ²⁺	-0,40 V	Gold	Au⁺	1,69 V			
Tabelle 26: Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff								

10.1.3 Anforderungen an das Kühlmittel

Die Anforderungen an das Kühlmittel hängen von den Umgebungsbedingungen, sowie vom verwendeten Kühlsystem ab. Generelle Anforderungen an das Kühlmittel:

Anforderung	Beschreibung
Normen	TrinkwV 2001, DIN EN 12502 Teil 1-5, DIN 50930 Teil 6, DVGW-Arbeitsblatt W216
VGB Kühlwasserrichtlinie	Die VGB Kühlwasserrichtlinie (<i>VGB R 455 P</i>) enthält Hinweise über gebräuchliche Verfahrenstechniken der Kühlung. Inbesondere werden die Wechselwirkungen zwischen dem Kühlwasser und den Komponenten des Kühlsystems beschrieben.
pH-Wert	Aluminium wird besonders von Laugen und Salzen angegriffen. Der optimale pH-Wert für Aluminium sollte im Bereich von 7,58,0 liegen.
Abrasivstoffe	Abrasivstoffe, wie sie in Scheuermitteln (Quarzsand) verwendet werden, setzen den Kühlkreislauf zu.
Kupferspäne	Kupferspäne können sich am Aluminium anlagern und führen zur galvanischen Korrosion. Kupfer sollte aufgrund der elektrochemischen Spannungsdifferenz nicht zusammen mit Aluminium verwendet werden.
Hartes Wasser	Kühlwasser darf keine Wassersteinablagerungen oder lockere Ausscheidungen verursachen. Es soll eine geringe Gesamthärte (<20°dH) insbesondere Karbonhärte haben.
Weiches Wasser	Weiches Wasser (<7°dH) greift die Werkstoffe an.
Frostschutz	Bei Applikationen, bei denen der Kühlkörper oder die Kühlflüssigkeit Temperaturen unter 0°C ausgesetzt ist, muss ein entsprechendes Frostschutzmittel eingesetzt werden. Zur besseren Verträglichkeit mit anderen Additiven am Besten Produkte von einem Hersteller verwenden.
Korrosionsschutz	Als Korrosionsschutz können Additive eingesetzt werden. In Verbindung mit Frostschutz muss der Frostschutz eine Konzentration von 2025 Vol% haben, um eine Veränderung der Additive zu verhindern.
Tabelle 27: Anforderu	ıngen an das Kühlmittel

Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Wasserfilter entgegen gewirkt werden.
Salzkonzentration	Bei halboffenen Systemen kann durch Verdunstung der Salzgehalt ansteigen. Dadurch wird das Wasser korrosiver. Zufügen von Frischwasser und Entnahme von Nutzwasser wirkt dem entgegen.
Algen und Schleimbak- terien	Durch die erhöhte Wassertemperatur und der Kontakt mit Luftsauerstoff können sich Algen und Schleimbakterien bilden. Diese setzten die Filter zu und behindern somit den Wasserfluss. Biozid-haltige Additive können dies verhindern. Insbesondere bei längerem Stillstand des Kühlkreislaufs ist hier vorzubeugen.
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.

ACHTUNG

Schäden am Gerät, die durch verstopfte, korrodierte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Gewährleistung.

10.1.4 Kühlmitteltemperatur

Die Vorlauftemperatur sollte maximal 40 °C betragen. Die maximale OH-Temperatur liegt je nach Leistungsteilausführung und Überlastfähigkeit bei 60 °C oder 90 °C. Die Kühlmitteltemperatur ist in den technischen Daten spezifiziert.

Die Vorlauftemperatur sollte in Abhängigkeit vom Volumenstrom so gewählt werden, dass bei Bemessungsbetrieb die Kühlkörpertemperatur immer 10K unter dem Übertemperaturpegel liegt. Dadurch wird ein sporadisches Abschalten vermieden.

10.1.4.1 Betauung

Bedingt durch hohe Luftfeuchtigkeit und hohe Temperaturen kann es zur Betauung führen. Betauung stellt eine Gefahr für den Antriebsstromrichter dar, da durch eventuell entstehende Kurzschlüsse der Antriebsstromrichter zerstört werden kann.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

▶ Der Anwender muss sicherstellen, dass jegliche Betauung vermieden wird!

10.1.4.2 Zuführung temperierter Kühlflüssigkeit

Dies ist möglich durch die Verwendung von Heizungen im Kühlkreislauf zur Steuerung der Kühlflüssigkeitstemperatur. Hierzu steht folgende Taupunkttabelle zur Verfügung:

Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

Luftfeuchtigkeit in %	10	20	30	40	50	60	70	80	90	100
Umgebungs-										
temperatur in °C										
-25	-45	-40	-36	-34	-32	-30	-29	-27	-26	-25
-20	-42	-36	-32	-29	-27	-25	-24	-22	-21	-20
-15	-37	-31	-27	-24	-22	-20	-18	-16	-15	-15
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11	-10
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6	-5
0	-26	-19	-14	-11	-8	-6	-4	-3	-2	0
5	-23	-15	-11	-7	-5	-2	0	2	3	5
10	-19	-11	-7	-3	0	1	4	6	8	9
15	-18	-7	-3	1	4	7	9	11	13	15
20	-12	-4	1	5	9	12	14	16	18	20
25	-8	0	5	10	13	16	19	21	23	25
30	-6	3	10	14	18	21	24	26	28	30
35	-2	8	14	18	22	25	28	31	33	35
40	1	11	18	22	27	31	33	36	38	40
45	4	15	22	27	32	36	38	41	43	45
50	8	19	28	32	36	40	43	45	48	50
	Kühlmitteleintrittstemperatur in °C									

Tabelle 28: Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit

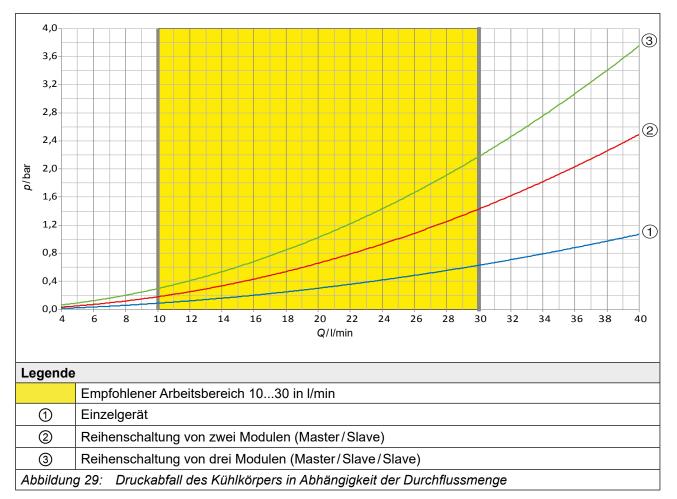
10.1.5 Anschluss an das Kühlsystem

- Anschlussstutzen gemäß Montageanleitung für Verschraubung 0000650-G14K einschrauben.
- Der Kühlflüssigkeitsanschluss ist mit elastischen, druckfesten Schläuchen auszuführen und mit Schellen zu sichern.
- · Flussrichtung beachten und auf Dichtheit prüfen!
- Vor Inbetriebnahme des COMBIVERT ist immer der Kühlmittelfluss zu starten.

Die Anbindung an das Kühlsystem kann als geschlossener oder auch als offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung der Kühlflüssigkeit sehr gering ist. Vorzugsweise sollte auch eine Überwachung des pH-Wertes der Kühlflüssigkeit installiert werden.

Beim erforderlichen Potentialausgleich ist auf einen entsprechenden Leiterquerschnitt zu achten, um elektrochemische Vorgänge möglichst gering zu halten.

Weitere Elemente im Kühlkreislauf wie beispielsweise Pumpen, Mischventile, Absperrventile oder die Entlüftung sind entsprechend dem Kühlsystem, sowie den örtlichen Gegebenheiten anzupassen.

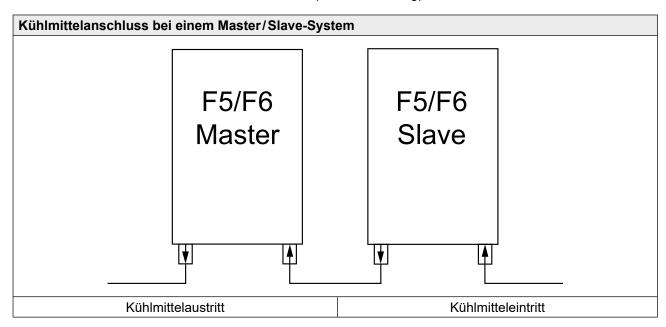

ACHTUNG

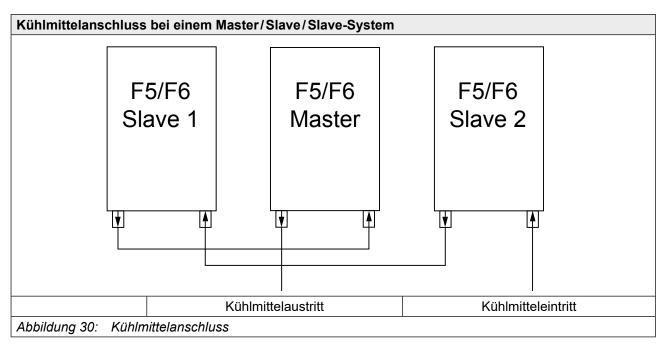
Ein diskontinuierlicher Betrieb ist nicht zu empfehlen, weil dies zur Verringerung der Lebensdauer führt.

KÜHLSYSTEM

10.1.5.1 Druckabfall des Kühlkörpers in Abhängigkeit der Durchflussmenge

Die für den COMBIVERT F5 benötigte Pumpenleistung leitet sich aus den Angaben, die in => "10.1.5.2 Anschlussschema für einen Kühlkreislauf (Reihenschaltung)" dargestellt sind, ab.

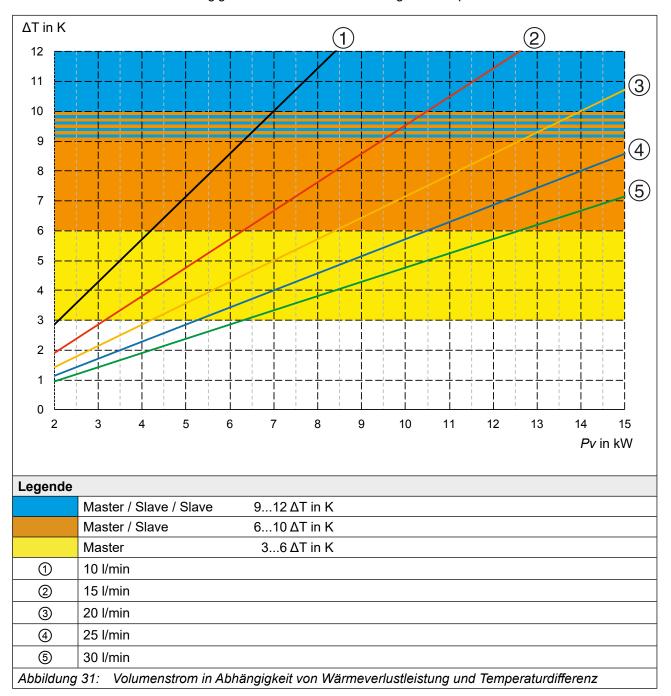




Die Wahl des Anschlussschemas (Reihen- oder Parallelschaltung) des Kühlmittelkreislaufes ist von der Wärmeverlustleistung und der gewählten Schaltfrequenz des Antriebsstromrichtersystems abhängig.

10.1.5.2 Anschlussschema für einen Kühlkreislauf (Reihenschaltung)

Dieses Anschlussschema dient nur als Montagevorschlag und ersetzt keine fachgerechte Planung und Auslegung!

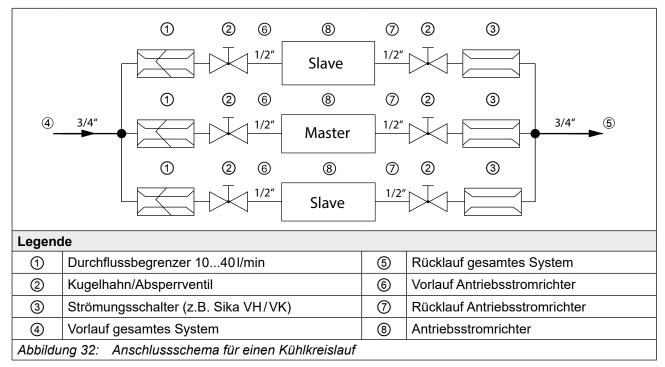

Arbeitet das Antriebsstromrichtersystem im Bemessungsbetrieb kann die Ausführung des Kühlmittelkreislaufes in einer Reihenschaltung erfolgen. Dabei ist zu beachten, dass in den Slavemodulen die Temperatur analog erfasst und digital als Fehlersignal an den Master weitergegeben wird. Um reale Temperaturen angezeigt zu bekommen, muss der Kühlmittelrücklauf am Mastergerät angebracht werden.

Die Wärmeverlustleistung für jede Gerätegröße kann aus den technischen Daten entnommen werden. Die sich daraus ergebenden Volumenströme müssen im empfohlenen Arbeitsbereich der Temperaturdifferenz liegen. Die Zusammenhänge zwischen Wärmeverlustleistung, Durchfluss und Temperaturdifferenz => "Volumenstrom in Abhängigkeit von Wärmeverlustleistung und Temperaturdifferenz".

ACHTUNG

Die maximale Temperaturdifferenz zwischen Vor- und Rücklauft ist in den technischen Daten angegeben und sollte nicht überschritten werden. Wird der Volumenstrom (über 30I/min pro Modul) zu groß gewählt, steigt wiederum die Gefahr einer Erosion im Flüssigkeitskühler.

10.1.5.3 Volumenstrom in Abhängigkeit von Wärmeverlustleistung und Temperaturdifferenz



10.1.5.4 Anschlussschema für einen Kühlkreislauf (Parallelschaltung)

Dieses Anschlussschema dient nur als Montagevorschlag und ersetzt keine fachgerechte Planung und Auslegung!

Der Anschluss des Kühlmittelkreislaufes an das Antriebsstromrichtersystem als parallele Ausführung ist auch im Bemessungsbetrieb möglich und für Sonderapplikationen zwingend vorgeschrieben.

Dabei ist zu beachten, dass der Einsatz von Durchflusswächtern und einer Temperaturüberwachung zwingend erforderlich ist. Vor Inbetriebnahme des COMBIVERT ist immer der Kühlmittelfluss zu starten. Weitere Elemente im Kühlkreislauf wie Pumpe, Absperrventile, Entlüftung usw. sind entsprechend dem Kühlsystem sowie den örtlichen Gegebenheiten anzupassen.

Der zu wählende Gesamtvolumenstrom richtet sich nach der angegebenen Wärmeverlustleistung des Antriebsstromrichtersystem (Siehe technische Daten). Die Angaben gelten für Bemessungsbetrieb. Sonderapplikationen auf Anfrage. Die Zusammenhänge zwischen Wärmeverlustleistung, Durchfluss und Temperaturdifferenz sind im Diagramm "Volumenstrom in Abhängigkeit von Wärmeverlustleistung und Temperaturdifferenz" dargestellt.

ACHTUNG

Die maximale Temperaturdifferenz (ΔT) zwischen Vor- und Rücklauft darf 7K nicht überschreiten. Wird der Volumenstrom (über 301/min pro Modul) zu groß gewählt, steigt wiederum die Gefahr einer Erosion im Flüssigkeitskühler.

10.1.6 Außerbetriebnahme

Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

11 Zertifizierung

11.1 CE-Kennzeichnung

CE gekennzeichnete Antriebsstromrichter sind in Übereinstimmung mit den Vorschriften der Niederspannungsrichtlinie und EMV-Richtlinie entwickelt und hergestellt worden. Die harmonisierten Normen der Reihe *EN 61800-5-1* und *EN 61800-3* werden angewendet.

Für weitere Informationen zu den CE-Konformitätserklärungen => "11.2 Weitere Informationen und Dokumentation".

11.2 Weitere Informationen und Dokumentation

Ergänzende Anleitungen und Hinweise zum Download finden Sie unter www.keb.de/de/service/downloads

Allgemeine Anleitungen

- EMV- und Sicherheitshinweise
- Anleitungen für weitere Steuerkarten, Sicherheitsmodule, Feldbusmodule, etc.

Anleitungen für Konstruktion und Entwicklung

- Eingangssicherungen gemäß UL
- Programmierhandbuch f
 ür Steuer- und Leistungsteil
- Motorkonfigurator, zur Auswahl des richtigen Antriebsstromrichters, sowie zur Erstellung von Downloads zur Parametrierung des Antriebsstromrichters

Zulassungen und Approbationen

- · CE-Konformitätserklärung
- TÜV-Bescheinigung
- FS-Zertifizierung

Sonstiges

- COMBIVIS, die Software zur komfortablen Parametrierung der Antriebsstromrichter über einen PC (per Download erhältlich)
- EPLAN-Zeichnungen

ÄNDERUNGSHISTORIE

12 Änderungshistorie

Version	Datum	Beschreibung
00	2016-10	Fertigstellung Vorserie
01	2018-01	Umstellung auf neue KEB-ci; allgemeine Änderungen
02	2019-02	Zertifizierte Version aufgenommen, WEEE-Registrierung eingefügt; redaktionelle Änderungen
03	2020-10	Änderung der Bennennungen von AFE in AIC; redaktionelle Änderungen
04	2021-03	Neue Anwendungshinweise

Benelux | KEB Automation KG

Dreef 4 - box 4 1703 Dilbeek Belgien

Tel: +32 2 447 8580

Brasilien | KEB SOUTH AMERICA - Regional Manager

Rua Dr. Omar Pacheco Souza Riberio, 70

CEP 13569-430 Portal do Sol, São Carlos Brasilien

China | KEB Power Transmission Technology (Shanghai) Co. Ltd.

No. 435 QianPu Road Chedun Town Songjiang District

201611 Shanghai P. R. China

Tel: +86 21 37746688 Fax: +86 21 37746600

Deutschland | Getriebemotorenwerk

KEB Antriebstechnik GmbH

Wildbacher Straße 5 08289 Schneeberg Deutschland

Telefon +49 3772 67-0 Telefax +49 3772 67-281

Internet: www.keb-drive.de E-Mail: info@keb-drive.de

Frankreich | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel

94510 La Queue en Brie Frankreich

Tel: +33 149620101 Fax: +33 145767495

Großbritannien | KEB (UK) Ltd.

5 Morris Close Park Farm Indusrial Estate

Wellingborough, Northants, NN8 6 XF Großbritannien

Tel: +44 1933 402220 Fax: +44 1933 400724

Italien | KEB Italia S.r.l. Unipersonale

Via Newton, 2 20019 Settimo Milanese (Milano) Italien

Tel: +39 02 3353531 Fax: +39 02 33500790

Japan | KEB Japan Ltd.

15 - 16, 2 - Chome, Takanawa Minato-ku Tokyo 108 - 0074 Japan

Tel: +81 33 445-8515 Fax: +81 33 445-8215

Österreich | KEB Automation GmbH

Ritzstraße 8 4614 Marchtrenk Österreich

Tel: +43 7243 53586-0 Fax: +43 7243 53586-21

Polen | KEB Automation KG

Tel: +48 60407727

Russische Föderation | KEB RUS Ltd.

Lesnaya str, house 30 Dzerzhinsky MO

140091 Moscow region Russische Föderation

Tel: +7 495 6320217 Fax: +7 495 6320217

E-Mail: info@keb.ru Internet: www.keb.ru

Schweiz | KEB Automation AG

Witzbergstraße 24 8330 Pfäffikon/ZH Schweiz

Tel: +41 43 2886060 Fax: +41 43 2886088

Spanien | KEB Automation KG

c / Mitjer, Nave 8 - Pol. Ind. LA MASIA

08798 Sant Cugat Sesgarrigues (Barcelona) Spanien

Tel: +34 93 8970268 Fax: +34 93 8992035

E-Mail: vb.espana@keb.de

Südkorea | KEB Automation KG

Deoksan-Besttel 1132 ho Sangnam-ro 37

Seongsan-gu Changwon-si Gyeongsangnam-do Republik Korea

Tel: +82 55 601 5505 Fax: +82 55 601 5506

Tschechien | KEB Automation GmbH

Videnska 188/119d 61900 Brno Tschechien

Tel: +420 544 212 008

USA | KEB America, Inc

5100 Valley Industrial Blvd. South Shakopee, MN 55379 USA

Tel: +1 952 2241400 Fax: +1 952 2241499

WEITERE KEB PARTNER WELTWEIT:

Automation mit Drive

www.keb.de

KEB Automation KG Südstraße 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de