FAQ COMBIVIS studio 6

KEB|

Structured Text Editor FAQ No0.0008

Part Version Revision Date Status
en 6.2.3.0 001 2019-01-01 Released
Content
T (0o 11 L1 1o o PRSP 2
VL= L= o] S0 o [=Tod P = 1o] o PR 2
IMPOITANT DALA LYPES ...oeeiiiiiiieiiie et r et e e st e e e e e e s et et e e e e s s e r et e e e e e e sernree s 2
0o (T =0 I = RO UPRRUTPRRN 3
LI LIRS LI =L L1 o PSPPI 3
The ST-Editor in ONIINE MOAEoooiieiee ettt e e e e e e ettt a e e e e e enbeeeeaaaeeaeannes 3
o] (23] o] o K PSPPSR UPTPPPPPIN 4
L70] 10111 1=T o 1K= T PP PP PP PPPPPPPPN 4
D= L= B I o L= T oo V=T £ (o o 1 SRR 5
(07e] oo 11 o] g Fo RS ¥= 15T 0 0 =] 1 TSP 5
S PR UTTOUPPRRPRN 5
L NS S L SPS 6
10T o 1 6
[O] 8 [To o IR RP TP 6
AVAT A o 11 = T Yo TR PPPPPPRRR 7
L= o = AN I [To o L PP RPP PSR 7
(1@ 1\ I 1\ T g 1 £ o 1o o PSR 7
L I T 0 S (1 T £ o] o SRR 8
Functions and execution Of Other POUS ...t e e e e 8
SAMPIE FUNCHION. ...ttt ettt e et e e e s sttt e e e ekttt e e e bt e e e e anbbeeeeanbaeeeeantneeeeans 9
HOW 0 USE MELNOUS ..ottt sttt e e st e e esb e e e snbe e e s ennbeeeeenres 10
D E=Tod - 11 =T PP RTPT PR 11
KEB Automation KG District Court Lemgo HRA 5649 General Partner:
Tel. +49 5263 401-0 IBAN DE 19 4765 0130 0000 0060 07 Directors: Curt Bauer CMO,

Fax +49 5263 401-116 BIC WELADE3L Ralf Lutter COO, Vittorio Tavella CFO,
www.keb.de Wolfgang Wiele CTO

FAQ COMBIVIS studio 6

Introduction

This document gives some basic information about the structured text (ST) programming language from
IEC 61131-3 and the ST-Editor in COMBIVIS studio 6.

Variable declaration

In ST-language you can define variables in different ways to make them available in just one program or
function or make them global so you can use them in all parts of the project.

VAR: Local variable in one POU.

VAR_GLOBAL: Global variable available in complete project.

CONSTANT: Variable with constant value.
RETAIN: Variable is stored in the EEPROM.
PERSISTENT: Value of variable remains on new program download.

VAR_INPUT: Input variable given to a POU.
VAR_OUTPUT: Output variable given from a POU.
VAR_IN_OUT: Input and output variable given as a pointer to a POU.

Important Data types
The table below shows the most important data types.

type lower limit upper limit memory usage
BOOL FALSE=0 TRUE=Y g Bit (1 Byte)
BYTE 0 200 8 Bit (1 Bute)
WORD 0 65535 16 Bit (2 Byte)
INT - 32768 32767 16 Bit (2 Byte)
DWORD 0 4294967295 32 Bit (4 Bute)
DIMT -2147483648 2147483647 32 Bit (4 Bute)
REAL 1.175494351e-38 3402823466e+38 32 Bit (4 Bute)

" x
=TRING ZS?{;THING{SSJ::, Thisiza STRING ;UBVEEEEV O1fB‘33f:t:r5
TIME Time constant 22 Bit 14 Byte)

Ssp thimen TIME = TRIODS 12ms

fg_ca_CVstudio6-FAQO008-StructuredTextEditor_en.docx

Page 2/11

FAQ COMBIVSsudio ¢ [=:1 8

Structured text

The structured text is a powerful language you can use to build loops and conditional statements very

easy. The basic syntax is nearly the same as in other high-level languages like turbo pascal,C/C++ or
Basic.

In the following some basic functions and statements in structured text will be shown.

The ST-Editor

The main window is split up in two parts. The upper part contains the declaration part of the POU and
the lower part contains the main program code of the POU.

The colors in the editor are making it much easier to read and understand the program code.

ct* - KEB COMBIYIS 6 - {(unregistered demo-version, only for eva | =10 x|
View Project Build Online Tools Window Help
| & v o & By X |44 IRt 808 |
m @ PLC_PRG [Device: PLC Logic: Application] | 4 b x
by ~ 24 Sort order - 1 PROGRAM PLC_PRG eclarati I~
= z VAR
state: BOOL:; /SSconment
Device (C6 Compact) j COUHERES QML 2= Hp b
)] PLC Logic 5y B_VIR -|
£} application | [»
Library Manager = 1 IF state=TRUE THEHN -
[a ELC:PRG EPRGi 2 counter:=counter+l;
= (&4 Task Configuration 2 END IF code
@ MainTask

The ST-Editor in online mode

In online mode the Structured Text Editor (ST-Editor) provides views for monitoring and for writing and
forcing the variables and expressions on the controller. Debugging functionality (breakpoints, stepping
etc.) is available.

File Edit View Project Buld Online Tools Window Help
a2 " =2 . A S, B S =R AR R -

E' PLC_PRG [Device: PLC Logic: Application] | 4P x

Nav 'iq ator o
| % Sort by ~ zlSort order v

Device.Application.PLC_PRG

n“Flnd E A
xpression Type Value Prepared value

=) LR J # state BOOL

= E‘ Device [connected] {C6é Co @ counter INT 0 E Help
=2 PLC Logic |
= O Application [stop] Write walues Ckr+F7
g :'E?LYR'\G‘IT;;QG? Force walues F7
- LE Taslz Configuration|| ~ l IF statefALSE-TRUE THEN Unforce values Al+F7
@ MainTask - councer NN —
3 END_IF[RETURH]

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx Page 3/11

FAQ COMBIVIS studio 6

Expressions

An expression is a construction which after its evaluation returns a value. This value is used in
instructions.

Expressions are composed of operators, operands and/or assignments. An operand can be a constant,
a variable, a function call or another expression.

Examples:

33 (* constant *)
ivar (* variable *)
fct(a,b,c) (* function call *)
aAND b (* expression *)
x*yv) 1z (* expression *)

real_var2 :=int_var; (* assignment *)

Evaluation of expressions

The evaluation of expression takes place by means of processing the operators according to certain
binding rules. The operator with the strongest binding is processed first, then the operator with the next
strongest binding, etc., until all operators have been processed.

Operators with equal binding strength are processed from left to right.

Below you find a table of the ST operators in the order of their binding strength:

Operation Symbol Binding strength
Put in parentheses (expression) Strongest binding
Function call Function name
(parameter list)
Exponentiation EXPT
Negate -
Building of complements NOT
Multiply *
Divide /
Modulo MOD
Add +
Subtract -
Compare <> <=>=
Equal to =
Not equal to <>
Boolean AND AND
Boolean XOR XOR
Boolean OR OR Weakest binding
Comments

To comment only one row just use // (two slashes). To comment more than one row use a (* at the
beginning and a *) at the end of your comment. Comments are an easy way to exclude parts of your
program without deleting them or just use them to describe what you are doing so other programmers
can understand your code even faster.

fg_ca_CVstudio6-FAQO008-StructuredTextEditor_en.docx

Page 4/11

FAQ COMBIVIS studio 6

Data Type conversions

Its is forbidden to implicitly convert from a "larger" type to a "smaller" type (for example from INT to
BYTE or from DINT to WORD). Special type conversions are required if one wants to do this. One can
basically convert from any elementary type to any other elementary type.

Syntax:

<elem.Typl> TO <elem.Typ2>

samples:

wValue ;= REAL_TO_WORD(drivel.Angle);

rValue ;= WORD_TO_REAL(wSum1l) + 1.55;

dw := TIME_TO_DWORD(T#5m); (* Result is 300000 *)

bv := STRING_TO_BYTE('500; (* Result is 244 *)

Conditional statements

If....Else...
The if-condition is an easy to use statement to decide what happens when a condition comes true.
IF state=TRUE THEN
/[Do this...
ELSE
//Do that...
END_IF

To make more complex conditions you can combine different statements. It is also possible to use
another condition in the ELSE part of the if statement.
IF state=TRUE AND NOT error=TRUE THEN
//Do this...
ELSIF error=TRUE THEN
//Do that...
ELSE
//IDo something different...
END_IF

fg_ca_CVstudio6-FAQO008-StructuredTextEditor_en.docx Page 5/11

FAQ COMBIVIS studio 6

KEB|

CASE...OF
To check many values of one variable you can use the CASE instruction.
CASE number OF

0: /ldo this...
1,6: /ldo that...
2..5: /ldothis...
DEFAULT
//do this when no value above was found.
END_CASE
Loops
FOR loop
With the FOR loop one can program repeated processes.
Syntax:
INT_Var :INT;

FOR <INT_Var> :=<INIT_VALUE> TO <END_VALUE> {BY <Step size>} DO
<Instructions>

END_FOR;
The part in braces {} is optional.
The <Instructions> are executed as long as the counter <INT_Var> is not greater than the
<END_VALUE>. This is checked before executing the <Instructions> so that the <instructions> are
never executed if <INIT_VALUE> is greater than <END_VALUE>.
When <Instructions> are executed, <INT_Var> is increased by <Step size>. The step size can have any
integer value. If it is missing, then it is set to 1. The loop must also end since <INT_Var> only becomes
greater.

Example:
FOR Counter:=1 TO5 BY 1 DO
Varl:=Varl*2;
END_FOR;

fg_ca_CVstudio6-FAQO008-StructuredTextEditor_en.docx Page 6/11

FAQ COMBIVIS studio 6

WHILE loop
The WHILE loop can be used like the FOR loop with the difference that the break-off condition can be
any Boolean expression. This means you indicate a condition which, when it is fulfilled, the loop will be
executed.

Syntax:

WHILE <Boolean expression> DO

<Instructions>

END_WHILE;
The <Instructions> are repeatedly executed as long as the <Boolean_expression> returns TRUE. If the
<Boolean_expression> is already FALSE at the first evaluation, then the <Instructions> are never
executed. If <Boolean_expression> never assumes the value FALSE, then the <Instructions> are
repeated endlessly which causes a relative time delay.
Example:
WHILE Counter<>0 DO

Varl := Varl*2;

Counter := Counter-1,
END_WHILE

REPEAT loop
The REPEAT loop is different from the WHILE loop because the break-off condition is checked only
after the loop has been executed. This means that the loop will run through at least once, regardless of
the wording of the break-off condition.
Syntax:
REPEAT
<Instructions>
UNTIL <Boolean expression>
END_REPEAT,;
The <Instructions> are carried out until the <Boolean expression> returns TRUE.
If <Boolean expression> is produced already at the first TRUE evaluation, then <Instructions> are
executed only once. If <Boolean_expression> never assumes the value TRUE, then the <Instructions>
are repeated endlessly which causes a relative time delay.
Example:
REPEAT
Varl := Varl*2;
Counter := Counter-1,;
UNTIL
Counter=0
END_REPEAT,;

CONTINUE instruction

As an extension to the IEC 61131-3 standard (ExST) the CONTINUE instruction is supported within
FOR, WHILE and REPEAT-loops.

CONTINUE makes the execution proceed with the next loop-cycle.

Example:
FOR Counter:=1 TO 5BY 1 DO
INT1:= INT1/2;
IF INT1=0 THEN
CONTINUE; (* to avoid division by zero *)
END_IF
Varl:=Varl/INT1; (* only executed, if INT1 is not "0" *)
END_FOR,;
Erg:=Varl,

fg_ca_CVstudio6-FAQO008-StructuredTextEditor_en.docx Page 7/11

KEB|

FAQ COMBIVSsudio ¢ [=:1 8

EXIT instruction
If the EXIT instruction appears in a FOR, WHILE, or REPEAT loop, then the innermost loop is ended,
regardless of the break-off condition.

Functions and execution of other POUs

x|

Enpplication Name:

@, CAM table Pou_t El
@Data Server

@gout Tpe:

@ Global variable List " Program

Image Poal

(‘ -
o=} Interface Function thk

T Persistent Variables [~ Extends: |

. I~ Implements: I I
=

@ POUs for implicit checks

R Recipe Manager Method implementation language:

® 2symbal configuration IStructured Text (ST)

Text List

Qq Trace (: Function

&) visualization Returntype: [int
Visualization Manager

1%, | visualizationinstance Implementation language:

[Structured Text (ST) ~|

|Create a new POU (Program Organization Unit)

You can add a function or a new POU with the object manager. To create a function which returns a
value select function and type in the return type. The name of the POU is the name of the function.

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx Page 8/11

FAQ COMBIVSsudio ¢ [=:1 8

Sample function
The function should add numberl and number2 and return it to the main Program.

N = FC_rra [Device: PLC Logic: Application] 8

v %lSort order ~

1 FUHCTION testfunction : int
- 2 VAR INPUT

3 numberl: INT;
4 - -

wice (C6 Compact) HUShEESY JNES

) g EHD VAR
] PLC Loqgic " -
£} application - "

returnvalue: INT;

m Library Manager i
8 EHD VAR

[£] PLC_PRG (PRG)
E‘] testFunction {(FUN)
s IE Task Configuration| | 4]
& MainTask 1 returnvalue: =numberl+number?2;
testfunction: =returnvalue;

You can call the function in any POU.
| _ |E] PLC_PRG [Device: PLC Logic: Application] rI

1 PROGRAM PLC_PRG
- z VAR
nuuber : |:= testfunction(3,6) ;[RETURN]
b 3 number: INT; (3,6) /RETU
4 EHD VAR

1 number:= testfunction(3,6);

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx Page 9/11

FAQ COMBIVSsudio ¢ [=:1 8

How to use methods

Supporting object oriented programming methods can be used to describe a sequence of instructions.
Like a function a method is not an independent POU, but must be assigned to a function block. It can be
regarded as a function which contains an instance of the respective function block.

To use such methods you have to declare an instance of a function block (like the KebChannelHandler).
Then you can execute the methods within the instance with a pointer to that method you want to call.
Just separate the name of the instance and the name of the method with a dot.

The ST-Editor brings an auto-complete function (Intellisense) to help you using the available methods of
an object. When typing the dot it opens a list of the methods you have access to.

BESENES | =) PLC_PRG [Device: PLC Logic: Application] |

fer = PROGRAM PLC_PRG o instance of function block

KebChannelHandler;

w WM -

ack)

call method

ition
iy Manager

PRG (PRG) channelss, - — Intellisense
ds] Close | I

MainT E‘—'!“"Execute

SAFB_Exit
éﬂFinishPendingJob
EﬁRegisterMaster
_;ﬁRegisterSlave
EﬂUnregisterMester
@Unregisterslave

=2 UpdateNodes

j;‘ UpdatePendinglobArray

W N e

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx Page 10/11

FAQ COMBIVISstuio L=:1

Disclaimer

KEB Automation KG reserves the right to change/adapt specifications and technical
data without prior notification. The safety and warning reference specified in this
manual is not exhaustive. Although the manual and the information contained in it is
made with care, KEB does not accept responsibility for misprint or other errors or
resulting damages. The marks and product names are trademarks or registered
trademarks of the respective title owners.

The information contained in the technical documentation, as well as any user-specific
advice in verbal or in written form are made to the best of our knowledge and
information about the application. However, they are considered for information only
without responsibility. This also applies to any violation of industrial property rights of a
third-party.

Inspection of our units in view of their suitability for the intended use must be done
generally by the user. Inspections are particular necessary, if changes are executed,
which serve for the further development or adaption of our products to the applications
(hardware, software or download lists). Inspections must be repeated completely, even
if only parts of hardware, software or download lists are modified.

Application and use of our units in the target products is outside of our control
and therefore lies exclusively in the area of responsibility of the user.

KEB Automation KG
SidstralRe 38 « D-32683 Barntrup
fon: +49 5263 401-0 fax: +49 5263 401-116
net: www.keb.de ¢ mail: info@keb.de

fg_ca_CVstudio6-FAQO008-StructuredTextEditor_en.docx Page 11/11

