

KEB Automation KG
Südstraße 38
32683 Barntrup, Germany
E-mail: info@keb.de
Tel. +49 5263 401-0
Fax +49 5263 401-116
www.keb.de

District Court Lemgo HRA 5649
DUNS-No. 314108728
VAT-No. DE309087075
Bank Details: Sparkasse Paderborn-Detmold
IBAN DE 19 4765 0130 0000 0060 07
BIC WELADE3L

General Partner:
Vittorio Tavella
KEB Verwaltungs-GmbH, Barntrup
District Court: Lemgo HRB 8965
Directors: Curt Bauer CMO,
Ralf Lutter COO, Vittorio Tavella CFO,
Wolfgang Wiele CTO

Structured Text Editor FAQ No.0008

Part Version Revision Date Status

en 6.2.3.0 001 2019-01-01 Released

Content
Introduction ... 2

Variable declaration .. 2

Important Data types .. 2

Structured text .. 3

The ST-Editor .. 3

The ST-Editor in online mode ... 3

Expressions .. 4

Comments ... 4

Data Type conversions ... 5

Conditional statements ... 5

If....Else... .. 5

CASE...OF ... 6

Loops .. 6

FOR loop ... 6

WHILE loop ... 7

REPEAT loop .. 7

CONTINUE instruction .. 7

EXIT instruction ... 8

Functions and execution of other POUs ... 8

Sample function ... 9

How to use methods ... 10

Disclaimer ... 11

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 2 / 11

Introduction
This document gives some basic information about the structured text (ST) programming language from
IEC 61131-3 and the ST-Editor in COMBIVIS studio 6.

Variable declaration
In ST-language you can define variables in different ways to make them available in just one program or
function or make them global so you can use them in all parts of the project.
VAR: Local variable in one POU.
VAR_GLOBAL: Global variable available in complete project.

CONSTANT: Variable with constant value.
RETAIN: Variable is stored in the EEPROM.
PERSISTENT: Value of variable remains on new program download.

VAR_INPUT: Input variable given to a POU.
VAR_OUTPUT: Output variable given from a POU.
VAR_IN_OUT: Input and output variable given as a pointer to a POU.

Important Data types
The table below shows the most important data types.

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 3 / 11

Structured text
The structured text is a powerful language you can use to build loops and conditional statements very
easy. The basic syntax is nearly the same as in other high-level languages like turbo pascal,C/C++ or
Basic.
In the following some basic functions and statements in structured text will be shown.

The ST-Editor
The main window is split up in two parts. The upper part contains the declaration part of the POU and
the lower part contains the main program code of the POU.
The colors in the editor are making it much easier to read and understand the program code.

The ST-Editor in online mode
In online mode the Structured Text Editor (ST-Editor) provides views for monitoring and for writing and
forcing the variables and expressions on the controller. Debugging functionality (breakpoints, stepping
etc.) is available.

declaration

code

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 4 / 11

Expressions
An expression is a construction which after its evaluation returns a value. This value is used in
instructions.
Expressions are composed of operators, operands and/or assignments. An operand can be a constant,
a variable, a function call or another expression.

Examples:
33 (* constant *)
ivar (* variable *)
fct(a,b,c) (* function call *)
a AND b (* expression *)
(x*y) / z (* expression *)
real_var2 := int_var; (* assignment *)

Evaluation of expressions
The evaluation of expression takes place by means of processing the operators according to certain
binding rules. The operator with the strongest binding is processed first, then the operator with the next
strongest binding, etc., until all operators have been processed.
Operators with equal binding strength are processed from left to right.
Below you find a table of the ST operators in the order of their binding strength:

Operation Symbol Binding strength
Put in parentheses (expression) Strongest binding
Function call Function name
 (parameter list)
Exponentiation EXPT
Negate -
Building of complements NOT
Multiply *
Divide /
Modulo MOD
Add +
Subtract -
Compare <,>,<=,>=
Equal to =
Not equal to <>
Boolean AND AND
Boolean XOR XOR
Boolean OR OR Weakest binding

Comments
To comment only one row just use // (two slashes). To comment more than one row use a (* at the
beginning and a *) at the end of your comment. Comments are an easy way to exclude parts of your
program without deleting them or just use them to describe what you are doing so other programmers
can understand your code even faster.

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 5 / 11

Data Type conversions
Its is forbidden to implicitly convert from a "larger" type to a "smaller" type (for example from INT to
BYTE or from DINT to WORD). Special type conversions are required if one wants to do this. One can
basically convert from any elementary type to any other elementary type.
Syntax:
<elem.Typ1>_TO_<elem.Typ2>
samples:
wValue := REAL_TO_WORD(drive1.Angle);
rValue := WORD_TO_REAL(wSum1) + 1.55;
dw := TIME_TO_DWORD(T#5m); (* Result is 300000 *)
bv := STRING_TO_BYTE('500'); (* Result is 244 *)

Conditional statements
If....Else...
The if-condition is an easy to use statement to decide what happens when a condition comes true.
 IF state=TRUE THEN
 //Do this...
 ELSE
 //Do that...
 END_IF

To make more complex conditions you can combine different statements. It is also possible to use
another condition in the ELSE part of the if statement.
 IF state=TRUE AND NOT error=TRUE THEN
 //Do this...
 ELSIF error=TRUE THEN
 //Do that...
 ELSE
 //Do something different...
 END_IF

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 6 / 11

CASE...OF
To check many values of one variable you can use the CASE instruction.
 CASE number OF
 0: //do this...
 1,6: //do that...
 2..5: //do this...
 DEFAULT
 //do this when no value above was found.
 END_CASE

Loops
FOR loop
With the FOR loop one can program repeated processes.
 Syntax:
 INT_Var :INT;
 FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <Step size>} DO

 <Instructions>
 END_FOR;
The part in braces {} is optional.
The <Instructions> are executed as long as the counter <INT_Var> is not greater than the
<END_VALUE>. This is checked before executing the <Instructions> so that the <instructions> are
never executed if <INIT_VALUE> is greater than <END_VALUE>.
When <Instructions> are executed, <INT_Var> is increased by <Step size>. The step size can have any
integer value. If it is missing, then it is set to 1. The loop must also end since <INT_Var> only becomes
greater.

Example:
 FOR Counter:=1 TO 5 BY 1 DO
 Var1:=Var1*2;
 END_FOR;

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 7 / 11

WHILE loop
The WHILE loop can be used like the FOR loop with the difference that the break-off condition can be
any Boolean expression. This means you indicate a condition which, when it is fulfilled, the loop will be
executed.
 Syntax:
 WHILE <Boolean expression> DO

 <Instructions>
 END_WHILE;
The <Instructions> are repeatedly executed as long as the <Boolean_expression> returns TRUE. If the
<Boolean_expression> is already FALSE at the first evaluation, then the <Instructions> are never
executed. If <Boolean_expression> never assumes the value FALSE, then the <Instructions> are
repeated endlessly which causes a relative time delay.
Example:
WHILE Counter<>0 DO
 Var1 := Var1*2;
 Counter := Counter-1;
END_WHILE

REPEAT loop
The REPEAT loop is different from the WHILE loop because the break-off condition is checked only
after the loop has been executed. This means that the loop will run through at least once, regardless of
the wording of the break-off condition.
 Syntax:
 REPEAT

 <Instructions>
UNTIL <Boolean expression>

 END_REPEAT;
The <Instructions> are carried out until the <Boolean expression> returns TRUE.
If <Boolean expression> is produced already at the first TRUE evaluation, then <Instructions> are
executed only once. If <Boolean_expression> never assumes the value TRUE, then the <Instructions>
are repeated endlessly which causes a relative time delay.
Example:
 REPEAT
 Var1 := Var1*2;
 Counter := Counter-1;
 UNTIL
 Counter=0
 END_REPEAT;

CONTINUE instruction
As an extension to the IEC 61131-3 standard (ExST) the CONTINUE instruction is supported within
FOR, WHILE and REPEAT-loops.
CONTINUE makes the execution proceed with the next loop-cycle.
Example:
 FOR Counter:=1 TO 5 BY 1 DO
 INT1:= INT1/2;
 IF INT1=0 THEN
 CONTINUE; (* to avoid division by zero *)
 END_IF
 Var1:=Var1/INT1; (* only executed, if INT1 is not "0" *)
 END_FOR;
 Erg:=Var1;

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 8 / 11

EXIT instruction
If the EXIT instruction appears in a FOR, WHILE, or REPEAT loop, then the innermost loop is ended,
regardless of the break-off condition.

Functions and execution of other POUs

You can add a function or a new POU with the object manager. To create a function which returns a
value select function and type in the return type. The name of the POU is the name of the function.

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 9 / 11

Sample function
The function should add number1 and number2 and return it to the main Program.

You can call the function in any POU.

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 10 / 11

How to use methods
Supporting object oriented programming methods can be used to describe a sequence of instructions.
Like a function a method is not an independent POU, but must be assigned to a function block. It can be
regarded as a function which contains an instance of the respective function block.

To use such methods you have to declare an instance of a function block (like the KebChannelHandler).
Then you can execute the methods within the instance with a pointer to that method you want to call.
Just separate the name of the instance and the name of the method with a dot.
The ST-Editor brings an auto-complete function (Intellisense) to help you using the available methods of
an object. When typing the dot it opens a list of the methods you have access to.

fq_ca_CVstudio6-FAQ0008-StructuredTextEditor_en.docx

Page 11 / 11

Disclaimer

KEB Automation KG reserves the right to change/adapt specifications and technical
data without prior notification. The safety and warning reference specified in this
manual is not exhaustive. Although the manual and the information contained in it is
made with care, KEB does not accept responsibility for misprint or other errors or
resulting damages. The marks and product names are trademarks or registered
trademarks of the respective title owners.

The information contained in the technical documentation, as well as any user-specific
advice in verbal or in written form are made to the best of our knowledge and
information about the application. However, they are considered for information only
without responsibility. This also applies to any violation of industrial property rights of a
third-party.

Inspection of our units in view of their suitability for the intended use must be done
generally by the user. Inspections are particular necessary, if changes are executed,
which serve for the further development or adaption of our products to the applications
(hardware, software or download lists). Inspections must be repeated completely, even
if only parts of hardware, software or download lists are modified.

Application and use of our units in the target products is outside of our control
and therefore lies exclusively in the area of responsibility of the user.

KEB Automation KG
Südstraße 38 • D-32683 Barntrup

fon: +49 5263 401-0 • fax: +49 5263 401-116
net: www.keb.de • mail: info@keb.de

