

COMBIVERT F6

GEBRAUCHSANLEITUNG | INSTALLATION F6 GEHÄUSE 7
HIGH SPEED DRIVE

Originalanleitung Dokument 20313557 DE 02

Vorwort

Die beschriebene Hard- und / oder Software sind Produkte der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

▲ GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

A WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

Weitere Symbole

- Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Hinweis auf weiterführende Dokumentation.

https://www.keb-automation.com/de/suche

Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit der EU-Konformitätserklärung und dem CE-Zeichen auf dem Gerätetypenschild, dass es den grundlegenden Sicherheitsanforderungen entspricht.

Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden.

Gewährleistung und Haftung

Die Gewährleistung und Haftung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den allgemeinen Verkaufsbedingungen zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen. https://www.keb-automation.com/de/agb

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Kunden.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über den bestimmungsgemäßen Gebrauch. Sie gelten jedoch nur als unverbindliche Hinweise und Änderungen sind insbesondere aufgrund von technischen Änderungen ausdrücklich vorbehalten. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter. Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der bestimmungsgemäßen Endverwendung des Produktes (Applikation) vom Kunden erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Dieses KEB-Produkt oder Teile davon können fremde Software, inkl. Freier und/oder Open Source Software enthalten. Sofern einschlägig, sind die Lizenzbestimmungen dieser Software in den Gebrauchsanleitungen enthalten. Die Gebrauchsanleitungen liegen Ihnen bereits vor, sind auf der Website von KEB zum Download frei verfügbar oder können bei dem jeweiligen KEB-Ansprechpartner gerne angefragt werden.

Andere Wort- und/oder Bildmarken sind Marken (™) oder eingetragene Marken (®) der jeweiligen Inhaber.

Inhaltsverzeichnis

	vorwort	
	Signalwörter und Auszeichnungen	3
	Weitere Symbole	
	Gesetze und Richtlinien	4
	Gewährleistung und Haftung	4
	Unterstützung	4
	Urheberrecht	4
	Inhaltsverzeichnis	
	Abbildungsverzeichnis	
	Tabellenverzeichnis	
	Glossar	
	Normen für Antriebsstromrichter	
	Produktnormen, die direkt für den Antriebsstromrichter gelten:	
	Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:	
	Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:	13
1	Grundlegende Sicherheitshinweise	14
•	1.1 Zielgruppe	
	1.1 Zielgruppe	
	1.3 Einbau und Aufstellung	
	1.4 Elektrischer Anschluss	
	1.4.1 EMV-gerechte Installation	
	1.4.2 Spannungsprüfung	
	1.4.3 Isolationsmessung.	
	1.5 Inbetriebnahme und Betrieb	
	1.6 Wartung	
	1.7 Instandhaltung	
	1.8 Entsorgung	
_	B 1141 1 "	-
2	•	. 22
	2.1 Bestimmungsgemäßer Gebrauch	
	2.1.1 Restgefahren	
	2.2 Nicht bestimmungsgemäßer Gebrauch	
	2.3 Produktmerkmale	
	2.4 Typenschlüssel	
	2.5 Typenschild	
	2.5.1 Konfigurierbare Optionen	27
3	Technische Daten	. 28
	3.1 Betriebsbedingungen	28
	3.1.1 Klimatische Umweltbedingungen	
	3.1.2 Mechanische Umweltbedingungen	

INHALTSVERZEICHNIS

	3.1.3 Chemisch/Mechanisch aktive Stoffe	29
	3.1.4 Elektrische Betriebsbedingungen	30
	3.1.4.1 Geräteeinstufung	30
	3.1.4.2 Elektromagnetische Verträglichkeit	30
	3.2 Gerätedaten der High Speed Drive-Geräte	31
	3.2.1 Übersicht der High Speed Drive-Geräte	31
	3.2.2 Spannungs- und Frequenzangaben für 400 V-Geräte	32
	3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V	33
	3.2.3 Ein- und Ausgangsströme/ Überlast	33
	3.2.3.1 Überlastcharakteristik (OL)	34
	3.2.3.2 Frequenzabhängiger Maximalstrom (OL2)	36
	3.2.4 Verlustleistung bei Bemessungsbetrieb	
	3.2.5 Absicherung der Antriebsstromrichter	41
	3.3 Allgemeine elektrische Daten	42
	3.3.1 Schaltfrequenz und Temperatur	42
	3.3.1.1 Schaltfrequenzen und Temperaturen für Luftkühler	42
	3.3.1.2 Schaltfrequenzen und Temperaturen für Fluidkühler (Wasser)	43
	3.3.2 DC-Zwischenkreis / Bremstransistorfunktion	44
	3.3.3 Thermischer Dauerstrom	45
	3.3.4 Lüfter	46
	3.3.4.1 Schaltverhalten der Lüfter	47
	3.3.4.2 Schaltpunkte der Lüfter	47
_		
4	Einbau	48
	4.1 Abmessungen und Gewichte	48
	4.1.1 Einbauversion Luftkühler High-Performance	48
	4.1.2 Einbauversion Fluidkühler (Wasser) High-Performance, IP54-ready	
	4.1.3 Durchsteckversion Fluidkühler (Wasser) High-Performance, IP54-ready	
	4.2 Schaltschrankeinbau	51
	4.1.4 Transport mit Ringschrauben	51
	4.1.5 Durchsteckgeräte mit Transportwinkel	51
	4.2.1 Befestigungshinweise	52
	4.2.2 Einbauabstände	53
	4.2.3 Montage von IP54-ready Geräten	54
	4.2.4 Schaltschranklüftung	55
	4.2.5 Luftströme der F6 Antriebsstromrichter	55
_		
5	Installation und Anschluss	56
	5.1 Übersicht des COMBIVERT F6	56
	5.1 Übersicht des COMBIVERT F6	
		59
	5.2 Anschluss des Leistungsteils	59

8	Änderungshistorie	88
	7.3 Weitere Informationen und Dokumentation	87
	7.2 UL-Zertifizierung	
•	7.1 CE-Kennzeichnung	
7	Zertifizierung	84
	6.1.8 Typischer Druckverlust des Kühlkörpers	83
	6.1.7 Kühlmittelerwärmung	
	6.1.6 Zulässiger Volumenstrom bei Wasserkühlung	81
	6.1.5.2 Zuführung temperierter Kühlflüssigkeit	80
	6.1.5.1 Betauung	
	6.1.5 Kühlmitteltemperatur und Betauung	
	6.1.4 Anschluss des Kühlsystems	
	6.1.3 Anforderungen an das Kühlmittel	
	6.1.2 Materialien im Kühlkreislauf	
	6.1.1 Kühlkörper und Betriebsdruck	
_	6.1 Wassergekühlte Geräte	
6		
	5.3.3 Nebenbaubremswiderstände	
	5.3.2 Dichtung für IP54-ready Geräte	
	5.3.1 Filter und Drosseln	
	5.2.7 Externe Kühlkörperlüfterversorgung (FAN)	
	5.2.6.2 Verwendung nicht eigensicherer Bremswiderstände	
	5.2.6.1 Klemmleiste X1A Anschluss Bremswiderstand	
	5.2.6 Anschluss und Verwendung von Bremswiderständen	
	5.2.5.7 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)	
	5.2.5.6 Motorleitungsquerschnitt	
	5.2.5.5 Motorleitungslänge bei Parallelbetrieb von Motoren	
	5.2.5.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung	66
	5.2.5.3 Auswahl der Motorleitung	66
	5.2.5.2 Klemmleiste X1A Motoranschluss	65
	5.2.5.1 Verdrahtung des Motors	64
	5.2.5 Anschluss des Motors	64
	5.2.4.1 Klemmleiste X1A DC-Anschluss	
	5.2.4 DC-Anschluss	
	5.2.3.2 Netzzuleitung	
	5.2.3.1 AC-Versorgung 3-phasig	
	5.2.2 Funktionserdung	
	5.2.2.1 Schutzerdung	
	F. 2.2.1. Cobust conductor	61

ABBILDUNGSVERZEICHNIS

Abbildungsverzeichnis

Abbildung 1:	Typenschild	26
Abbildung 2:	Konfigurierbare Optionen	27
Abbildung 3:	Abschaltzeit t in Abhängigkeit der Überlast I/IN (OL) bei OC-Level 135%	34
Abbildung 4:	Abschaltzeit t in Abhängigkeit der Überlast I/In (OL) bei OC-Level 150%	35
Abbildung 5:	Typische Überlastcharakteristik in den unteren Ausgangsfrequenzen (OL2) Bsp.	
	26er-Gerät	
Abbildung 6:	Blockschaltbild des Energieflusses	44
Abbildung 7:	Schaltverhalten der Lüfter Beispiel Kühlkörperlüfter	
Abbildung 8:	Abmessungen Einbauversion Luftkühler High-Performance	48
Abbildung 9:	Abmessungen Einbauversion Fluidkühler (Wasser) High-Performance, IP54-ready	49
Abbildung 11:	Abmessungen Durchsteckversion Fluidkühler (Wasser) High-Performance, IP54-read	03 yt
Abbildung 12:	Beispiel eines F6 im Gehäuse 8 mit M10-Ringschrauben	51
Abbildung 13:	Beispiel eines F6 Gehäuse 7 mit Transportwinkeln	
Abbildung 14:	Einbauabstände	53
Abbildung 15:	Montage von IP54-ready Geräten	54
Abbildung 16:	Schaltschranklüftung	55
Abbildung 17:	Luftströme der Lüfter	55
Abbildung 18:	F6 Gehäuse 7 Draufsicht	56
Abbildung 19:	F6 Gehäuse 7 Vorderansicht	57
Abbildung 20:	F6 Gehäuse 7 Rückansicht mit Steuerkarte APPLIKATION	58
Abbildung 21:	Eingangsbeschaltung	59
Abbildung 22:	Klemmleiste X1A für 400 V-Geräte	60
Abbildung 23:	Anschluss für Schutzerde	61
Abbildung 24:	Anschluss der Netzversorgung 3-phasig	62
Abbildung 25:	Klemmleiste X1A DC-Anschluss	63
Abbildung 26:	Verdrahtung des Motors	64
Abbildung 27:	Klemmleiste X1A Motoranschluss	65
Abbildung 28:	Symmetrische Motorleitung	66
Abbildung 29:	Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT	68
Abbildung 30:	Klemmleiste X1C für Steuerkarte PRO	68
Abbildung 31:	Anschluss der Bremsenansteuerung	69
Abbildung 32:	Anschluss eines KTY-Sensors	69
Abbildung 33:	Klemmleiste X1A Anschluss Bremswiderstand	71
Abbildung 34:	Externe Kühlkörperlüfterversorgung	73
Abbildung 35:	Offene Rohrenden zum Anschluss des Kühlsystems	79
Abbildung 36:	Volumenstrom in Abhängigkeit von der Gesamtverlustleistung PD_ges und Temperaturdifferenz bei Wasser-Glykolgemisch	82
Abbildung 37:	Typischer Druckverlust in Abhängigkeit des Volumenstroms	83

Tabellenverzeichnis

Tabelle 1:	Typenschlüssel	25
Tabelle 2:	Klimatische Umweltbedingungen	28
Tabelle 3:	Mechanische Umweltbedingungen	29
Tabelle 4:	Chemisch/Mechanisch aktive Stoffe	29
Tabelle 5:	Geräteeinstufung	30
Tabelle 6:	Elektromagnetische Verträglichkeit	30
Tabelle 7:	Übersicht der HSD-Gerätedaten	32
Tabelle 8:	Eingangsspannungen und -frequenzen der 400 V-Geräte	32
Tabelle 9:	DC-Zwischenkreisspannung für 400 V-Geräte	32
Tabelle 10:	Ausgangsspannungen und -frequenzen der 400 V-Geräte	33
Tabelle 11:	Beispiel zur Berechnung der möglichen Motorspannung für 400 V	33
Tabelle 12:	Ein- und Ausgangsströme der HSD-Geräte	33
Tabelle 13:	Frequenzabhängiger Maximalstrom für Gerätegröße 26 (Luftkühler)	38
Tabelle 14:	Frequenzabhängiger Maximalstrom für Gerätegröße 27 (Luftkühler)	39
Tabelle 15:	Frequenzabhängiger Maximalstrom für Gerätegröße 26 (Wasserkühler)	39
Tabelle 16:	Frequenzabhängiger Maximalstrom für Gerätegröße 28 (Wasserkühler)	40
Tabelle 17:	Verlustleistung der HSD-Geräte	40
Tabelle 18:	Absicherungen der HSD-Geräte	41
Tabelle 19:	Schaltfrequenz und Temperatur der HSD-Geräte (Luftkühler)	42
Tabelle 20:	Schaltfrequenz und Temperatur der HSD-Geräte (Wasserkühler)	43
Tabelle 21:	DC-Zwischenkreis / Bremstransistorfunktion der HSD-Geräte	45
Tabelle 22:	Thermischer Dauerstrom für Gerätegröße 26 Fluidkühler (Wasser)	45
Tabelle 23:	Thermischer Dauerstrom für Gerätegröße 28 Fluidkühler (Wasser)	45
Tabelle 24:	Lüfter	46
Tabelle 25:	Schaltpunkte der Lüfter	47
Tabelle 26:	Befestigungshinweise für Einbauversion	52
Tabelle 27:	Befestigungshinweise für Durchsteckversion	52
Tabelle 28:	Filter und Drosseln	75
Tabelle 29:	Dichtung für IP54-ready Geräte	75
Tabelle 30:	Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff	77
Tabelle 31:	Anforderungen an das Kühlmittel	77
Tabelle 32:	Besondere Anforderungen bei offenen und halboffenen Kühlsystemen	78
Tabelle 33:	Taupunkttabelle	80
Tabelle 34:	Zulässiger Volumenstrom bei Wasserkühlung	81

Glossar

0V	Erdpotenzialfreier Massepunkt	EtherCAT	Echtzeit-Ethernet-Bussystem der Fa.
1ph	1-phasiges Netz	,	Beckhoff
3ph	3-phasiges Netz	Ethernet	Echtzeit-Bussystem - definiert Proto-
AC	Wechselstrom oder -spannung		kolle, Stecker, Kabeltypen
AFE	Ab 07/2019 ersetzt AIC die bisherige	FE	Funktionserde
A = = = :::	Bezeichnung AFE	FSoE FU	Funktionale Sicherheit über Ethernet
AFE-Filter	Ab 07/2019 ersetzt AIC-Filter die	_	Antriebsstromrichter
AIC	bisherige Bezeichnung AFE-Filter Active Infeed Converter	Gebernachbil- dung	Softwaregenerierter Geberausgang
AIC-Filter	Filter für Active Infeed Converter	GND	Bezugspotenzial, Masse
Applikation	Die Applikation ist die bestimmungs-	GTR7	Bremstransistor
Applikation	gemäße Verwendung des KEB-	Hersteller	Der Hersteller ist KEB, sofern nicht
	Produktes	ricistellel	anders bezeichnet (z.B. als Ma-
ASCL	Geberlose Regelung von Asynchron-		schinen-, Motoren-, Fahrzeug- oder
71002	motoren		Klebstoffhersteller)
Auto motor	Automatische Motoridentifikation;	HF-Filter	KEB spezifischer Ausdruck für einen
ident.	Einmessen von Widerstand und		EMV-Filter (Beschreibung siehe
	Induktivität		EMV-Filter.)
AWG	Amerikanische Kodierung für Lei-	Hiperface	Bidirektionale Geberschnittstelle der
	tungsquerschnitte		Fa. Sick-Stegmann
B2B	Business-to-business	HMI	Visuelle Benutzerschnittstelle
BiSS	Open-Source-Echtzeitschnittstelle	LIODE	(Touchscreen)
	für Sensoren und Aktoren (DIN	HSP5	Schnelles, serielles Protokoll
CAN	5008)	HTL	Inkrementelles Signal mit einer Aus-
CAN	Feldbussystem	IEC	gangsspannung (bis 30V) -> TTL IEC xxxxx steht für eine Internatio-
CDM	Vollständiges Antriebsmodul inkl. Hilfsausrüstung (Schaltschrank)	IEC	nale Norm der International Electro-
COMBIVERT	KEB Antriebsstromrichter		technical Commission
COMBIVER	KEB Inbetriebnahme- und Paramet-	IPxx	Schutzart (xx für Klasse)
COMBINIO	riersoftware	KEB-Produkt	Das KEB-Produkt ist das Produkt
DC	Gleichstrom oder -spannung		welches Gegenstand dieser Anlei-
DI	Demineralisiertes Wasser, auch als		tung ist
Σ.	deionisiertes (DI) Wasser bezeichnet	KTY	Silizium Temperatursensor (gepolt)
DIN	Deutsches Institut für Normung	Kunde	Der Kunde hat ein KEB-Produkt von
DS 402	CiA DS 402 - CAN-Geräteprofil für		KEB erworben und integriert das
	Antriebe		KEB-Produkt in sein Produkt (Kun-
ED	Einschaltdauer		den-Produkt) oder veräußert das
ELV	Schutzkleinspannung		KEB-Produkt weiter (Händler)
EMS	Energy Management System	MCM	Amerikanische Maßeinheit für große
EMV-Filter	EMV-Filter werden zur Unterdrü-	Modulation	Leitungsquerschnitte
	ckung von leitungsgebundenen	Modulation	Bedeutet in der Antriebstechnik, dass die Leistungshalbleiter ange-
	Störungen in beiden Richtungen		steuert werden
	zwischen Antriebsstromrichter und	MTTF	Mittlere Lebensdauer bis zum Ausfall
⊏NI	Netz eingesetzt.		
EN EnDot	Europäische Norm		

Bidirektionale Geberschnittstelle der

Der Endkunde ist der Verwender des

Fa. Heidenhain

Kunden-Produkts

EnDat

Endkunde

NHN	Normalhöhennull; bezogen auf die festgelegte Höhendefinition in Deutschland (DHHN2016). Die	STO	Sicherheitsfunktion "sicher abgeschaltetes Drehmoment" gemäß IEC 61800-5-2
	internationalen Angaben weichen i.d.R. nur wenige cm bis dm hiervon ab, sodass der angegebene Wert auf die regional geltende Definition übernommen werden kann.	TTL USB VARAN	Logik mit 5V Betriebsspannung Universell serieller Bus Echtzeit-Ethernet-Bussystem
Not-Aus	Abschalten der Spannungsversor- gung im Notfall		
Not-Halt	Stillsetzen eines Antriebs im Notfall (nicht spannungslos)		
OC	Überstrom (Overcurrent)		
OH	Überhitzung		
OL	Überlast		
OSSD			
0550	Ausgangsschaltelement; Ausgangssignal, dass in regelmäßigen Abstände auf seine Abschaltbarkeit hin		
556	geprüft wird. (Sicherheitstechnik)		
PDS	Leistungsantriebssystem inkl. Motor und Meßfühler		
PE	Schutzerde		
PELV	Sichere Schutzkleinspannung, ge- erdet		
PFD	Begriff aus der Sicherheitstechnik (EN 61508-17) für die Größe der Fehlerwahrscheinlichkeit		
PFH	Begriff aus der Sicherheitstechnik (EN 61508-17) für die Größe der Fehlerwahrscheinlichkeit pro Stunde		
Pt100	Temperatursensor mit R0=100Ω		
Pt1000	Temperatursensor mit R0=1000Ω		
PTC	Kaltleiter zur Temperaturerfassung		
PWM	Pulsweitenmodulation (auch Pulsbreitenmodulation PBM)		
RJ45	Modulare Steckverbindung mit 8 Leitungen		
SCL	Geberlose Regelung von Synchron- motoren		
SELV	Sichere Schutzkleinspannung, unge- erdet		
SIL	Der Sicherheitsintegritätslevel ist eine Maßeinheit zur Quantifizierung der Risikoreduzierung. Begriff aus der Sicherheitstechnik (EN 61508 -17)		
SPS	Speicherprogrammierbare Steue- rung		
SS1	Sicherheitsfunktion "Sicherer Halt 1" gemäß IEC 61800-5-2		
SSI	Synchron-serielle Schnittstelle für		
	Geber		

Normen für Antriebsstromrichter

Produktnormen, die direkt für den Antriebsstromrichter gelten:

EN 61800-2	Drehzahlveränderbare elektrische Antriebe Teil 2: Allgemeine Anforderungen - Festlegungen für die Bemessung von Niederspannungs-Wechselstrom-Antriebssystemen mit einstellbarer Frequenz (VDE 0160-102, IEC 61800-2)
EN 61800-3	Drehzahlveränderbare elektrische Antriebe. Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren (VDE 0160-103, IEC 61800-3)
EN 61800-5-1	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-1: Anforderungen an die Sicherheit – Elektrische, thermische und energetische Anforderungen (VDE 0160-105-1, IEC 61800-5-1)
EN 61800-5-2	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-2: Anforderungen an die Sicherheit – Funktionale Sicherheit (VDE 0160-105-2, UL61800-5-2, IEC 22G/264/CD)
UL61800-5-1	Amerikanische Version der IEC 61800-5-1 mit "National Deviations" für USA und Canada
EN 61800-9-2	Drehzahlveränderbare elektrische Antriebe - Teil 9-2: Ökodesign für Antriebssysteme, Motorstarter, Leistungselektronik und deren angetriebene Einrichtungen - Indikatoren für die Energieeffizienz von Antriebssystemen und Motorstartern

Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:

EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen - Grenzwerte und Messverfahren (IEC 55011/CISPR 11)
EN 60529	Schutzarten durch Gehäuse (IP-Code) (VDE 0470, IEC 60529)
EN 60664-1	Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen Teil 1: Grundsätze, Anforderungen und Prüfungen (IEC 60664-1)
EN 60721-3-1	Klassifizierung von Umgebungsbedingungen - Teil 3-1: Klassifizierung von Einflussgrößen in Gruppen und deren Grenzwerte - Hauptabschnitt 1: Langzeitlagerung (IEC 60721-3-1)
EN 60721-3-2	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinflussgrößen und deren Grenzwerte; Hauptabschnitt 2: Transport (IEC 60721-3-2)
EN 60721-3-3	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 3: Ortsfester Einsatz, wetterge- schützt (IEC 60721-3-3 1994)
EN 61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems (IEC 61000-2-1)
EN 61000-2-4	Elektromagnetische Verträglichkeit (EMV) - Teil 2-4: Umgebungsbedingungen; Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in Industrieanlagen (IEC 61000-2-4)
EN 61000-4-2	Elektromagnetische Verträglichkeit (EMV) - Teil 4-2: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität (IEC 61000-4-2)
EN 61000-4-3	Elektromagnetische Verträglichkeit (EMV) - Teil 4-3: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder (IEC 61000-4-3)
EN 61000-4-4	Elektromagnetische Verträglichkeit (EMV) - Teil 4-4: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst (IEC 61000-4-4)

EN 61000-4-5	Elektromagnetische Verträglichkeit (EMV) - Teil 4-5: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen Stoßspannungen (IEC 61000-4-5)
EN 61000-4-6	Elektromagnetische Verträglichkeit (EMV) - Teil 4-6: Prüf- und Messverfahren - Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder (IEC 61000-4-6)
EN 61000-4-34	Elektromagnetische Verträglichkeit (EMV) - Teil 4-34: Prüf- und Messver- fahren - Prüfungen der Störfestigkeit von Geräten und Einrichtungen mit einem Netzstrom > 16 A je Leiter gegen Spannungseinbrüche, Kurzzeitunterbre- chungen und Spannungsschwankungen (IEC 61000-4-34)
EN 61508-17	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme Teil 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme (VDE 0113-50, IEC 62061)
ENISO 13849-1	Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze (ISO 13849-1)

Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:

DGUV Vorschrift 3	Elektrische Anlagen und Betriebsmittel
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
DIN EN 12502-15	Korrosionsschutz metallischer Werkstoffe - Teil 15
EN 1037	Sicherheit von Maschinen - Vermeidung von unerwartetem Anlauf; Deutsche Fassung EN 1037
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Typgeprüfte und partiell typgeprüfte Kombinationen (IEC 60439-1)
EN 60947-7-1	Niederspannungsschaltgeräte - Teil 7-1: Hilfseinrichtungen - Reihenklemmen für Kupferleiter (IEC 60947-7-1:2009)
EN 60947-8	Niederspannungsschaltgeräte - Teil 8: Auslösegeräte für den eingebauten thermischen Schutz (PTC) von rotierenden elektrischen Maschinen (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN 61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken (IEC 61373)
EN 61439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Allgemeine Festlegungen (IEC 121B/40/CDV:2016); Deutsche Fassung FprEN 61439-1:2016
VDE 0100	Errichten von Niederspannungsanlagen – Beachtung aller Teile (IEC 60364-x-x)
VGB S 455 P	Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen
DIN EN 60939-1	Passive Filter für die Unterdrückung von elektromagnetischen Störungen - Teil 1: Fachgrundspezifikation (IEC 60939-1:2005 + Corrigendum: 2005)

1 Grundlegende Sicherheitshinweise

Die Produkte sind nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Die Nichtbeachtung der Sicherheitshinweise durch den Kunden, Anwender oder sonstigen Dritten führt zum Verlust aller dadurch verursachten Ansprüche gegen den Hersteller.

ACHTUNG

Gefahren und Risiken durch Unkenntnis.

- ▶ Lesen Sie die Gebrauchsanleitung!
- ▶ Beachten Sie die Sicherheits- und Warnhinweise!
- ► Fragen Sie bei Unklarheiten nach!

1.1 Zielgruppe

Diese Gebrauchsanleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- Kenntnis und Verständnis der Sicherheitshinweise.
- · Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über VDE 0100
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).

1.2 Transport, Lagerung und sachgemäße Handhabung

Der Transport ist durch entsprechend unterwiesene Personen unter Beachtung der in dieser Anleitung angegebenen Umweltbedingungen durchzuführen. Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen.

Transport von Antriebsstromrichtern mit einer Kantenlänge >75 cm

Der Transport per Gabelstapler ohne geeignete Hilfsmittel kann zu einer Durchbiegung des Kühlkörpers führen. Dies führt zur vorzeitigen Alterung bzw. Zerstörung interner Bauteile.

- ► Antriebsstromrichter auf geeigneten Paletten transportieren.
- ► Antriebsstromrichter nicht stapeln oder mit anderen schweren Gegenständen belasten.

ACHTUNG

Beschädigung der Kühlmittelanschlüsse

Abknicken der Rohre!

▶ Das Gerät niemals auf die Kühlmittelanschlüsse abstellen!

Produkt enthält elektrostatisch gefährdete Bauelemente.

- Berührung vermeiden.
- ► ESD-Schutzkleidung tragen.

Lagern Sie das Produkt nicht

- in der Umgebung von aggressiven und/oder leitfähigen Flüssigkeiten oder Gasen.
- in Bereichen mit direkter Sonneneinstrahlung.
- außerhalb der angegebenen Umweltbedingungen.

1.3 Einbau und Aufstellung

▲ GEFAHR

Nicht in explosionsgefährdeter Umgebung betreiben!

▶ Das Produkt ist nicht für den Einsatz in explosionsgefährdeter Umgebung vorgesehen.

A VORSICHT

Bauartbedingte Kanten und hohes Gewicht!

Quetschungen und Prellungen!

- ▶ Nie unter schwebende Lasten treten.
- Sicherheitsschuhe tragen.
- ▶ Produkt beim Einsatz von Hebewerkzeugen entsprechend sichern.

Um Schäden am und im Produkt vorzubeugen:

- Darauf achten, dass keine Bauelemente verbogen und/oder Isolationsabstände verändert werden.
- Bei mechanischen Defekten darf das Produkt nicht in Betrieb genommen werden. Die Einhaltung angewandter Normen ist nicht mehr gewährleistet.
- Es darf keine Feuchtigkeit oder Nebel in das Produkt eindringen.
- Das Eindringen von Staub ist zu vermeiden. Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- Einbaulage und Mindestabstände zu umliegenden Elementen beachten. Lüftungsöffnungen nicht verdecken.
- Produkt entsprechend der angegebenen Schutzart montieren.
- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile (Bohrspäne, Schrauben usw.) in das Produkt fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Geräteanschlüsse auf festen Sitz prüfen, um Übergangswiderstände und Funkenbildung zu vermeiden.
- · Produkt nicht begehen.
- Die Sicherheitshinweise sind aufzubewahren!

1.4 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät!

Lebensgefahr durch Stromschlag!

- ▶ Niemals am offenen Gerät arbeiten oder offen liegende Teile berühren.
- ▶ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten, gegen Wiedereinschalten sichern und Spannungsfreiheit an den Eingangsklemmen durch Messung feststellen.
- ► Warten bis alle Antriebe zum Stillstand gekommen sind, damit keine generatorische Energie erzeugt werden kann.
- ► Kondensatorentladezeit (5 Minuten) abwarten. Spannungsfreiheit an den DC-Klemmen durch Messung feststellen.
- ➤ Sofern Personenschutz gefordert ist, für Antriebsstromrichter geeignete Schutzvorrichtungen einbauen.
- ► Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken.
- ▶ Schutzleiter immer an Antriebsstromrichter und Motor anschließen.
- Zum Betrieb alle erforderlichen Abdeckungen und Schutzvorrichtungen anbringen.
- ► Schaltschrank im Betrieb geschlossen halten.
- ▶ Fehlerstrom: Dieses Produkt kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produktes nur ein RCD oder RCM vom Typ B zulässig.
- ► Antriebsstromrichter mit einem Ableitstrom > 3,5 mA Wechselstrom (10 mA Gleichstrom) sind für einen ortsfesten Anschluss bestimmt. Schutzleiter sind gemäß den örtlichen Bestimmungen für Ausrüstungen mit hohen Ableitströmen nach EN 61800-5-1, EN 60204-1 oder VDE 0100 auszulegen.

Wenn beim Errichten von Anlagen Personenschutz gefordert ist, müssen für Antriebsstromrichter geeignete Schutzvorrichtungen benutzt werden.

www.keb.de/fileadmin/media/Techinfo/dr/tn/ti_dr_tn-rcd-00008_de.pdf

Anlagen, in die Antriebsstromrichter eingebaut sind, müssen ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen gemäß den jeweils gültigen Sicherheitsbestimmungen, z.B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw. ausgerüstet werden. Diese Hinweise sind auch bei CE gekennzeichneten Antriebsstromrichtern stets zu beachten.

Für einen störungsfreien und sicheren Betrieb sind folgende Hinweise zu beachten:

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der angegebenen Minimal-/ Maximalwerte für die Anwendung durch den Anwender zu dimensionieren.
- Der Anschluss der Antriebsstromrichter ist nur an symmetrische Netze mit einer Spannung Phase (L1, L2, L3) gegen Nulleiter/Erde (N/PE) von maximal 300 V zulässig, USA UL: 480 / 277 V. Bei Versorgungsnetzen mit höheren Spannungen muss ein entsprechender Trenntransformator vorgeschaltet werden. Bei Nichtbeachtung gilt die Steuerung nicht mehr als PELV-Stromkreis.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit PELV die Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß EN 61800-5-1) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.

1.4.1 EMV-gerechte Installation

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Kunden.

Hinweise zur EMV-gerechten Installation sind hier zu finden.

1.4.2 Spannungsprüfung

Eine Prüfung mit AC-Spannung (gemäß *EN 60204-1* Kapitel 18.4) darf nicht durchgeführt werden, da eine Gefährdung für die Leistungshalbleiter im Antriebsstromrichter besteht.

Aufgrund der Funkentstörkondensatoren wird sich der Prüfgenerator sofort mit Stromfehler abschalten.

Nach *EN 60204-1* ist es zulässig, bereits getestete Komponenten abzuklemmen. Antriebsstromrichter der KEB Automation KG werden gemäß Produktnorm zu 100% spannungsgeprüft ab Werk geliefert.

1.4.3 Isolationsmessung

Eine Isolationsmessung (gemäß *EN 60204-1* Kapitel 18.3) mit DC 500 V ist zulässig, wenn alle Anschlüsse im Leistungsteil (netzgebundenes Potenzial) und alle Steueranschlüsse mit PE gebrückt sind. Der Isolationswiderstand des jeweiligen Produkts ist in den technischen Daten zu finden.

1.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

A WARNUNG

Softwareschutz und Programmierung!

Gefährdung durch ungewolltes Verhalten des Antriebes!

- ► Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichters prüfen, ob Parametrierung zur Applikation passt.
- ▶ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- ► Motoren gegen selbsttätigen Anlauf sichern.

A VORSICHT

Hohe Temperaturen an Kühlkörper und Kühlflüssigkeit!

Verbrennung der Haut!

- ▶ Heiße Oberflächen berührungssicher abdecken.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.
- ▶ Oberfläche und Kühlflüssigkeitsleitungen vor Berührung prüfen.
- ► Vor jeglichen Arbeiten Gerät abkühlen lassen.
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.
- · Nur für das Gerät zugelassenes Zubehör verwenden.
- Anschlusskontakte, Stromschienen oder Kabelenden nie berühren.

A VORSICHT

Hoher Schalldruckpegel während des Betriebs!

Hörschäden möglich!

Gehörschutz tragen!

ACHTUNG

Dauerbetrieb (S1) mit Auslastung > 60 % oder Motorbemessungsleistung ab 55 kW!

Vorzeitige Alterung der Elektrolytkondensatoren!

▶ Netzdrossel mit U_k = 4% einsetzen.

Sofern ein Antriebsstromrichter mit Elektrolytkondensatoren im Gleichspannungszwischenkreis länger als ein Jahr nicht in Betrieb war, beachten Sie folgende Hinweise.

www.keb.de/fileadmin/media/Techinfo/dr/tn/ti_dr_tn-format-capacitors-00009_de.pdf

Schalten am Ausgang

Bei Einzelantrieben ist das Schalten zwischen Motor und Antriebsstromrichter während des Betriebes zu vermeiden, da es zum Ansprechen der Schutzeinrichtungen führen kann. Ist das Schalten nicht zu vermeiden, muss die Funktion "Drehzahlsuche" aktiviert sein. Diese darf erst nach dem Schließen des Motorschützes eingeleitet werden (z.B. durch Schalten der Reglerfreigabe).

Bei Mehrmotorenantrieben ist das Zu- und Abschalten zulässig, wenn mindestens ein Motor während des Schaltvorganges zugeschaltet ist. Der Antriebsstromrichter ist auf die auftretenden Anlaufströme zu dimensionieren.

Wenn der Motor bei einem Neustart (Netz ein) des Antriebsstromrichters noch läuft (z.B. durch große Schwungmassen), muss die Funktion "Drehzahlsuche" aktiviert sein.

Schalten am Eingang

Bei Applikationen, die zyklisches Aus- und Einschalten des Antriebsstromrichters erfordern, muss nach dem letzten Einschalten eine Zeit von mindestens 5 min vergangen sein. Werden kürzere Taktzeiten benötigt, setzen Sie sich bitte mit der KEB Automation KG in Verbindung.

Kurzschlussfestigkeit

Die Antriebsstromrichter sind bedingt kurzschlussfest. Nach dem Zurücksetzen der internen Schutzeinrichtungen ist die bestimmungsgemäße Funktion gewährleistet.

Ausnahmen:

- Treten am Ausgang wiederholt Erd- oder Kurzschlüsse auf, kann dies zu einem Defekt am Gerät führen.
- Tritt ein Kurzschluss während des generatorischen Betriebes (zweiter bzw. vierter Quadrant, Rückspeisung in den Zwischenkreis) auf, kann dies zu einem Defekt am Gerät führen.

1.6 Wartung

Die folgenden Wartungsarbeiten sind nach Bedarf, mindestens jedoch einmal pro Jahr, durch autorisiertes und eingewiesenes Personal durchzuführen.

- ► Anlage auf lose Schrauben und Stecker überprüfen und ggf. festziehen.
- ► Antriebsstromrichter von Schmutz und Staubablagerungen befreien. Dabei besonders auf Kühlrippen und Schutzgitter von Ventilatoren achten.
- ▶ Ab- und Zuluftfilter vom Schaltschrank überprüfen bzw. reinigen.
- ► Funktion der Ventilatoren des Antriebsstromrichters überprüfen. Bei hörbaren Vibrationen oder Quietschen sind die Ventilatoren zu ersetzen.
- ▶ Bei flüssigkeitsgekühlten Antriebsstromrichtern ist eine Sichtprüfung des Kühlkreislaufs auf Dichtigkeit und Korrosion durchzuführen. Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

1.7 Instandhaltung

Bei Betriebsstörungen, ungewöhnlichen Geräuschen oder Gerüchen informieren Sie eine dafür zuständige Person!

▲ GEFAHR

Unbefugter Austausch, Reparatur und Modifikationen!

Unvorhersehbare Fehlfunktionen!

- ▶ Die Funktion des Antriebsstromrichters ist von seiner Parametrierung abhängig. Niemals ohne Kenntnis der Applikation austauschen.
- ► Modifikation oder Instandsetzung ist nur durch von der KEB Automation KG autorisiertem Personal zulässig.
- ► Nur originale Herstellerteile verwenden.
- ► Zuwiderhandlung hebt die Haftung für daraus entstehende Folgen auf.

Im Fehlerfall wenden Sie sich an den Maschinenhersteller. Nur dieser kennt die Parametrierung des eingesetzten Antriebsstromrichters und kann ein entsprechendes Ersatzgerät liefern oder die Instandhaltung veranlassen.

1.8 Entsorgung

Elektronische Geräte der KEB Automation KG sind für die professionelle, gewerbliche Weiterverarbeitung bestimmt (sog. B2B-Geräte).

Hersteller von B2B-Geräten sind verpflichtet, Geräte, die nach dem 14.08.2018 hergestellt wurden, zurückzunehmen und zu verwerten. Diese Geräte dürfen grundsätzlich nicht an kommunalen Sammelstellen abgegeben werden.

Sofern keine abweichende Vereinbarung zwischen Kunde und KEB getroffen wurde oder keine abweichende zwingende gesetzliche Regelung besteht, können so gekennzeichnete KEB-Produkte zurückgegeben werden. Firma und Stichwort zur Rückgabestelle sind u.a. Liste zu entnehmen. Versandkosten gehen zu Lasten des Kunden. Die Geräte werden daraufhin fachgerecht verwertet und entsorgt.

In der folgenden Tabelle sind die Eintragsnummern länderspezifisch aufgeführt. KEB Adressen finden Sie auf unserer Webseite.

Rücknahme durch	WEEE-Registrierungsnr.		Stichwort:
Deutschland			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Frankreich			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Italien			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Österreich			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
Spanien			
KEB Automation KG	RII-AEE:	7427	Palabra clave "Retirada RAEE"
Tschechische Republik			
KEB Automation KG	RETELA:	09281/20-ECZ	Klíčové slovo "Zpětný odběr OEEZ"
Slowakei			
KEB Automation KG	ASEKOL:	RV22EEZ0000421	Klíčové slovo: "Spätný odber OEEZ"

Die Verpackung ist dem Papier- und Kartonage-Recycling zuzuführen.

2 Produktbeschreibung

Bei der Gerätereihe COMBIVERT F6 handelt es sich um Antriebsstromrichter mit Funktionaler Sicherheit, die für den Betrieb an synchronen und asynchronen Motoren optimiert sind.

Es stehen diverse Sicherheitsfunktionen für verschiedene Anwendungen zur Verfügung. Durch ein Feldbusmodul kann er an unterschiedlichen Feldbussystemen betrieben werden. Die Steuerkarte verfügt über ein systemübergreifendes Bedienkonzept.

Der COMBIVERT erfüllt die Anforderungen der Maschinenrichtlinie. Die möglichen Funktionen sind über eine Bauartprüfung zertifiziert.

Der COMBIVERT ist ein Produkt mit eingeschränkter Erhältlichkeit nach *EN 61800-3*. Dieses Produkt kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann es für den Betreiber erforderlich sein, entsprechende Maßnahmen durchzuführen.

Es sind die Maschinenrichtlinie, EMV-Richtlinie, Niederspannungsrichtline sowie weitere Richtlinien und Verordnungen zu beachten.

2.1 Bestimmungsgemäßer Gebrauch

Der COMBIVERT dient ausschließlich zur Steuerung und Regelung von Drehstrommotoren. Er ist zum Einbau in elektrische Anlagen oder Maschinen in der Industrie bestimmt.

Die technischen Daten sowie die Angaben zu Anschlussbedingungen sind dem Typenschild und der Gebrauchsanleitung zu entnehmen und unbedingt einzuhalten.

Die bei der KEB Automation KG eingesetzten Halbleiter und Bauteile sind für den Einsatz in industriellen Produkten entwickelt und ausgelegt.

Einschränkung

Wenn das Produkt in Maschinen eingesetzt wird, die unter Ausnahmebedingungen arbeiten, lebenswichtige Funktionen, lebenserhaltende Maßnahmen oder eine außergewöhnliche Sicherheitsstufe erfüllen, ist die erforderliche Zuverlässigkeit und Sicherheit durch den Maschinenbauer sicherzustellen und zu gewährleisten.

2.1.1 Restgefahren

Trotz bestimmungsgemäßen Gebrauch kann der Antriebsstromrichter im Fehlerfall, bei falscher Parametrierung, durch fehlerhaften Anschluss oder nicht fachmännische Eingriffe und Reparaturen unvorhersehbare Betriebszustände annehmen. Dies können sein:

- Falsche Drehrichtung
- Zu hohe Motordrehzahl
- Motor läuft in die Begrenzung
- · Motor kann auch im Stillstand unter Spannung stehen
- Automatischer Anlauf

2.2 Nicht bestimmungsgemäßer Gebrauch

Der Betrieb anderer elektrischer Verbraucher ist untersagt und kann zur Zerstörung der Geräte führen. Der Betrieb unserer Produkte außerhalb der in den technischen Daten angegebenen Grenzwerte führt zum Verlust jeglicher Schadensersatzansprüche.

2.3 Produktmerkmale

Diese Gebrauchsanleitung beschreibt die Leistungsteile folgender Geräte:

Gerätetyp: Antriebsstromrichter
Serie: COMBIVERT F6

132...160 kW / 400 V (Luftkühler)

Leistungsbereich: 132...200 kW / 400V (Fluidkühler Wasser)

Gehäuse: 7 High Speed Drive

Der COMBIVERT F6 zeichnet sich durch die folgenden Merkmale aus:

- Betrieb von Drehstromasynchronmotoren und Drehstromsynchronmotoren, jeweils in den Betriebsarten gesteuert oder geregelt mit und ohne Drehzahlrückführung
- Folgende Feldbussysteme werden unterstützt: EtherCAT, VARAN, PROFINET, POWERLINK oder CAN
- · Systemübergreifendes Bedienkonzept
- · Großer Betriebstemperaturbereich
- Geringe Schaltverluste durch IGBT-Leistungsteil
- Geringe Geräuschentwicklung durch hohe Schaltfrequenzen
- · Verschiedene Kühlkörperkonzepte
- Temperaturgesteuerte Lüfter, leicht austauschbar
- · Zum Schutz von Getrieben sind Momentengrenzen sowie S-Kurven einstellbar
- Generelle Schutzfunktionen der COMBIVERT Serie gegen Überstrom, Überspannung, Erdschluss und Übertemperatur
- Analoge Ein- und Ausgänge, digitale Ein- und Ausgänge, Relaisausgang (potentialfrei), Bremsenansteuerung und -versorgung, Motorschutz durch l²t, KTY- oder PTC-Eingang, zwei Geberschnittstellen, Diagnoseschnittstelle, Feldbusschnittstelle (abhängig von der Steuerkarte)
- Integrierte Sicherheitsfunktion nach EN 61800-5-2

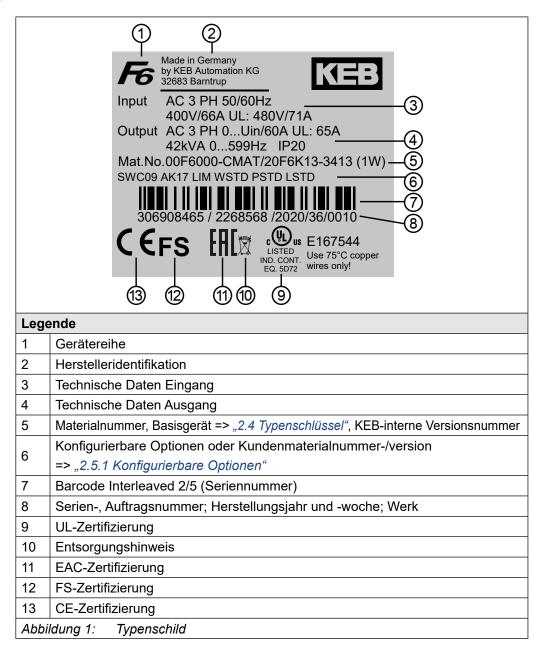
2.4 Typenschlüssel

x x F 6 x x x - x x x	x	
	Kühlkörperausführung	1: Luftkühler, Einbauversion 2: Fluidkühler (Wasser), Einbauversion 3: Luftkühler, Durchsteckversion IP54-ready 4: Fluidkühler (Wasser), Durchsteckversion IP54-ready 5: Luftkühler, Durchsteckversion IP20 6: Fluidkühler (Wasser), Durchsteckversion IP54-ready, Unterbaubremswiderstände 7: Fluidkühler (Öl), Durchsteckversion IP54-ready 8: Fluidkühler (Öl), Durchsteckversion IP54-ready, Unterbaubremswiderstände 9: Fluidkühler (Wasser), Einbauversion, Unterbaubremswiderstände A: Fluidkühler (Wasser), Einbauversion, High-Performance, Unterbaubremswiderstände B: Fluidkühler (Wasser), Durchsteckversion IP54-ready, High-Performance, Unterbaubremswiderstände C: Luftkühler, Einbauversion, Version 2 D: Luftkühler, Einbauversion, High-Performance E: Fluidkühler (Wasser), Einbauversion, High-Performance Fluidkühler, Durchsteckversion IP54-ready, High-Performance G: Fluidkühler (Wasser), Durchsteckversion IP54-ready, High-Performance H: Luftkühler, Konvektion, Durchsteckversion IP54-ready
	Steuerkartenvariante	APPLIKATION 1: Multi Encoder Interface, CAN® 2), Real-Time Ethernet-busmodul 3) B: Multi Encoder Interface, CAN® 2), Real-Time Ethernet-busmodul 3), Alternative Klemme KOMPAKT 1: Multi Encoder Interface, CAN® 2), STO, EtherCAT® 1) 2: Multi Encoder Interface, CAN® 2), STO, VARAN PRO 0: Kein Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3) 1: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3) 3: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), RS485-potentialfrei 4: Kein Encoder, CAN® 2), Real-Time Ethernetschnittstelle 3), Sicheres Relais 5: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), Sicheres Relais B: Multi Encoder Interface, CAN® 2), Real-Time Ethernetschnittstelle 3), Alternative Klemme Weiter auf nächster Seite

x x F 6 x x x - x	xxx			
		0: 2kHz/125%/150%	8: 2kHz/180%/216%	
		1: 4kHz/125%/150%	9: 4kHz/180%/216%	
		2: 8kHz/125%/150%	A: 8kHz/180%/216%	
	Schaltfrequenz,	3: 16kHz/125%/150%	B: 8kHz / HSD	
	Softwarestromgrenze,	4: 2kHz/150%/180%	C: 6kHz / HSD	
	Abschaltstrom	5: 4kHz/150%/180%	D: Sonderschaltfrequenz / Überlast	
		6: 8kHz/150%/180%	E: Sondergerät	
		7: 16kHz/150%/180%		
		1: 3ph 230 V AC/DC mit Bro	ometraneietor	
		2: 3ph 230 V AC/DC nint Bit		
		3: 3ph 400 V AC/DC mit Bre		
		4: 3ph 400 V AC/DC ohne E		
		3ph 400 V AC/DC inkl. G	TR7 / max Gleichrichter /	
	Spannung/	A: 3ph 400 V AC/DC inkl. GTR7 / max. Gleichrichter / max. Vorladung		
	Anschlussart	B: 3ph 400 V AC/DC ohne GTR7 / max. Gleichrichter /		
		B: max. Vorladung		
		C: 3ph 400 V AC/DC GTR7-Variante 2		
		2mb 400\/ AC/DC CTD7 \/amianta 2 / may Claighmigh		
		D: 3ph 400 v AC/DC GTR7.		
	Gehäuse	29		
		1: Sicherheitsmodul Typ 1/	STO bei Steuerungstyn K	
		3: Sicherheitsmodul Typ 3	o ro bor otodorangotyp rt	
	Ausstattung	4: Sicherheitsmodul Typ 4		
		5: Sicherheitsmodul Typ 5		
		A: APPLIKATION		
	Steuerungstyp	K: KOMPAKT		
	5 71	P: PRO		
	Baureihe	COMBIVERT F6		
	Gerätegröße	1033		
Tabelle 1: Typen	schlüssel			

^{**}EtherCAT**

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Deutschland.


CANopen® ist eine eingetragene Marke der CAN in AUTOMATION - International Users and Manufacturers Group e.V.

³⁾ Das Real-Time Ethernetbusmodul / die Real-Time Ethernetschnittstelle enthält diverse Feldbussteuerungen welche sich per Software (Parameter fb68) einstellen lassen.

Der Typenschlüssel dient nicht als Bestellcode, sondern ausschließlich zur Identifikation!

2.5 Typenschild

2.5.1 Konfigurierbare Optionen

Merkmale	Merkmalswerte	Beschreibung		
Software	SWxxx 1)	Softwarestand des Antriebsstromrichters		
Axxx 1)		Gewähltes Zubehör		
Zubehör	NAK	Kein Zubehör		
Ausgangsfrequenz-	LIM	Begrenzung auf 599 Hz		
freischaltung ULO		> 599 Hz freigeschaltet		
WSTD		Gewährleistung - Standard		
Gewährleistung	Wxxx 1)	Gewährleistungsverlängerung		
Darametriarung	PSTD	Parametrierung - Standard		
Parametrierung	Pxxx 1)	Parametrierung - Kundespezifisch		
LSTD		Logo - Standard		
Typenschildlogo Lxxx 1)		Logo - Kundespezifisch		
Abbildung 2: Konfi	gurierbare Optioner	1		

[&]quot;,x" steht für einen variablen Wert.

3 Technische Daten

Sofern nicht anders gekennzeichnet, beziehen sich alle elektrischen Daten im folgenden Kapitel auf ein 3-phasiges Wechselspannungsnetz.

3.1 Betriebsbedingungen

3.1.1 Klimatische Umweltbedingungen

Lagerung		Norm	Klasse	Bemerkungen		
Umgebungstemperatur		EN 60721-3-1	1K4	-2555°C		
Relative Luftfeucht	e	EN 60721-3-1	1K3	595% (ohne Kondensation)		
Lagerungshöhe		_	_	Max. 3000 m über NN		
Transport		Norm	Klasse	Bemerkungen		
Umgebungstemper	atur	EN 60721-3-2	2K3	-2570°C		
Relative Luftfeucht	e	EN 60721-3-2	2K3	95% bei 40°C (ohne Kondensation)		
Betrieb		Norm	Klasse	Bemerkungen		
Umgebungstemper	atur	EN 60721-3-3	3K3	540°C (erweitert auf -1045°C)		
121	Luft	_	_	540°C (erweitert auf -1045°C)		
Kühlmitteleintritts- temperatur	10/			540°C (Gerätegröße 28)		
temperatur	Wasser	_	_	555°C (Gerätegröße 26)		
Relative Luftfeucht	е	EN 60721-3-3	3K3	585% (ohne Kondensation)		
			IP20	Schutz gegen Fremdkörper > ø12,5 mm		
				Kein Schutz gegen Wasser		
Bau- und Schutzar	t	EN 60529		Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist.		
				Antriebsstromrichter generell, ausgenommen Leistungsanschlüsse und Lüftereinheit (IPxxA)		
				Max. 2000 m über NN		
Aufstellhöhe				Ab 1000 m ist eine Leistungsreduzierung von 1% pro 100 m zu berücksichtigen.		
		_	_	Ab 2000 m hat die Steuerkarte zum Netz nur noch Basisisolation. Es sind zusätz liche Maßnahmen bei der Verdrahtung der Steuerung vorzunehmen.		

3.1.2 Mechanische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen
Cobuingungagranzwarta	EN 60721-3-1	4140	Schwingungsamplitude 1,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 00721-3-1	1M2	Beschleunigungsamplitude 5 m/s² (9200 Hz)
Schockgrenzwerte	EN 60721-3-1	1M2	40 m/s²; 22 ms
Transport	Norm	Klasse	Bemerkungen
			Schwingungsamplitude 3,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-2	2M1	Beschleunigungsamplitude 10 m/s² (9200 Hz)
			(Beschleunigungsamplitude 15 m/s² (200500 Hz)) 1)
Schockgrenzwerte	EN 60721-3-2	2M1	100 m/s²; 11 ms
Betrieb	Norm	Klasse	Bemerkungen
	EN 60721 2 2	2044	Schwingungsamplitude 3,0 mm (29 Hz)
Cobuing ungagran zwarta	EN 60721-3-3	3M4	Schwingungsamplitude 3,0 mm (29 Hz) Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte		3M4	
Schwingungsgrenzwerte	EN 60721-3-3 EN 61800-5-1	3M4 _	Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte Schockgrenzwerte		3M4 - 3M4	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz)
Schockgrenzwerte	EN 61800-5-1	_	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz) Beschleunigungsamplitude 10 m/s² (57150 Hz)
	EN 61800-5-1	_	Beschleunigungsamplitude 10 m/s² (9200 Hz) Schwingungsamplitude 0,075 mm (1057 Hz) Beschleunigungsamplitude 10 m/s² (57150 Hz) 100 m/s²; 11 ms

¹⁾ Nicht getestet

3.1.3 Chemisch/Mechanisch aktive Stoffe

Lagerung		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-1	1C2	_
Kontamination	Feststoffe	EN 00721-3-1	1S2	_
Transport		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-2	2C2	_
Kontamination	Feststoffe	EN 00721-3-2	2S2	_
Betrieb		Norm	Klasse	Bemerkungen
Ventemination	Gase	EN 60721-3-3	3C2	-
Nontamination	Kontamination Feststoffe		3S2	-
Tabelle 4: Che	emisch/Mech	anisch aktive Sto	ffe	

3.1.4 Elektrische Betriebsbedingungen

3.1.4.1 Geräteeinstufung

Anforderung	Norm	Klasse Bemerkungen	
Überspannungskategorie	EN 61800-5-1	III	_
Verschmutzungsgrad	EN 60664-1	2	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist
Tabelle 5: Geräteeinstufung			

3.1.4.2 Elektromagnetische Verträglichkeit

Bei Geräten ohne internen Filter ist zur Einhaltung der folgenden Grenzwerte ein externer Filter erforderlich.

EMV-Störaussendung	Norm	Klasse	Bemerkungen
Leitungsgeführte Störaussen- dung	EN 61800-3	C2 / C3	Der angegebene Wert wird nur in Verbindung mit einem Filter eingehalten. Angaben der Entstörung (max. Schaltfrequenz, Leitungslän- ge) ist der entsprechenden Filteranleitung zu entnehmen
Abgestrahlte Störaussendung	EN 61800-3	C2	-
Störfestigkeit	Norm	Pegel	Bemerkungen
Statische Entladungen	EN 61000-4-2	8 kV 4 kV	AD (Luftentladung) CD (Kontaktentladung)
Burst - Anschlüsse für pro- zessnahe Mess- und Regel- funktionen und Signalschnitt- stellen	EN 61000-4-4	2kV	-
Burst - AC - Leistungsschnitt- stellen	EN 61000-4-4	4 kV	-
Surge - Leistungsschnittstellen	EN 61000-4-5	1kV 2kV	Phase-Phase Phase-Erde
Leitungsgeführte Störfestig- keit, induziert durch hochfre- quente Felder	EN 61000-4-6	10 V	0,1580 MHz
		10 V/m	80 MHz1 GHz
Elektromagnetische Felder	EN 61000-4-3	3 V/m	1,42 GHz
_		1 V/m	22,7 GHz
Spannungsschwankungen/	EN 61000-2-1		-15 %+10 %
-einbrüche	EN 61000-4-34	_	Klasse 3
Frequenzänderungen	EN 61000-2-4	_	≤ 2 %
Spannungsabweichungen	EN 61000-2-4	_	±10%
Spannungsunsymmetrien	EN 61000-2-4	_	≤ 3 %
Tabelle 6: Elektromagnetisci	he Verträglichkeit		

3.2 Gerätedaten der High Speed Drive-Geräte

3.2.1 Übersicht der High Speed Drive-Geräte

Die technischen Angaben sind für 2/4-polige Normmotoren ausgelegt. Bei High Speed Drive-Geräten muss der Antriebsstromrichter auf den Motorbemessungsstrom dimensioniert werden.

Gerätegröße			26	26 ⁸⁾	27	28 8)
Gehäuse			7			
Gerätetyp			High Speed Drive			
Ausgangsbemessungsscheinleistung		Sout / kVA	17	73	208	256
Max. Motorbemessungsleistung	1)	Pmot / kW	13	32	160	200
Eingangsbemessungsspannung		Un / V		400 (U	L: 480)	
Eingangsspannungsbereich		Uin / V		280.	550	
Netzphasen				(3	
Netzfrequenz		f _N / Hz		50 / 6	60 ±2	
Eingangsbemessungsstrom @ U _N = 400V		lin / A	26	63	315	390
Eingangsbemessungsstrom @ U _N = 480V		lin_UL / A	2	17	269	337
Isolationswiderstand @ <i>Udc</i> = 500V		Riso / MΩ		>	15	
Ausgangsspannung		Uout / V	0 <i>Ui</i> n			
Ausgangsfrequenz	2)	fout / Hz	0599 (02000)			
Ausgangsphasen					3	
Ausgangsbemessungsstrom @ UN = 400V		In / A	2	50	300	370
Ausgangsbemessungsstrom @ UN = 480V		In_ul / A	210 260		325	
Ausgangsbemessungsüberlast (60s)	3) 4)	160s / %	106	125	106	106
Softwarestromgrenze	3)	Ilim / %	112,5	125	112,5	112,5
Abschaltstrom	3)	loc / %	135	150	135	135
Bemessungsschaltfrequenz		fsn / kHz	8	8	6	8
Max. Schaltfrequenz	5)	fs_max/kHz	16	16	16	16
Verlustleistung bei Bemessungsbetrieb	1)	Po / W	3800	3800	4000	6000
Überlaststrom über Zeit	3)	IOL / %	"3.2.3	"3.2.3.1 Überlastcharakteristik (OL)"		(OL)"
Maximalstrom 0Hz/100Hz bei fs=2kHz		lout_max / %	96 / 135	116 / 150	80 / 135	78 / 135
Maximalstrom 0Hz/100Hz bei fs=4kHz		lout_max / %	64 / 135	80 / 150	53 / 135	54 / 125
Maximalstrom 0Hz/100Hz bei fs=8kHz		lout_max / %	32 / 125	44 / 150	26 / 90	30 / 125
Maximalstrom 0Hz/100Hz bei fs=16 kHz		lout_max/ %	12 / 48	16 / 48	10 / 40	11 / 32
					weiter auf nä	chster Seite

GERÄTEDATEN DER HIGH SPEED DRIVE-GERÄTE

Gerätegröße		26	26 ⁸⁾	27	28 ⁸⁾	
Gehäuse			7			
Gerätetyp			High Sp	eed Drive		
Max. Bremsstrom	I _{B_max} / A		3	82		
Min. Bremswiderstandswert R_{B_min} / Ω			2,2			
Bremstransistor ⁶⁾		Max. Spieldauer:120 s; Max. ED: 50 %				
Schutzfunktion für Bremstransistor		Kurzschlussüberwachung				
Schutzfunktion Bremswiderstand (Error GTR7 always on)		Feedbacksignalauswertung und Stromabschaltung		abschaltung		
Max. Motorleitungslänge geschirmt 9 // m			1	00		
Tabelle 7: Übersicht der HSD-Gerätedate	en					

¹⁾ Bemessungsbetrieb entspricht $U_N = 400V$, Bemessungsschaltfrequenz, Ausgangsfrequenz = 50 Hz (4-poliger Standardasynchronmotor).

- ²⁾ Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.
 Achtung! Geräte mit einer maximaler Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.
- ³⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.
- ⁴⁾ Einschränkungen beachten => "3.2.3.1 Überlastcharakteristik (OL)".
- ⁵⁾ Eine genaue Beschreibung des Derating => "3.3.1 Schaltfrequenz und Temperatur".
- ⁶⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.
- Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.
- 8) Nur bei Wasserkühlung.
- ⁹⁾ Die max. Leitungslänge ist abhängig von diversen Faktoren. Weitere Hinweise sind der entsprechenden Filteranleitung zu entnehmen.

3.2.2 Spannungs- und Frequenzangaben für 400 V-Geräte

Eingangsspannungen und -frequenzen				
Eingangsbemessungsspannung	Un / V	400		
Nominal-Netzspannung (USA)	UN_UL / V	480		
Eingangsspannungsbereich	UIN / V	280550		
Netzphasen		3		
Netzfrequenz	f _N / Hz	50/60		
Netzfrequenztoleranz f _{Nt} / Hz ± 2				
Tabelle 8: Eingangsspannungen und -frequenzen der 400 V-Geräte				

DC-Zwischenkreisspannung					
Zwischenkreis Bemessungsspannung @ $U_N = 400 \text{V}$ U_{N_dc} / V 565					
Zwischenkreis Bemessungsspannung @ $U_{N_UL} = 480 \text{ V}$ $U_{N_UL_dc} / \text{ V}$ 680					
Zwischenkreis Arbeitsspannungsbereich	Udc / V	390780			
Tabelle 9: DC-Zwischenkreisspannung für 400 V-Geräte					

Ausgangsspannungen und -frequenzen							
Ausgangsspannung bei AC-Versorgung	1) Uout / V	0 <i>U</i> in					
Ausgangsfrequenz	²⁾ fout / Hz	0599 (02000)					
Ausgangsphasen		3					
Tabelle 10: Ausgangsspannungen und -frequenzen der 400 V-Geräte							

¹⁾ Die Spannung am Motor ist abhängig von der tatsächlichen Höhe der Eingangsspannung und vom Regelverfahren => "3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V".

3.2.2.1 Beispiel zur Berechnung der möglichen Motorspannung für 400 V

Die Motorspannung, für die Auslegung eines Antriebes, ist abhängig von den eingesetzten Komponenten. Die Motorspannung reduziert sich hierbei gemäß folgender Tabelle:

Komponente	Reduzierung / %	Beispiel
Netzdrossel <i>U</i> _k	4	
Antriebsstromrichter gesteuert	4	Gesteuerter Antriebsstromrichter mit Netz- und Motor-
Antriebsstromrichter geregelt	8	drossel an einem weichen Netz:
Motordrossel Uk	1	400 V-Netzspannung (100%) - 44V reduzierte Span- nung (11 %) = 356 V-Motorspannung
Weiches Netz	2	g (,z, ees t motoropa.mang
Tabelle 11: Beispiel zur Berechr	nuna der möalichen	Motorspannung für 400 V

3.2.3 Ein- und Ausgangsströme / Überlast

Gerätegröße			26	26 4)	27	28 4)	
Eingangsbemessungsstrom @ UN = 400V	1)	Iin / A	263	263	315	390	
Eingangsbemessungsstrom @ UN_UL = 480V	1)	Iin_UL / A	217	217	269	337	
Ausgangsbemessungsstrom @ Un = 400V		In / A	250	2520	300	370	
Ausgangsbemessungsstrom @ UN_UL = 480V		IN_UL / A	210	210	260	325	
Ausgangsbemessungsüberlast (60s)	2)	160s / %	106	125	106	106	
Überlaststrom	2)	IOL / %	"3.2.3.1 Überlastcharakteristik (OL)"				
Softwarestromgrenze	2) 3)	Iim %	112,5	125	112,5	112,5	
Abschaltstrom	2)	loc / %	135	150	135	135	
Tabelle 12: Ein- und Ausgangsströme und Überlast der HSD-Geräte							

¹⁾ Die Werte resultieren aus dem Bemessungsbetrieb nach einer B6-Gleichrichterschaltung mit Netzdrossel 4% Uk.

Die Ausgangsfrequenz ist so zu begrenzen, dass sie 1/10 der Schaltfrequenz nicht übersteigt.
Achtung! Geräte mit einer maximaler Ausgangsfrequenz größer 599Hz unterliegen Exportbeschränkungen.

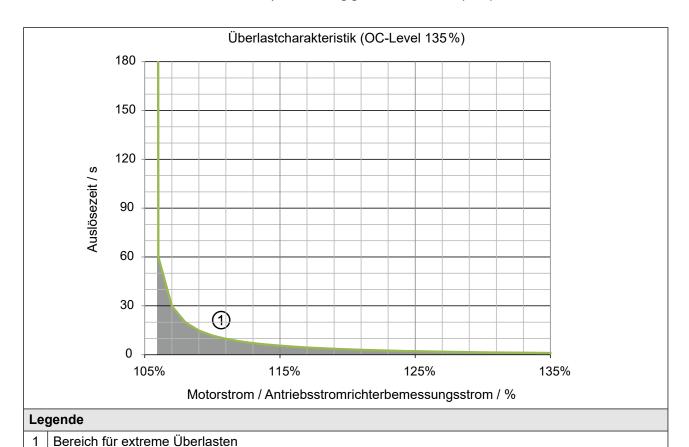
²⁾ Die Werte beziehen sich prozentual auf den Ausgangsbemessungsstrom In.

³⁾ Begrenzung der Stromsollwerte im geregelten Betrieb. Im U/f Betrieb ist diese Sollwertgrenze nicht aktiv.

⁴⁾ Nur bei Wasserkühlung.

GERÄTEDATEN DER HIGH SPEED DRIVE-GERÄTE

3.2.3.1 Überlastcharakteristik (OL)

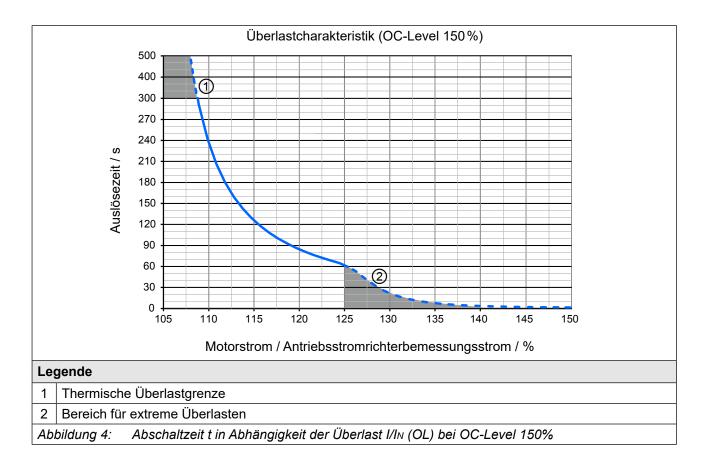

Alle Antriebsstromrichter können bei Bemessungsschaltfrequenz mit einer Auslastung von 106 % bzw. 125% für 60s betrieben werden.

Bei der OL-Überlastfunktion handelt sich um eine quadratische Mittelwertbildung (RMS). Je stärker die Sprünge zwischen den Überlast- und den Unterlastphasen sind, desto stärker ist die Abweichung des RMS vom arithmetischen Mittelwert.

Für extreme Überlasten (=> "Abbildung 3: Abschaltzeit t in Abhängigkeit der Überlast I/ IN (OL) bei OC-Level 135%") wird die Auslastung stärker gewichtet. Das heißt, sie wird für die Berechnung des RMS-Werts mit einem Faktor versehen, so dass die Überlast-Schutzfunktion auslöst, auch wenn der RMS Wert keine 100% erreicht.

Einschränkungen:

- Die thermische Auslegung der Kühlkörper erfolgt für den Bemessungsbetrieb. Es werden u.a. folgende Werte berücksichtigt: Ausgangsbemessungsstrom, Umgebungstemperatur, Bemessungsschaltfrequenz, Bemessungsspannung.
- Bei hohen Umgebungstemperaturen und/oder hohen Kühlkörpertemperaturen (beispielsweise durch eine vorausgehende Auslastung nahe 100%) kann der Antriebsstromrichter vor dem Auslösen der Schutzfunktion OL auf Übertemperaturfehler gehen.
- Bei kleinen Ausgangsfrequenzen oder bei Schaltfrequenzen größer Bemessungsschaltfrequenz, kann vor Auslösen des Überlastfehlers OL der frequenzabhängige Maximalstrom überschritten und der Fehler OL2 ausgelöst werden => "3.2.3.2 Frequenzabhängiger Maximalstrom (OL2)".



Abschaltzeit t in Abhängigkeit der Überlast I/IN (OL) bei OC-Level 135%

34

Abbildung 3:

- Bei Überschreiten einer Auslastung von 105 % startet ein Überlastintegrator.
- Bei Unterschreiten wird rückwärts gezählt.
- Erreicht der Integrator die Überlastkennlinie wird der "Fehler! Überlast (OL)" ausgelöst.

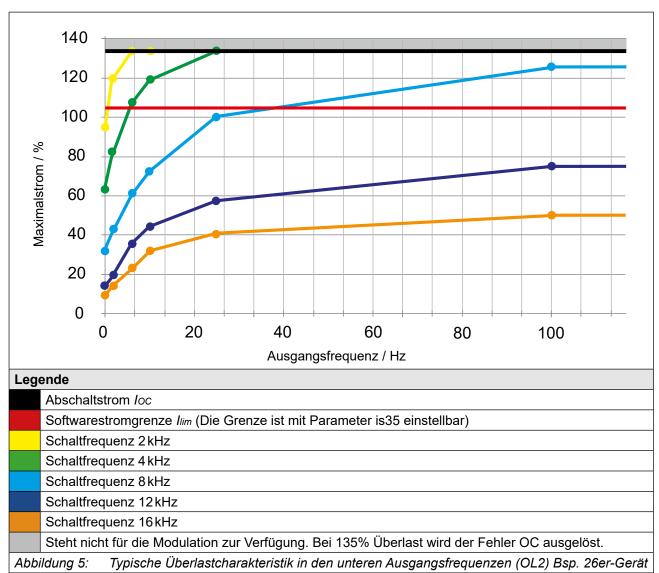
Nach Ablauf einer Abkühlzeit kann dieser nun zurückgesetzt werden. Der Antriebsstromrichter muss während der Abkühlphase eingeschaltet bleiben.

GERÄTEDATEN DER HIGH SPEED DRIVE-GERÄTE

Betrieb im Bereich der thermischen Überlastgrenze

Aufgrund der hohen Steilheit der Überlastcharakteristik ist die Dauer einer zulässigen Überlast im Bereich ① nicht exakt zu bestimmen. Daher sollte bei der Auslegung des Antriebsstromrichters von einer maximalen Überlastzeit von 300s ausgegangen werden.

3.2.3.2 Frequenzabhängiger Maximalstrom (OL2)


Die Kennlinien der Maximalströme für eine Schaltfrequenz, die von der Ausgangsfrequenz abhängig sind, sehen für jeden Antriebsstromrichter im Detail unterschiedlich aus, aber generell gilt für das Gehäuse 7 folgende Regel:

Für Schaltfrequenzen > Bemessungsschaltfrequenz gelten niedrigere Maximalströme.

In den Antriebsstromrichterparametern ist einstellbar, ob bei Überschreiten der Maximalströme ein Fehler (OL2) ausgelöst werden soll, oder die Schaltfrequenz automatisch verringert wird "Derating".

Die folgende Kennlinie gibt den zulässigen Maximalstrom für die Ausgangsfrequenzwerte 0 Hz, 1,5 Hz, 6 Hz, 10 Hz, 25 Hz und 100 Hz an. Es wird beispielhaft die Gerätegröße 26 (Luftgekühlt) dargestellt.

Der frequenzabhängie Maximalstrom *lout_max* bezieht sich prozentual auf den Ausgangsbemessungsstrom *ln.*

Ab dem letzten angegebenen Ausgangsfrequenzwert bleibt der Strom konstant.

Die Werte für die jeweilige Gerätegröße sind in den folgenden Tabellen aufgeführt.

Frequenzabhängiger Maximalstrom (Luftkühler)

Gerätegröße			26						
Bemessungsschaltfrequenz					8 k	Hz			
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	100	
		2kHz	96	120	135	135	135	135	
Eraguanzahhängigar Maximalatram @ fa	lout_max/ %	4 kHz	64	80	108	120	135	135	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 62,5 µs (Parameter is 22=0)	_	8 kHz	32	40	60	72	100	125	
Dasic Time Feriou = 02,0μ3 (Farameter 1322=0)		16 kHz	12	16	24	32	40	48	
		1,75 kHz	96	120	135	135	135	135	
Eraguanzahhängigar Maximalatram @ fa	lout_maxl %	3,5 kHz	72	90	119	132	135	135	
Frequenzabhängiger Maximalstrom @ fs		7 kHz	40	50	72	84	113	135	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	14	18	30	38	48	60	
		1,5 kHz	96	120	135	135	135	135	
Fraguenzahhängiger Meyimeletrem @ fe	1 . / 0/	3 kHz	80	100	129	135	135	135	
Frequenzabhängiger Maximalstrom @ fs Basic Time Period = 83,3 µs (Parameter is 22=2)	lout_max/ %	6 kHz	48	60	84	96	125	135	
Basic Time Feriou – 65,5 µs (Farameter 1822–2)		12kHz	16	20	36	44	56	72	
		1,25 kHz	96	120	135	135	135	135	
Fraguanzahhängigar Mavimalatram @ fa	1 / 0/	2,5 kHz	88	110	135	135	135	135	
Frequenzabhängiger Maximalstrom @ fs	lout_max/ %	5kHz	56	70	96	108	135	135	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	24	30	48	58	78	99	
Tabelle 13: Frequenzabhängiger Maximalstror	n für Geräte	größe 26 (Lu	ıftkühle	er)					

Gerätegröße			27							
Bemessungsschaltfrequenz					6 k	Hz				
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	100		
		2kHz	80	100	125	135	135	135		
Eraguanzahhängigar Mavimalatram @ fa	lout_max/ %	4 kHz	53	67	90	100	125	135		
Frequenzabhängiger Maximalstrom @ fs	Tout_maxi 70	8 kHz	26	33	50	60	75	90		
Basic Time Period = 62,5 µs (Parameter is22=0)		16kHz	10	13	20	27	33	40		
		1,75 kHz	80	100	125	135	135	135		
	lout_max/ % :	3,5 kHz	60	75	99	110	135	135		
Frequenzabhängiger Maximalstrom @ fs		7 kHz	33	42	60	70	88	108		
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	12	15	25	32	40	50		
		1,5 kHz	80	100	125	135	135	135		
	1	3 kHz	67	83	108	120	135	135		
Frequenzabhängiger Maximalstrom @ fs	lout_max/ %	6 kHz	40	50	70	80	100	125		
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	13	17	30	37	47	60		
		1,25 kHz	80	100	125	135	135	135		
Francisco Mariana latrama (2)	1.0/	2,5 kHz	73	92	116	130	135	135		
Frequenzabhängiger Maximalstrom @ fs	lout_max/ %	5 kHz	47	58	80	90	113	135		
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	20	25	40	48	60	75		
Tabelle 14: Frequenzabhängiger Maximalstron	n für Geräte	egröße 27 (L	uftküh	ler)						

Frequenzabhängiger Maximalstrom (Fluidkühler Wasser)

Gerätegröße		,	26						
Bemessungsschaltfrequenz					8 k	Hz			
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	100	
		2kHz	116	136	150	150	150	150	
Eraguanzahhängigar Mavimalatram @ fa	1 1 0/-	4 kHz	80	96	132	144	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max/ %	8 kHz	44	52	84	94	136	150	
Basic Time Period = 62,5 µs (Parameter is22=0)		16kHz	16	20	26	32	40	48	
		1,75 kHz	116	136	150	150	150	150	
	lout_max/ % = =	3,5 kHz	89	106	137	146	150	150	
Frequenzabhängiger Maximalstrom @ fs		7 kHz	53	63	96	107	140	150	
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	21	26	34	41	50	60	
		1,5 kHz	116	136	150	150	150	150	
Fraguenzahhängiger Meyimeletrem @ fe	1 . 10/	3 kHz	98	116	141	147	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max/ %	6 kHz	62	74	108	119	143	150	
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	26	32	42	50	60	72	
		1,25 kHz	116	136	150	150	150	150	
For any and the first of the Manifest M	1	2,5 kHz	107	126	146	149	150	150	
Frequenzabhängiger Maximalstrom @ fs	lout_max/ %	5 kHz	71	85	120	132	147	150	
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	35	42	63	72	98	111	
Tabelle 15: Frequenzabhängiger Maximalstron	n für Geräte	egröße 26 (V	Vasser	kühler)				

GERÄTEDATEN DER HIGH SPEED DRIVE-GERÄTE

Gerätegröße					2	8		
Bemessungsschaltfrequenz					8 k	Hz		
Ausgangsfrequenz		fout / Hz	0	1,5	6	10	25	100
		2 kHz	78	92	130	135	135	135
Eraguanzahhängigar Mayimalatram @ fa	1 , 10/	4 kHz	54	65	89	97	114	125
Frequenzabhängiger Maximalstrom @ fs	lout_max/ %	8 kHz	30	35	57	64	92	125
Basic Time Period = 62,5 µs (Parameter is22=0)		16 kHz	11	14	18	22	27	32
		1,75 kHz	78	92	130	135	135	135
	lout_maxl %	3,5 kHz	60	72	99	108	124	134
requenzabhängiger Maximalstrom @ fs		7 kHz	36	43	65	72	97	125
Basic Time Period = 71,4 µs (Parameter is22=1)		14 kHz	14	18	23	28	34	41
		1,5 kHz	78	92	130	135	135	135
Eraguanzahhängigar Mayimalatram @ fa	1 , 10/	3 kHz	66	78	110	119	135	135
Frequenzabhängiger Maximalstrom @ fs	lout_max/ %	6 kHz	42	50	73	80	103	125
Basic Time Period = 83,3 µs (Parameter is22=2)		12 kHz	18	22	28	34	41	49
		1,25 kHz	78	92	130	135	135	135
Fraguenzahhängiger Meyimeletrem @ fe	1 . 10/	2,5 kHz	72	75	120	130	135	135
Frequenzabhängiger Maximalstrom @ fs	lout_max/ %	5 kHz	48	57	81	89	108	125
Basic Time Period = 100 µs (Parameter is22=3)		10 kHz	24	28	43	49	66	87
Tabelle 16: Frequenzabhängiger Maximalstron	n für Geräte	egröße 28 (V	Vasser	kühler)			

3.2.4 Verlustleistung bei Bemessungsbetrieb

Gerätegröße			26	27	28
Bemessungsschaltfrequenz		fsn / kHz	8	6	8
Verlustleistung bei Bemessungsbetrieb	1)	Po / W	3800	4000	6000
Tabelle 17: Verlustleistung der HSD-Geräte					

¹⁾ Bemessungsbetrieb entspricht $U_N = 400 \text{ V}$; f_{SN} ; $f_N = 50 \text{ Hz}$ (typischer Wert)

3.2.5 Absicherung der Antriebsstromrichter

			Max	. Größe der Siche	rung / A
Geräte- größe	<i>U</i> _N = 400V gG (IEC)	<i>U</i> _N = 480V class "J"	<i>U</i> _N = 480V class "J"		<i>U</i> _N = 480V gR
groise	SCCR 30 kA	SCCR 10kA	SCCR 18kA	SCCR 100 kA	Тур
					SIBA 206xy32.315
26	315	300		315	COOPER BUSSMANN 170M4xy0
					LITTELFUSE PSR030yy0315
					SIBA 206xy32.350
27	355	350		350	COOPER BUSSMANN 170M4xy1
					LITTELFUSE PSR030yy0350
					SIBA 206xy32.450
28	400		450	450	COOPER BUSSMANN 170M4xy3
					LITTELFUSE PSR030yy0450
Tabelle 1	8: Absicher	ungen der H	SD-Geräte		

¹⁾ "x" steht für verschiedene Indikatoren. "y" steht für verschiedene Verbindungsvarianten.

Short-circuit-capacity

Nach Anforderungen aus *EN 60439-1* und *EN 61800-5-1* gilt für den Anschluss an ein Netz: Die Geräte sind unter Verwendung der aufgeführten Absicherungsmaßnahmen für den Einsatz an einem Netz mit einem unbeeinflussten symmetrischen Kurzschlussstrom von maximal 30 kA eff. geeignet.

3.3 Allgemeine elektrische Daten

3.3.1 Schaltfrequenz und Temperatur

Die Antriebsstromrichterkühlung ist so ausgelegt, dass bei Bemessungsbedingungen die Kühlkörperübertemperaturschwelle nicht überschritten wird. Eine Schaltfrequenz größer der Bemessungsschaltfrequenz erzeugt auch höhere Verluste und damit eine höhere Kühlkörpererwärmung.

Erreicht die Kühlkörpertemperatur eine kritische Schwelle (*TDR*), kann die Schaltfrequenz automatisch schrittweise reduziert werden. Damit wird verhindert, dass der Antriebsstromrichter wegen Übertemperatur des Kühlkörpers abschaltet. Unterschreitet die Kühlkörpertemperatur die Schwelle *TUR* wird die Schaltfrequenz wieder auf den Sollwert angehoben. Bei der Temperatur *TEM* wird die Schaltfrequenz sofort auf Bemessungsschaltfrequenz reduziert. Damit diese Funktion greift, muss "Derating" aktiviert sein.

3.3.1.1 Schaltfrequenzen und Temperaturen für Luftkühler

Gerätegröße			26	27
Bemessungsschaltfrequenz	1)	fsn / kHz	8	6
Max. Schaltfrequenz	1)	fs_max / kHz	16	16
Min. Schaltfrequenz	1)	fs_min / kHz	1,25	1,25
Max. Kühlkörpertemperatur 1		Ths1 / °C	90	92
Max. Kühlkörpertemperatur 2		THS2 / °C	77	82
Max. Kühlkörpertemperatur 3		THS3 / °C	82	84
Max. Innenraumtemperatur Leistungsteil 1		TID_PU1 / °C	55	55
Max. Innenraumtemperatur Leistungsteil 2		TID_PU2 / °C	70	70
Max. Innenraumtemperatur Leistungsteil 3		TID_PU3 / °C	90	90
Temperatur zur Schaltfrequenzreduzierung		TDR / °C	80	82
Temperatur zur Schaltfrequenzerhöhung		Tur / °C	70	42
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		<i>Тем</i> / °C	85	87
Tabelle 19: Schaltfrequenz und Temperatur der F	ISE	-Geräte (Lufti	kühler)	

Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

3.3.1.2 Schaltfrequenzen und Temperaturen für Fluidkühler (Wasser)

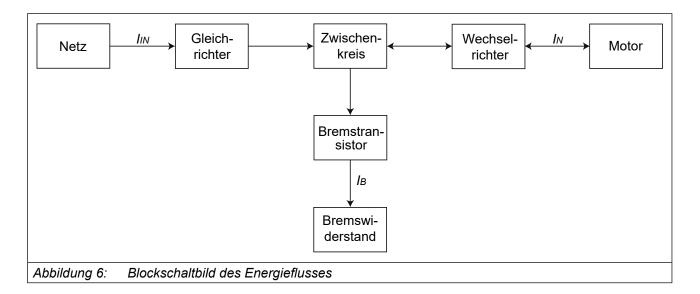
Gerätegröße			26	28
Bemessungsschaltfrequenz	1)	<i>f</i> s⊬ / kHz	8	8
Max. Schaltfrequenz	1)	fs_max / kHz	16	16
Min. Schaltfrequenz	1)	fs_min / kHz	1,25	1,25
Max. Kühlkörpertemperatur 1		THS1 / °C	77	72
Max. Kühlkörpertemperatur 2		THS2 / °C	72	64
Max. Kühlkörpertemperatur 3		Tнsз / °C	72	64
Max. Innenraumtemperatur Leistungsteil 1		TID_PU1 / °C	55	55
Max. Innenraumtemperatur Leistungsteil 2		TID_PU2 / °C	70	70
Max. Innenraumtemperatur Leistungsteil 3		TID_PU3 / °C	90	90
Temperatur zur Schaltfrequenzreduzierung		T _{DR} / °C	69	61
Temperatur zur Schaltfrequenzerhöhung		Tur / °C	64	56
Temperatur zur Umschaltung auf Bemessungs- schaltfrequenz		Тем / °С	71	63
Tabelle 20: Schaltfrequenz und Temperatur der F	-ISE	D-Geräte (Was	serkühler)	

¹⁾ Die Ausgangsfrequenz sollte so begrenzt werden, dass sie 1/10 der Schaltfrequenz nicht übersteigt.

3.3.2 DC-Zwischenkreis / Bremstransistorfunktion

Aktivierung der Bremstransistorfunktion.

Um den Bremstransistor verwenden zu können, muss die Funktion mit dem Parameter "is30 braking transistor function" aktiviert werden.


Für weitere Informationen => F6 Programmierhandbuch.

ACHTUNG

Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters

▶ Der minimale Bremswiderstandswert darf nicht unterschritten werden!

ACHTUNG

Zerstörung des Antriebsstromrichters!

Tritt der Fehler "ERROR GTR7 always ON" auf, wird die Stromaufnahme über die Netzeingangsbrücke der AC-Versorgung intern weggeschaltet.

▶ Der Antriebsstromrichter muss innerhalb von 5 Minuten galvanisch vom Versorgungsnetz getrennt werden!

Gerätegröße			26	27	28				
Zwischenkreis Bemessungsspannung		11		565					
@ UN = 400V		U _{N_dc} / V		505					
Zwischenkreis Bemessungsspannung		11		680					
@ U _{N_UL} = 480V		Un_dc_UL / V	000						
Zwischenkreis Arbeitsspannungsbereich		Uin_dc / V	390780						
DC-Abschaltpegel "Fehler! Unterspannung"		Uup / V	240						
DC-Abschaltpegel "Fehler! Überspannung"		Uop / V	840						
DC-Schaltpegel Bremstransistor	1)	U _B / V	780						
Max. Bremsstrom		IB_max / A		382					
Min. Bremswiderstandswert		R_{B_min} / Ω		2,2					
Bremstransistor	2)		Max. Spielda	auer: 120 s; Ma	ax. ED: 50%				
Schutzfunktion für Bremstransistor			Kurzs	chlussüberwa	chung				
Schutzfunktion Bremswiderstand	3)		Feedbacksignalauswertung und Stroma						
(Error GTR7 always on)									
Zwischenkreiskapazität		C / μF	7800 10400 12400						
Tabelle 21: DC-Zwischenkreis / Bremstransistorfunktion der HSD-Geräte									

¹⁾ Der DC-Schaltpegel für den Bremstransistor ist einstellbar. Der in der Tabelle angegebene Wert ist der Defaultwert.

3.3.3 Thermischer Dauerstrom

Gerätegröße	26								
Bemessungsschaltfrequenz	<i>f</i> s⊬ / kHz	8							
Schaltfrequenz	fs / kHz 2 4 6 8 10 12 14				16				
Thermischer Dauerstrom @ UN = 400V	ITout_max / A	250	250	250	250	210	170	140	115
Thermischer Dauerstrom @ UN = 480V							85		
Tabelle 22: Thermischer Dauerstrom für Gerätegröße 26 Fluidkühler (Wasser)									

Gerätegröße	28								
Bemessungsschaltfrequenz	fsn / kHz	8							
Schaltfrequenz fs / kHz			4	6	8	10	12	14	16
Thermischer Dauerstrom @ UN = 400V	ITout_max / A	370	370	370	370	280	235	185	155
Thermischer Dauerstrom @ UN = 480V	ITout_max / A	325	325	325	325	230	185	150	125
Tabelle 23: Thermischer Dauerstrom für Gerätegröße 28 Fluidkühler (Wasser)									

²⁾ Die Einschaltdauer wird zusätzlich von dem verwendeten Bremswiderstand begrenzt.

³⁾ Die Feedbacksignalauswertung überwacht die Funktionalität des Bremstransistors. Die Stromabschaltung erfolgt über die interne Netzeingangsbrücke der AC-Versorgung.

ALLGEMEINE ELEKTRISCHE DATEN

3.3.4 Lüfter

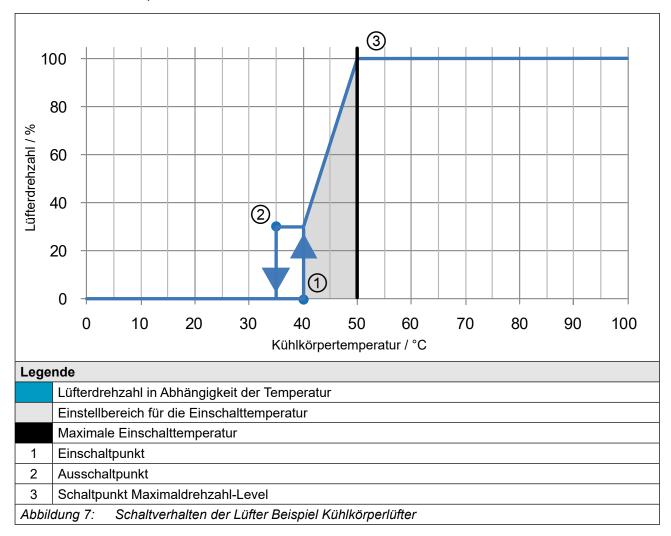
Gerätegröße		26	26 ¹⁾	27	28 ¹⁾
Innenraumlüfter	Anzahl	2	2	2	2
	Drehzahlvariabel	ja	ja	ja	ja
IZObilizarno e el Office e 2)	Anzahl	2	-	2	-
Kühlkörperlüfter 2)	Drehzahlvariabel	ja	-	ja	-
Tabelle 24: Lüfter	•				

¹⁾ Nur bei Wasserkühlung.

²⁾ Externe Kühlkörperlüfterversorgung beachten => "5.2.7 Externe Kühlkörperlüfterversorgung (FAN)"

Die Lüfter sind drehzahlvariabel. Sie werden automatisch, je nach Einstellung der Temperaturgrenzen in der Software, auf hohe oder niedrige Drehzahl gesteuert.

ACHTUNG

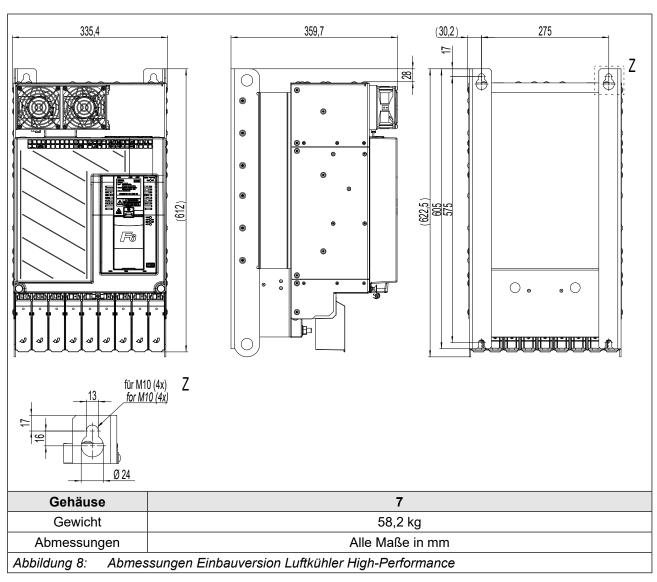

Zerstörung der Lüfter!

► Es dürfen keine Fremdkörper in die Lüfter eindringen!

3.3.4.1 Schaltverhalten der Lüfter

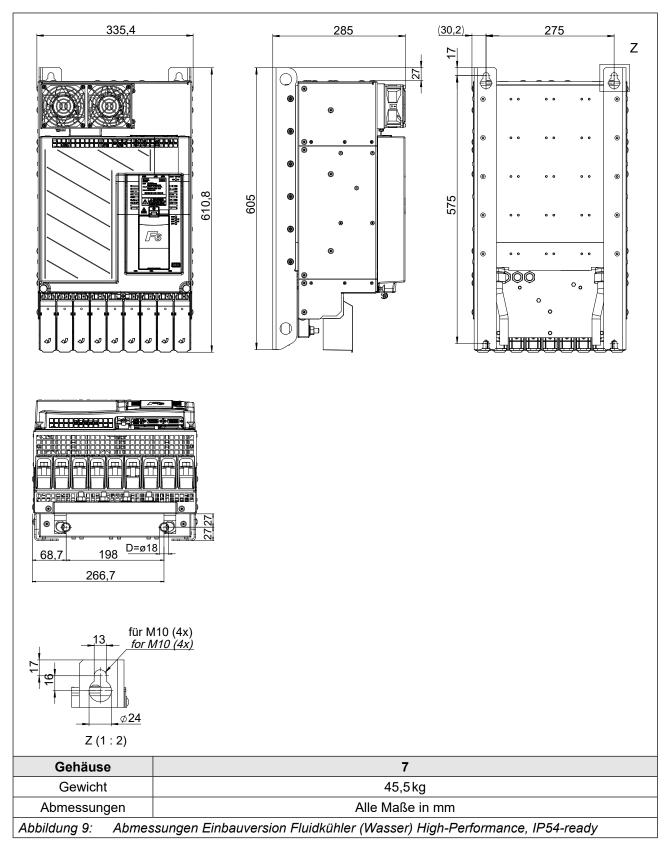
Die Temperaturüberwachung steuert die Lüfter mit verschiedenen Ein- und Ausschaltpunkten.

3.3.4.2 Schaltpunkte der Lüfter

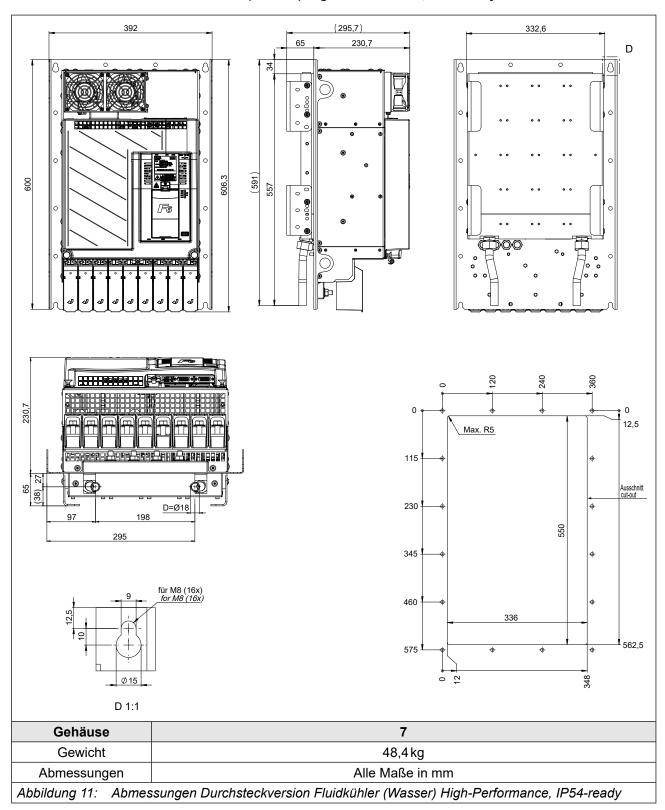

Der Schaltpunkt für die Einschalttemperatur und das Maximaldrehzahl-Level der Lüfter sind einstellbar. In der folgenden Tabelle sind die Standardwerte angegeben.

Lüfter		Kühlkörper	Innenraum	
Einschalttemperatur	T/°C	40	30	
Maximaldrehzahl-Level	T/°C	50	45	
Tabelle 25: Schaltpunkte der Lüfter				

4 Einbau


4.1 Abmessungen und Gewichte

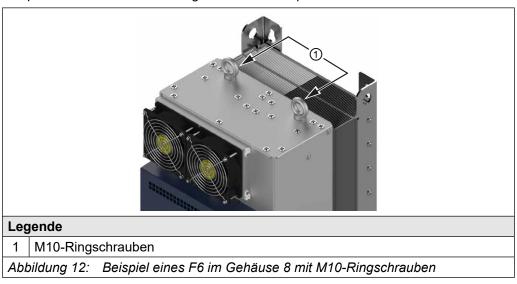
4.1.1 Einbauversion Luftkühler High-Performance



4.1.2 Einbauversion Fluidkühler (Wasser) High-Performance, IP54-ready

ABMESSUNGEN UND GEWICHTE

4.1.3 Durchsteckversion Fluidkühler (Wasser) High-Performance, IP54-ready



4.2 Schaltschrankeinbau

4.1.4 Transport mit Ringschrauben

Bei Antriebsstromrichtern im Gehäuse 7, 8 und 9 befinden sich an der Oberseite 2 Gewindebuchsen für M10-Ringschrauben nach *DIN 580*. Diese dienen der Aufnahme von entsprechenden Hebevorrichtungen für den Transport.


4.1.5 Durchsteckgeräte mit Transportwinkel

Die Transportwinkel können nach der Montage des Antriebsstromrichters entfernt werden. Die Transportwinkel müssen aufbewahrt werden, um den Antriebsstromrichter im Servicefall wieder transportfähig zu machen.

ACHTUNG

Beschädigung durch unsachgemäße Montage.

▶ Die Transportwinkel dürfen nicht zur Befestigung des Antriebsstromrichters genutzt werden.

ACHTUNG

Beschädigung der Wasseranschlüsse.

Abknicken der Rohre!

▶ Das Gerät niemals ohne Transportwinkel abstellen oder transportieren!

4.2.1 Befestigungshinweise

Zur Montage der Antriebsstromrichter wurden folgende Befestigungsmaterialien mit der entsprechenden Güte von KEB getestet.

Benötigtes Material	Anzugsdrehmoment
Sechskantschraube ISO 4017 - M10 - 8.8	50 Nm 442 lb inch
Flache Scheibe /SO 7090 - 10 - 200 HV	_
Tabelle 26: Befestigungshinweise für Einbauversion	

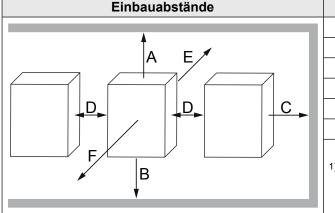
Benötigtes Material	Anzugsdrehmoment
Sechskantschraube <i>ISO 4017</i> - M8 - 8.8	50 Nm 442 lb inch
Flache Scheibe ISO 7090 - 8 - 200 HV	_
Tabelle 27: Befestigungshinweise für Durchsteckversion	

ACHTUNG

Verwendung von anderem Befestigungsmaterial

▶ Das alternativ gewählte Befestigungsmaterial muss die oben genannten Werkstoffkennwerte (Güte) und Anzugsdrehmomente einhalten!

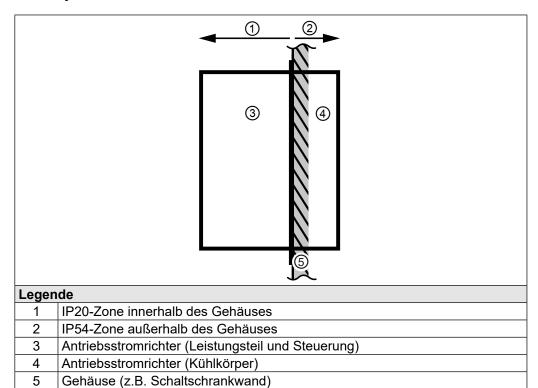
Die Verwendung anderer Befestigungsmaterialien erfolgt außerhalb der Kontrollmöglichkeiten von KEB und liegt daher ausschließlich im Verantwortungsbereich des Kunden.


4.2.2 Einbauabstände

Verlustleistung zur Schaltschrankauslegung "3.2.4 Verlustleistung bei Bemessungsbetrieb". Abhängig von der Betriebsart / Auslastung kann hier ein geringerer Wert angesetzt werden.

Montage des Antriebsstromrichters

Für einen betriebssicheren Betrieb, muss der Antriebsstromrichter ohne Abstand auf einer glatten, geschlossenen, metallisch blanken Montageplatte montiert werden.



Maß	Abstand in mm	Abstand in inch
А	150	6
В	100	4
С	30	1,2
D	0	0
E	0	0
F 1)	50	2

Abstand zu vorgelagerten Bedienelementen in der Schaltschranktür.

Abbildung 14: Einbauabstände

4.2.3 Montage von IP54-ready Geräten

IP54-Zone: Kühlkörper außerhalb des Gehäuses

Abbildung 15: Montage von IP54-ready Geräten

Die Schutzart IP54 kann ausschließlich im ordnungsgemäß eingebauten Zustand erreicht werden.

Für eine ordnungsgemäße Montage muss eine geeignete IP54-Dichtung (=> "5.3.2 Dichtung für IP54-ready Geräte") zwischen Kühlkörper und Gehäuse (z.B. Schaltschrankwand) verbaut werden.

Nach dem Einbau muss die Dichtigkeit überprüft werden. Die Trennung zum Gehäuse entspricht bei ordnungsgemäßer Montage der Schutzart IP54.

Bei luftgekühlten Geräten müssen die Lüfter jedoch vor ungünstigen Umgebungseinflüssen geschützt werden.

Dazu zählen brennbare, ölige oder gefährliche Dämpfe oder Gase, korrosive Chemikalien, grobe Fremdkörper und übermäßiger Staub. Dies betrifft besonders den Zugang des Kühlkörpers von oben (Luftaustritt). Eisbildung ist unzulässig.

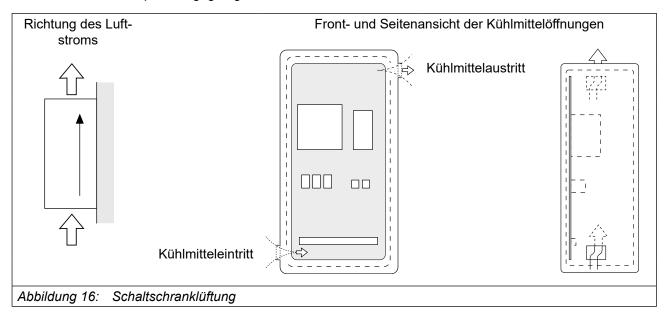
UL: Gerätekühlkörper ist als NEMA Type 1 eingestuft.

IP20-Zone: Gerät innerhalb des Gehäuses

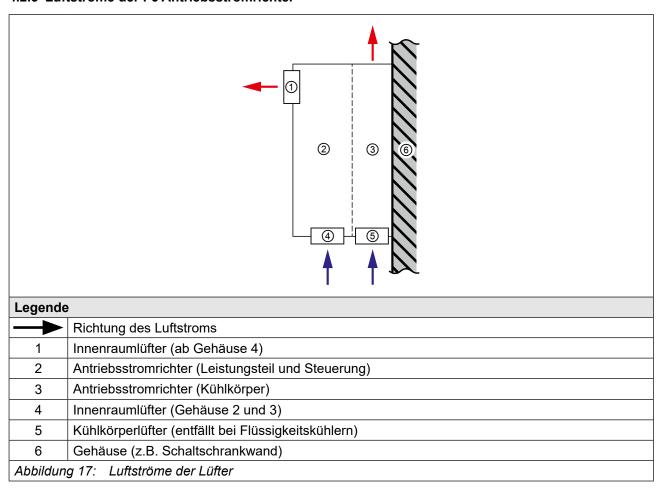
Dieser Teil ist zum Einbau in ein für die angestrebte Schutzart geeignetes Gehäuse (z.B. Schaltschrank) vorgesehen.

Die Leistungsanschlüsse sind ausgenommen => "3.1.1 Klimatische Umweltbedingungen".

ACHTUNG

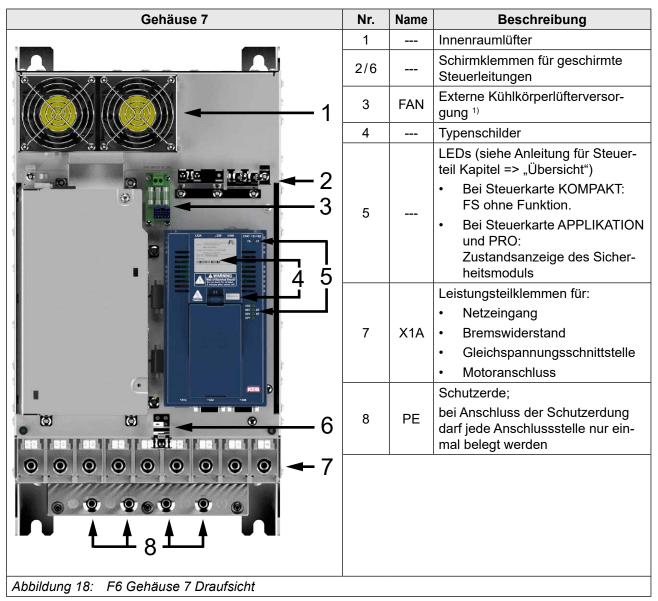

Defekt durch dauerhaftes Spritzwasser!

▶ Das Gerät niemals dauerhaftem Spritzwasser (z.B. direkte Regeneinwirkung) aussetzen!



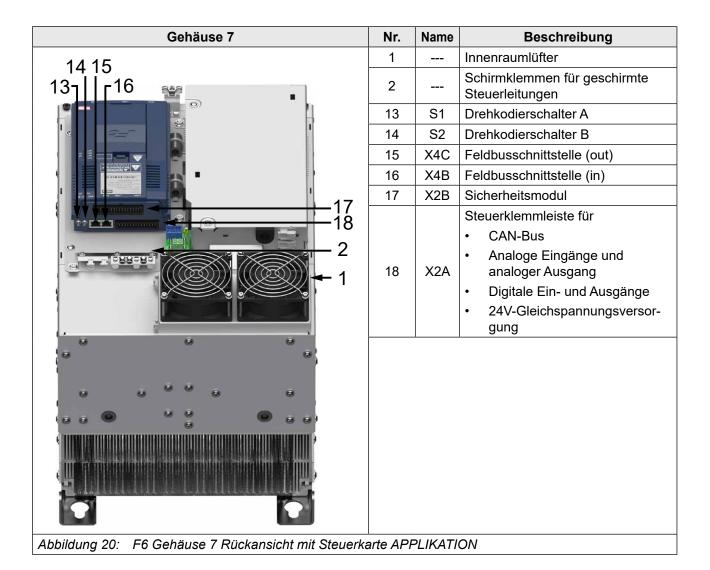
4.2.4 Schaltschranklüftung

Wenn konstruktionsbedingt nicht auf eine Innenraumlüftung des Schaltschrankes verzichtet werden kann, muss durch entsprechende Filter der Ansaugung von Fremdkörpern entgegen gewirkt werden.



4.2.5 Luftströme der F6 Antriebsstromrichter

5 Installation und Anschluss


5.1 Übersicht des COMBIVERT F6

¹⁾ Externe Kühlkörperlüfterversorgung beachten => "5.2.7 Externe Kühlkörperlüfterversorgung (FAN)"

Gehäuse 7	Nr.	Name	Beschreibung		
6 9 10 11	6		Schirmklemmen für geschirmte Steuerleitungen		
		X1A	Leistungsteilklemmen für:		
			Netzeingang		
	7		Bremswiderstand		
TWO THE PARTY OF T			Gleichspannungsschnittstelle		
			Motoranschluss		
			Schutzerde;		
re Personal	8	PE	bei Anschluss der Schutzerdung		
			darf jede Anschlussstelle nur ein- mal belegt werden		
			Klemme für:		
0	9	X1C	Motortemperaturüberwachung		
			Bremsenansteuerung		
	10	ХЗА	Geberschnittstelle Kanal A		
	11	ХЗВ	Geberschnittstelle Kanal B		
	12		Kühlkörperlüfter		
8 ——					
Abbildung 19: F6 Gehäuse 7 Vorderansicht					

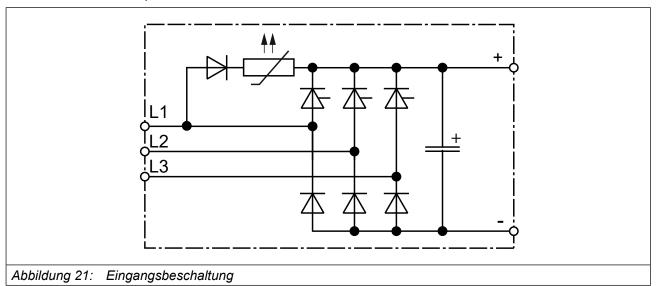
Weitere Informationen sind in der jeweiligen Steuerkartenanleitung zu finden.

Gebrauchsanleitung COMBIVERT F6 Steuerkarte APPLIKATION www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte KOMPAKT www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-k-inst-20144795_de.pdf

Gebrauchsanleitung COMBIVERT F6 Steuerkarte PRO www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_de.pdf

5.2 Anschluss des Leistungsteils

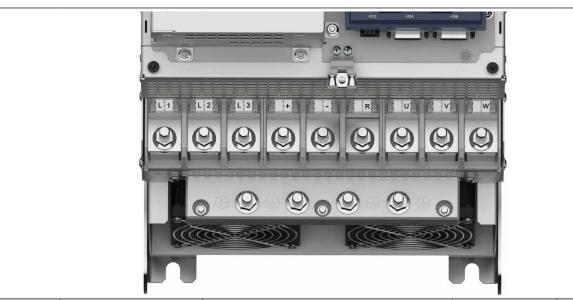

ACHTUNG

Zerstörung des Antriebsstromrichters!

▶ Niemals Netzeingang und Motorausgang vertauschen!

5.2.1 Anschluss der Spannungsversorgung

Der COMBIVERT F6 Gehäuse 7 kann vom Netz über die Klemmen L1, L2 und L3 gespeist werden.



Minimale Wartezeit zwischen zwei Einschaltvorgängen 5 Minuten!

Zyklisches Aus- und Einschalten des Gerätes führt zur temporären Hochohmigkeit des Kaltleiters (PTC) im Eingang. Nach Abkühlung des PTC ist eine erneute Inbetriebnahme ohne Einschränkung möglich.

ANSCHLUSS DES LEISTUNGSTEILS

5.2.1.1 Klemmleiste X1A für 400V-Geräte

			-	
Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
L1	Netzanschluss			
L2	3-phasig			
L3	5-priasig			
+	DC-Klemmen		25 Nm	
-	DC-Memmen			
R	Anschluss für Brems- widerstand (zwischen + und R)	10 mm Stehbolzen für M10-Kabelschuhe	220 lb inch	2
U				
V	Motoranschluss			
W				
Abbildung 22: Klemmleiste V1A für 400 V-Geräte				

Abbildung 22: Klemmleiste X1A für 400 V-Geräte

5.2.2 Schutz- und Funktionserde

Schutz- und Funktionserde dürfen nicht an derselben Klemme angeschlossen werden.

5.2.2.1 Schutzerdung

Die Schutzerde (PE) dient der elektrischen Sicherheit insbesondere dem Personenschutz im Fehlerfall.

A VORSICHT

Elektrischer Schlag durch Falschdimensionierung!

▶ Erdungsquerschnitt ist entsprechend *VDE 0100* zu wählen!

Name	Funktion	Klemmenanschluss	Anzugsdrehmoment	Max. Anzahl der Leiter		
PE,	Anschluss für Schutzerde	10 mm Gewindestift für M10-Kabelschuhe	25 Nm 220 lb inch	1		
Abbildung 23:	Anschluss für Schutzerde					

Fehlerhafte Montage des PE Anschlusses

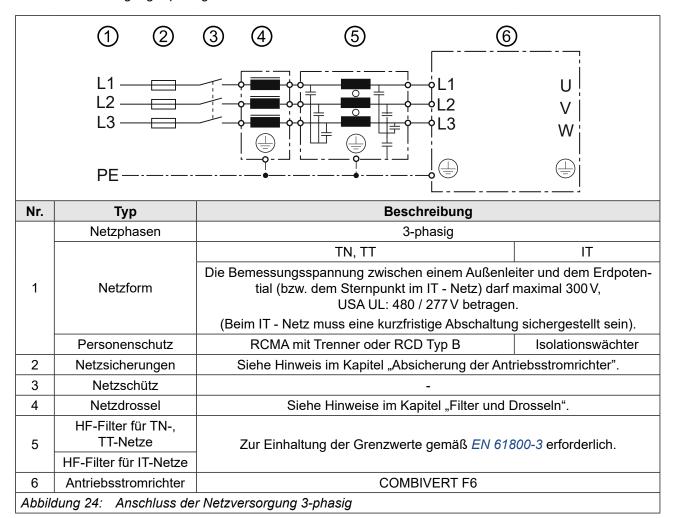
Als Anschluss für die Schutzerde dürfen nur die M10 Gewindestifte mit Mutter verwendet werden!

5.2.2.2 Funktionserdung

Eine Funktionserdung kann zusätzlich notwendig sein, wenn aus EMV-Gründen weitere Potentialausgleiche zwischen Geräten oder Teilen der Anlage zu schaffen sind.

Wird der Antriebsstromrichter EMV-technisch verdrahtet, ist eine zusätzliche Funktionserde (FE) nicht erforderlich.

Die Funktionserde darf nicht grün/gelb verdrahtet werden!



Gebrauchsanleitung EMV- und Sicherheitshinweise. www.keb.de/fileadmin/media/Manuals/dr/emv/0000ndb0000.pdf

5.2.3 AC-Netzanschluss

5.2.3.1 AC-Versorgung 3-phasig

5.2.3.2 Netzzuleitung

Der Leiterquerschnitt der Netzzuleitung wird von folgenden Faktoren bestimmt:

- Eingangsstrom des Antriebsstromrichters
- Verwendeter Leitungstyp
- Verlegeart und Umgebungstemperaturen
- Den vor Ort gültigen Elektro-Vorschriften

Der Projektierer ist für die Auslegung verantwortlich!


5.2.4 DC-Anschluss

ACHTUNG

DC-Betrieb

▶ Der DC-Betrieb ist nur nach Rücksprache mit KEB zulässig!

5.2.4.1 Klemmleiste X1A DC-Anschluss

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter	
+	DC-Klemmen	10 mm Stehbolzen für M10-Kabelschuhe	25 Nm 220 lb inch	2	
Abbildung 25: Klemmleiste X1A DC-Anschluss					

ANSCHLUSS DES LEISTUNGSTEILS

5.2.5 Anschluss des Motors

5.2.5.1 Verdrahtung des Motors

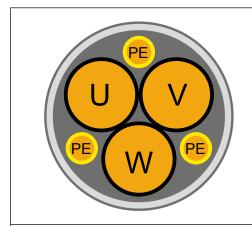
Leg	Legende					
1	KEB COMBIVERT					
2	Motorleitung, Schirm beidseitig und großflächig auf den metallisch blanken Rahmen oder die Montageplatte auflegen (ggf. Lack entfernen)					
3	Drehstrommotor					

Temperaturüberwachung (optional) => Gebrauchsanleitung "Steuerteil"

Abbildung 26: Verdrahtung des Motors

5.2.5.2 Klemmleiste X1A Motoranschluss

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter	
U			25 Nm		
V	Motoranschluss	10 mm Stehbolzen für M10-Kabelschuhe		2	
W			2201D IIICH		
Abbildung 27. Klammlaista V. A. Matayanablung					


Abbildung 27: Klemmleiste X1A Motoranschluss

ANSCHLUSS DES LEISTUNGSTEILS

5.2.5.3 Auswahl der Motorleitung

Bei kleinen Leistungen in Verbindung mit langen Motorleitungslängen spielt die richtige Verdrahtung sowie die Motorleitung selbst eine wichtige Rolle. Kapazitätsarme Leitungen (Empfehlung: Phase/Phase <65 pF/m, Phase/Schirm <120 pF/m) am Antriebsstromrichterausgang haben folgende Auswirkungen:

- Ermöglichen größere Motorleitungslängen => "5.2.5.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung"
- Bessere EMV-Eigenschaften (Reduktion der Gleichtakt Ausgangsströme gegen Erde)

Bei großen Motorleistungen (ab 30 kW) müssen geschirmte Motorleitungen mit symmetrischem Aufbau verwendet werden. Bei diesen Leitungen ist der Schutzleiter gedrittelt und gleichmäßig zwischen den Phasenleitungen angeordnet. Sofern die örtlichen Bestimmungen dies zulassen, kann eine Leitung ohne Schutzleiter verwendet werden. Dieser muss dann extern verlegt werden. Bestimmte Leitungen lassen auch den Schirm zur Verwendung als Schutzleiter zu. Hierzu sind die Angaben des Leitungsherstellers zu beachten!

Abbildung 28: Symmetrische Motorleitung

5.2.5.4 Motorleitungslänge und Leitungsgebundene Störgrößen bei AC-Versorgung

Die maximale Motorleitungslänge ist abhängig von der Kapazität der Motorleitung sowie von der einzuhaltenden Störaussendung. Hier sind externe Maßnahmen zu ergreifen (z.B. der Einsatz eines Netzfilters).

Durch den Einsatz von Motordrosseln oder Motorfiltern lässt sich die Leitungslänge erheblich verlängern. KEB empfiehlt den Einsatz ab einer Leitungslänge von 25 m.

Weitere Informationen zur Motorleitungslänge sind der entsprechenden Filteranleitung zu entnehmen.

5.2.5.5 Motorleitungslänge bei Parallelbetrieb von Motoren

Die resultierende Motorleitungslänge bei Parallelbetrieb von Motoren, bzw. bei Parallelverlegung durch Mehraderanschluss ergibt sich aus folgender Formel:

Resultierende Motorleitungslänge = ∑Einzelleitungslängen x √Anzahl der Motorleitungen

5.2.5.6 Motorleitungsquerschnitt

Der Motorleitungsquerschnitt ist abhängig

- von der Form des Ausgangsstroms (z.B. Oberwellengehalt)
- vom realen Effektivwert des Motorstroms
- von der Leitungslänge
- vom Typ der verwendeten Leitung
- von Umgebungsbedingungen wie Bündelung und Temperatur

ACHTUNG

Fehlerhaftes Verhalten des Motors!

► Generell sind immer die Anschlusshinweise des Motorenherstellers gültig!

ACHTUNG

Motor vor Spannungsspitzen schützen!

▶ Antriebsstromrichter schalten am Ausgang mit einem hohen dU/dt. Insbesondere bei langen Motorleitungen (>15 m) können dadurch Spannungsspitzen am Motor auftreten, die dessen Isolationssystem gefährden. Zum Schutz des Motors kann eine Motordrossel, ein dU/ dt-Filter oder ein Sinusfilter unter Berücksichtigung der Betriebsart eingesetzt werden.

ANSCHLUSS DES LEISTUNGSTEILS

5.2.5.7 Anschluss der Bremsenansteuerung und der Temperaturüberwachung (X1C)

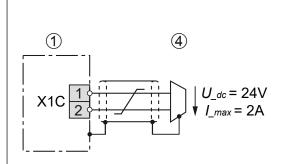
Im COMBIVERT ist eine umschaltbare Temperaturauswertung implementiert.

Es stehen verschiedene Betriebsarten der Auswertung zur Verfügung. Diese sind abhängig von der Steuerkarte => Gebrauchsanleitung "Steuerteil".

Die gewünschte Betriebsart ist per Software einstellbar (dr33). Wird die Auswertung nicht benötigt, muss sie per Software (mit Parameter pn12 = 7) deaktiviert werden => Programmierhandbuch.

X1C	PIN	Name	Beschreibung	
	1	BR+	Bremsenansteuerung / Ausgang +	
	2	BR-	Bremsenansteuerung / Ausgang -	
	3	reserviert	_	
2 4 6	4	reserviert	_	
	5	TA1	Temperaturerfassung / Ausgang +	
	6	TA2	Temperaturerfassung / Ausgang -	
1 3 5				
Abbildung 29: Klemmleiste X1C für Steuerkarte APPLIKATION und KOMPAKT				

X1C	PIN	Name	Beschreibung	
	1	BR+	Bremsenansteuerung / Ausgang +	
	2	BR-	Bremsenansteuerung / Ausgang -	
	3	0V	Zur Vergergung der Bückmeldegingenge	
	4	24Vout	Zur Versorgung der Rückmeldeeingänge	
2 4 6 8 10	5	DIBR1	Rückmeldeeingang 1 für Bremse oder Relais	
	6	DIBR2	Rückmeldeeingang 2 für Bremse oder Relais	
	7	reserviert	_	
	8	reserviert	_	
	9	TA1	Temperaturerfassung / Eingang +	
	10	TA2	Temperaturerfassung / Eingang -	
Abbildung 30: Klemmleiste X1C für Steuerkarte PRO				


ACHTUNG

Störungen durch falsche Leitungen oder Verlegung!

Fehlfunktionen der Steuerung durch kapazitive oder induktive Einkopplung.

- ► Leitungen vom Motortemperatursensor (auch geschirmt) nicht zusammen mit Steuerleitungen verlegen.
- ▶ Leitungen vom Motortemperatursensor innerhalb der Motorleitungen nur mit doppelter Abschirmung zulässig!

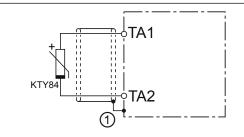
Bei Steuerkarte APPLIKATION und KOMPAKT:

Die Spannung zur Ansteuerung einer Bremse ist von der internen Spannungsversorgung entkoppelt. Die Bremse funktioniert nur bei externer Versorgung.

Bei Steuerkarte PRO:

Die Bremse kann sowohl mit interner als auch externer Spannung versorgt werden. Spannungstoleranzen und Ausgangsströme unterscheiden sich bei interner oder externer Spannungsversorgung.

Spezifikation in der jeweiligen


=> Gebrauchsanleitung "Steuerteil" beachten.

. | _

COMBIVERT

4 Bremse

Abbildung 31: Anschluss der Bremsenansteuerung

KTY-Sensoren sind gepolte Halbleiter und müssen in Durchlassrichtung betrieben werden!

Die Anode an TA1 und die Kathode an TA2 anschließen! Nichtbeachtung führt zu Fehlmessungen im oberen Temperaturbereich. Ein Schutz der Motorwicklung ist dann nicht mehr gewährleistet.

1 Anschluss über Schirmauflageblech (falls nicht vorhanden, auf der Montageplatte auflegen).

Abbildung 32: Anschluss eines KTY-Sensors

ACHTUNG

Kein Schutz der Motorwicklung bei falschem Anschluss!

- ► KTY-Sensoren in Durchlassrichtung betreiben.
- ► KTY-Sensoren nicht mit anderen Erfassungen kombinieren.

Weitere Hinweise zur Verdrahtung der Temperaturüberwachung und der Bremsenansteuerung sind in der jeweiligen Steuerteilanleitung zu beachten.

5.2.6 Anschluss und Verwendung von Bremswiderständen

A VORSICHT

Brandgefahr beim Einsatz von Bremswiderständen!

▶ Die Brandgefahr kann durch den Einsatz von "eigensicheren Bremswiderständen" bzw. durch Nutzung geeigneter Überwachungsfunktionen / -schaltungen deutlich verringert werden.

ACHTUNG

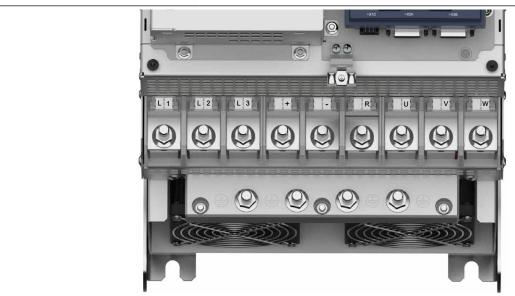
Unterschreiten des minimalen Bremswiderstandswerts!

Zerstörung des Antriebsstromrichters!

► Der minimale Bremswiderstandswert darf nicht unterschritten werden => "3.2 Gerätedaten der High Speed Drive-Geräte"

A VORSICHT

Heiße Oberflächen durch Belastung des Bremswiderstands!



Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Oberfläche vor Berührung prüfen.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.

5.2.6.1 Klemmleiste X1A Anschluss Bremswiderstand

Name	Funktion	Querschnitt für Klemmenanschluss	Anzugsdreh- moment	Max. Anzahl der Leiter
+	Anschluss für Brems- widerstand (zwischen + und R)	10 mm Stehbolzen für M10-Kabelschuhe	25 Nm 220 lb inch	2
R				
Abbildung 33: Klemmleiste X1A Anschluss Bremswiderstand				

Bei Geräten mit Unterbaubremswiderständen besteht bei der Klemme R keine elektrische Verbindung zum Bremstransistor!

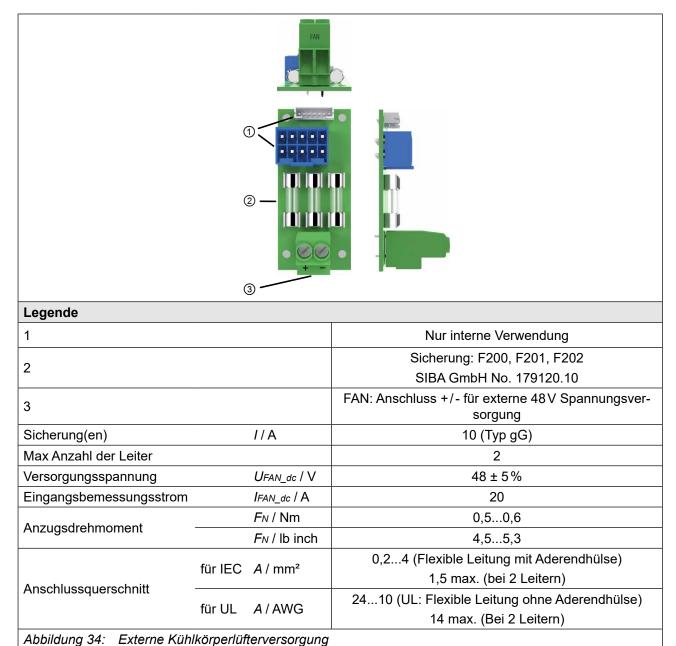
ANSCHLUSS DES LEISTUNGSTEILS

5.2.6.2 Verwendung nicht eigensicherer Bremswiderstände

WARNUNG

Verwendung nicht eigensicherer Bremswiderstände Brand- oder Rauchentwicklung bei Überlastung oder Fehler!

- ▶ Nur Bremswiderstände mit Temperatursensor verwenden.
- ► Temperatursensor auswerten.
- ► Fehler am Antriebsstromrichter auslösen (z.B. externer Eingang).
- ► Eingangsspannung wegschalten (z.B. Eingangsschütz).
- ► Anschlussbeispiele für nicht eigensichere Bremswiderstände => Gebrauchsanleitung "Installation Bremswiderstände".



5.2.7 Externe Kühlkörperlüfterversorgung (FAN)

Die Steuerung und Kühlkörperlüfter sollten über getrennte externe Spannungsquellen versorgt werden.

Dies bietet im Fehlerfall der Kühlkörperlüfter eine störungsfreie Weiterversorgung der Steuerung.

ACHTUNG

Verwendung ungeeigneter Spannungsquellen!

Elektrischer Schlag!

- ▶ Nur Spannungsquellen (PELV) gemäß VDE 0100 zulässig.
- ► Auf ausreichende Überspannungskategorie der Spannungsversorgung achten.
- ► Auslösecharakteristik der Sicherungen bei Auswahl der Spannungsquelle der Kühlkörperlüfterversorgung beachten.

5.3 Zubehör

5.3.1 Filter und Drosseln

Spannungsklasse	Antriebsstromrichtergröße	HF-Filter	Netzdrossel 50 Hz / 4% Uk
		• 26E4T60-1001	
	26	• 26E4T60-1051	2674004 4000
	26	• 27E6T60-1150	26Z1B04-1000
		• 27E6T60-3000	
400V	27	• 27E6T60-1150	
		• 27E6T60-3000	0774004 4000
		• 28E4T60-1001	27Z1B04-1000
		• 28E4T60-1051	
	28	• 28E4T60-1001	28Z1B06-1000
Tabelle 28: Filter und	Drosseln		

ACHTUNG

Überhitzung der Unterbaufilter!

▶ Die Verwendung von Unterbaufiltern bei Antriebsstromrichtern mit der Materialnummer xxF6xxx-xxx9 (Fluidkühler Wasser, Einbauversion, Unterbaubremswiderstände) führt zu Überhitzung und ist nicht zulässig!

Die angegebenen Filter und Drosseln sind für Bemessungsbetrieb ausgelegt.

5.3.2 Dichtung für IP54-ready Geräte

Bezeichnung	Materialnummer
Flachdichtung IP54 Luftkühler	70F6T45-0010
Tabelle 29: Dichtung für IP54-ready Geräte	

5.3.3 Nebenbaubremswiderstände

Technische Daten und Auslegung zu nichteigensicheren Bremswiderständen

https://data.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_de.pdf

6 Betrieb von flüssigkeitsgekühlten Geräten

6.1 Wassergekühlte Geräte

Bei Applikationen in denen prozessbedingt Kühlflüssigkeit vorhanden ist, bietet sich die Anwendung von wassergekühlten KEB COMBIVERT Antriebsstromrichtern an. Bei der Verwendung sind jedoch nachfolgende Hinweise unbedingt zu beachten.

6.1.1 Kühlkörper und Betriebsdruck

Bauart	Material	max. Betriebsdruck	Anschluss
Aluminium Kühlkörper mit Edelstahlrohren	Edelstahl 1.4404	10bar	=> "6.1.4 Anschluss des Kühlsystems"

ACHTUNG

Verformung des Kühlkörpers!

- ▶ Um eine Verformung des Kühlkörpers und die damit verbundenen Folgeschäden zu vermeiden, darf der jeweils angegebene maximale Betriebsdruck auch von Druckspitzen kurzzeitig nicht überschritten werden.
- ► Es ist die Druckgeräterichtlinie 2014/68/EU über Druckgeräte zu beachten!

6.1.2 Materialien im Kühlkreislauf

Für die Verschraubungen und auch im Kühlkreis befindliche metallische Gegenstände, die mit der Kühlflüssigkeit (Elektrolyt) in Kontakt stehen, ist ein Material zu wählen, welches eine geringe Spannungsdifferenz zum Kühlkörper bildet, damit keine Kontaktkorrosion und/ oder Lochfraß entsteht (elektrochemische Spannungsreihe, siehe folgende Tabelle). Der spezifische Einsatzfall ist in Abstimmung des gesamten Kühlkreislaufes vom Kunden selbst zu prüfen und hinsichtlich der Verwendbarkeit der eingesetzten Materialien entsprechend einzustufen. Bei Schläuchen und Dichtungen ist darauf zu achten, dass halogenfreie Materialien verwendet werden.

Eine Haftung für entstandene Schäden durch falsch eingesetzte Materialien und daraus resultierender Korrosion kann nicht übernommen werden!

Material	gebildetes lon	Normpotenzial	Material	gebildetes lon	Normpotenzial
Lithium	Li+	-3,04 V	Nickel	Ni2+	-0,25 V
Kalium	K+	-2,93 V	Zinn	Sn2+	-0,14 V
Calcium	Ca2+	-2,87 V	Blei	Pb3+	-0,13 V
Natrium	Na+	-2,71 V	Eisen	Fe3+	-0,037 V
Magnesium	Mg2+	-2,38 V	Wasserstoff	2H+	0,00 V
Titan	Ti2+	-1,75V	Edelstahl (1.4404)	diverse	0,20,4 V
Aluminium	Al3+	-1,67 V	Kupfer	Cu2+	0,34 V
Mangan	Mn2+	-1,05V	Kohlenstoff	C2+	0,74 V
Zink	Zn2+	-0,76 V	Silber	Ag+	0,80V
			-	weiter	auf nächster Seite

Material	gebildetes Ion	Normpotenzial	Material	gebildetes lon	Normpotenzial
Chrom	Cr3+	-0,71 V	Platin	Pt2+	1,20 V
Eisen	Fe2+	-0,44 V	Gold	Au3+	1,42 V
Cadmium	Cd2+	-0,40 V	Gold	Au+	1,69 V
Cobald	Co2+	-0,28 V			
Tabelle 30: Elektrochemische Spannungsreihe / Normpotenziale gegen Wasserstoff					

6.1.3 Anforderungen an das Kühlmittel

Die Anforderungen an das Kühlmittel hängen von den Umgebungsbedingungen, sowie vom verwendeten Kühlsystem ab.

Generelle Anforderungen an das Kühlmittel:

Anforderung	Beschreibung
Normen	Korrosionsschutz nach <i>DIN EN 12502-15</i> , Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen nach <i>VGB R 455 P</i> .
VGB Kühlwasserrichtlinie	Die VGB Kühlwasserrichtlinie (<i>VGB R 455 P</i>) enthält Hinweise über gebräuchliche Verfahrenstechniken der Kühlung. Inbesondere werden die Wechselwirkungen zwischen dem Kühlwasser und den Komponenten des Kühlsystems beschrieben.
Abrasivstoffe	Abrasivstoffe, wie sie in Scheuermitteln (Quarzsand) verwendet werden, setzen den Kühlkreislauf zu.
Hartes Wasser	Kühlwasser darf keine Wassersteinablagerungen oder lockere Ausscheidungen verursachen. Die Gesamthärte sollte zwischen 720 °dH liegen, die Karbonhärte bei 310 °dH.
Weiches Wasser	Weiches Wasser (<7°dH) greift die Werkstoffe an.
Frostschutz	Bei Applikationen, bei denen der Kühlkörper oder die Kühlflüssigkeit Temperaturen unter 0°C ausgesetzt ist, muss ein entsprechendes Frostschutzmittel eingesetzt werden. Zur besseren Verträglichkeit mit anderen Additiven am Besten Produkte von einem Hersteller verwenden.
	KEB empfiehlt das Frostschutzmittel Antifrogen N von der Firma Clariant mit einem maximalen Volumenanteil von 52 %.
Korrosionsschutz	Als Korrosionsschutz können Additive eingesetzt werden. In Verbindung mit Frostschutz muss der Frostschutz eine Konzentration von 2025 Vol% haben, um eine Veränderung der Additive zu verhindern.
	Alternativ kann ein Frostschutz / Glykol mit einer Konzentration von 20% max. Vol 52% eingesetzt werden. Wird ein Frostschutz verwendet muss das Wasser nicht zusätzlich mit Additiven versehen werden.
Tabelle 31: Anforderu	ngen an das Kühlmittel

WASSERGEKÜHLTE GERÄTE

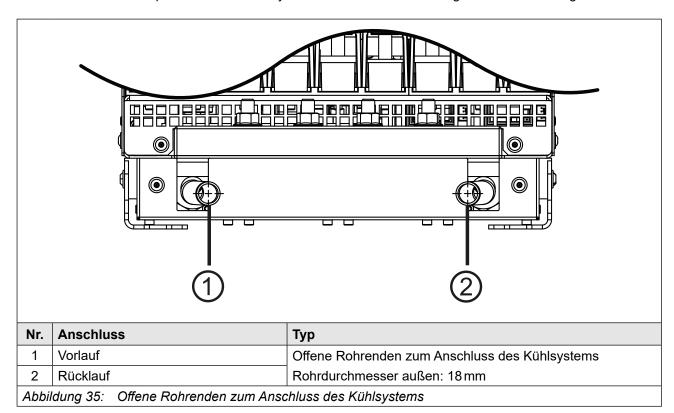
Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Anforderung	Beschreibung	
Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Wasserfilter entgegen gewirkt werden.	
Salzkonzentration	Bei halboffenen Systemen kann durch Verdunstung der Salzgehalt ansteigen. Dadurch wird das Wasser korrosiver. Zufügen von Frischwasser und Entnahme von Nutzwasser wirkt dem entgegen.	
Algen und Schleimbak- terien	Durch die erhöhte Wassertemperatur und der Kontakt mit Luftsauerstoff können sich Algen und Schleimbakterien bilden. Diese setzten die Filter zu und behindern somit den Wasserfluss. Biozid-haltige Additive können dies verhindern. Insbesondere bei längerem Stillstand des Kühlkreislaufs ist hier vorzubeugen.	
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.	
Tabelle 32: Besondere Anforderungen bei offenen und halboffenen Kühlsystemen		

ACHTUNG

Verlust der Garantieansprüche!

➤ Schäden am Gerät, die durch verstopfte, korrodierte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Gewährleistungsansprüche.


6.1.4 Anschluss des Kühlsystems

Die Anbindung an das Kühlsystem kann als geschlossener oder offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung der Kühlflüssigkeit sehr gering ist. Vorzugsweise sollte auch eine Überwachung des pH-Wertes der Kühlflüssigkeit installiert werden.

Beim erforderlichen Potenzialausgleich ist auf einen entsprechenden Leiterquerschnitt zu achten, um elektrochemische Vorgänge möglichst gering zu halten.

=> "6.1.2 Materialien im Kühlkreislauf"

Weitere Elemente im Kühlkreislauf wie Pumpe, Absperrventile, Entlüftung usw. sind entsprechend dem Kühlsystem sowie den örtlichen Gegebenheiten zuzufügen.

Zum Anschluss des Kühlsystems empfiehlt KEB den Einsatz von Funktionsmuttern z.B.des Herstellers "Parker", Typ FMxxL71 (xx = Rohrdurchmesser). Das empfohlene Anzugsdrehmoment beträgt 80Nm.

Um den Volumenstrom im Kühlsystem zu überwachen empfiehlt KEB den Einsatz eines Volumenstromwächters.

6.1.5 Kühlmitteltemperatur und Betauung

Die Vorlauftemperatur sollte in Abhängigkeit vom Volumenstrom so gewählt werden, dass bei Bemessungsbetrieb die Kühlkörpertemperatur immer 10 K unter dem Übertemperaturpegel (OH) liegt. Dadurch wird ein sporadisches Abschalten vermieden.

Die maximale Kühlkörpertemperatur ist dem Kapitel => "3.3.1 Schaltfrequenz und Temperatur" zu entnehmen.

6.1.5.1 Betauung

Eine Temperaturdifferenz zwischen Antriebsstromrichter und Umgebungstemperatur kann bei hoher Luftfeuchtigkeit zu Betauung führen.

Betauung stellt eine Gefahr für den Antriebsstromrichter dar. Durch entstehende Kurzschlüsse kann der Antriebsstromrichter zerstört werden.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

▶ Der Anwender muss sicherstellen, dass jegliche Betauung vermieden wird!

6.1.5.2 Zuführung temperierter Kühlflüssigkeit

- Die Zuführung optimal temperierter Kühlflüssigkeit ist möglich durch die Verwendung von Heizungen im Kühlkreislauf zur Steuerung der Kühlflüssigkeitstemperatur.
- Die folgende Taupunkttabelle zeigt die Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

Luftfeuchtigkeit / %	10	20	30	40	50	60	70	80	90
Umgebungs-									
temperatur / °C									
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6
0	-26	-19	-14	-11	-8	-6	-4	-3	-2
5	-23	-15	-11	-7	-5	-2	0	2	3
10	-19	-11	-7	-3	0	1	4	6	8
15	-18	-7	-3	1	4	7	9	11	13
20	-12	-4	1	5	9	12	14	16	18
25	-8	0	5	10	13	16	19	21	23
30	-6	3	10	14	18	21	24	26	28
35	-2	8	14	18	22	25	28	31	33
40	1	11	18	22	27	31	33	36	38
45	4	15	22	27	32	36	38	41	43
	Kühlmitteleintrittstemperatur / °C								
Tabelle 33: Taupunkttabelle									

Informationen zum Kühlflüssigkeitsmanagement sind im folgenden Dokument aufgeführt

www.keb.de/fileadmin/media/Techinfo/dr/an/ti_dr_an-liquid-cooling-00004_de.pdf

ACHTUNG

Zerstörung des Kühlkörpers bei Lagerung/ Transport von wassergekühlten Geräten!

Folgende Punkte bei Lagerung von wassergekühlten Geräten beachten:

- ► Kühlkreislauf vollständig entleeren
- ► Kühlkreislauf mit Druckluft ausblasen

ACHTUNG

Zerstörung des Antriebsstromrichters durch Betauung!

► Nur NC-Ventile verwenden!

6.1.6 Zulässiger Volumenstrom bei Wasserkühlung

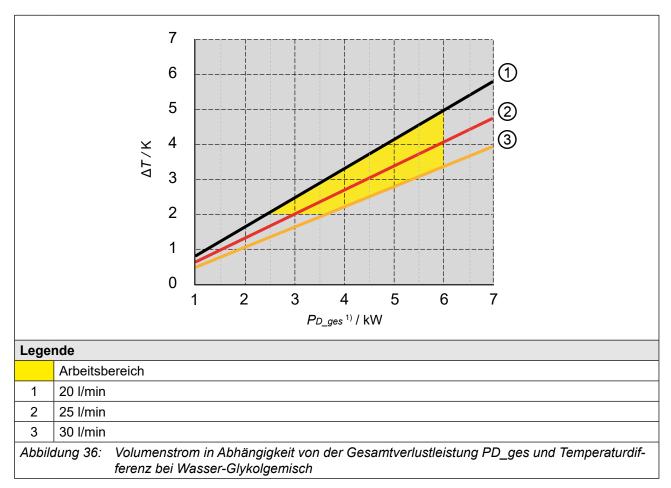
Es muss der Volumenstrom der folgenden Tabelle eingehalten werden.

Zulässiger Volumenstrom		26	28	
Min. Volumenstrom	Q_min / I/min	20	25	
Max. Volumenstrom	Q_max / I/min	30	30	
Tabelle 34: Zulässiger Volumenstrom bei Wasserkühlung				

Der Volumenstrom ist abhängig von der Gesamtverlustleistung.

=> "6.1.7 Kühlmittelerwärmung"

ACHTUNG

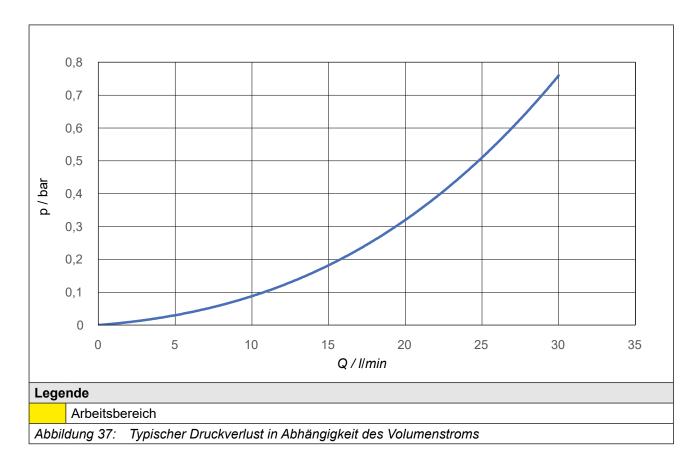

Zerstörung des Kühlkörpers durch Erosion!

Der maximal zulässige Volumenstrom darf nicht überschritten werden.

WASSERGEKÜHLTE GERÄTE

6.1.7 Kühlmittelerwärmung

Volumenstrom in Abhängigkeit von der Gesamtverlustleistung und Temperaturdifferenz zwischen Vorlauf und Rücklauf.



¹⁾ P_{D_ges} kann durch Überlast, höhere Schaltfrequenz oder Unterbaubremswiderstände höher als die Verlustleistung P_D bei Bemessungsbetrieb ausfallen.

6.1.8 Typischer Druckverlust des Kühlkörpers

- Der unten dargestellte Kurvenverlauf gilt für 25°C Vorlauftemperatur und einem Glykolanteil von 52 %.
- · Werden höhere Vorlauftemperaturen gefahren sinkt der Druckverlust im System.
- Dies gilt auch für Kühlmedien wie Wasser oder ein anderes Glykolgemisch
- Empfohlen wird ein Glykolgemisch von Clariant in einem Verhältnis von 52 % oder 33 %.

7 Zertifizierung

7.1 CE-Kennzeichnung

Die mit einem CE Logo gekennzeichneten Antriebsstromrichter halten die Anforderungen, die durch die Maschinenrichtlinie sowie die EMV- und Rohs-Richtlinie und Energieeffizienzregulierung ein.

Für weitere Informationen zu den CE-Konformitätserklärungen

=> "7.3 Weitere Informationen und Dokumentation" auf Seite 87

7.2 UL-Zertifizierung

Eine Abnahme gemäß UL ist bei KEB Antriebsstromrichtern auf dem Typenschild durch nebenstehendes Logo gekennzeichnet.

Zur Konformität gemäß UL für einen Einsatz auf dem nordamerikanischen und kanadischen Markt sind folgende zusätzliche Hinweise unbedingt zu beachten (englischer Originaltext):

· All models:

Maximum Surrounding Air Temperature: 45°C

Use 75°C Copper Conductors Only

This marking is only applicable for all power field wiring terminals.

- Control Circuit Overcurrent Protection Required
- · Brake resistor ratings and duty cycle:
 - Duty cycle 50%
 - Max. 60 sec on-time (60 sec off-time)
- For the DC bus terminals and the mains/motor terminals, the installation instructions or user maintenance manual shall identify any accessible part at voltages greater than DVC A, and shall describe insulation and separation provisions required for protection.
- All Models: "Suitable For Use On A Circuit Capable Of Delivering Not More Than 18000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J Fuses, see instruction manual for Branch Circuit Protection details."
 - All Models: "Suitable For Use On A Circuit Capable Of Delivering Not More Than 100,000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Semiconductor Fuses by SIBA, Type 20 610 32.xxx, or by Bussmann, Type 170M4xxx or by Littelfuse, Type PSR030yy, see instruction manual for Branch Circuit Protection details."
- Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.

CSA: For Canada:

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I.

LA PROTECTION INTÉGRÉE CONTRE LES COURTSCIRCUITS N'ASSURE PAS LA PROTECTION DE LA DÉRIVATION. LA PROTECTION DE LA DÉRIVA-TION DOIT ÊTRE EXÉCUTÉE CONFORMÉMENT AU CODE CANADIEN DE L'ÉLECTRICITÉ, PREMIÈRE PARTIE.

• For Use in a Pollution Degree 2 environment

For installations according to Canadian National Standard C22.2 No. 274-13: For use in Pollution Degree 2 and Overvoltage Category III environments only

ZERTIFIZIERUNG

WARNING – The opening of the branch circuit protective device may be an
indication that a fault current has been interrupted. To reduce the risk of fire or
electrical shock, current-carrying parts and other components of the controller
should be examined and replaced if damaged. If burnout of the current element of
an overload relay occurs, the complete overload relay must be replaced."
CSA: For Canada:

"ATTENTION - LE DÉCLENCHEMENT DU DISPOSITIF DE PROTECTION DU CIRCUIT DE DÉRIVATION PEUT ÊTRE DÛ À UNE COUPURE QUI RÉSULTE D'UN COURANT DE DÉFAUT. POUR LIMITER LE RISQUE D'INCENDIE OU DE CHOC ÉLECTRIQUE, EXAMINER LES PIÈCES PORTEUSES DE COURANT ET LES AUTRES ÉLÉMENTS DU CONTRÔLEUR ET LES REMPLACER S'ILS SONT ENDOMMAGÉS. EN CAS DE GRILLAGE DE L'ÉLÉMENT TRAVERSÉ PAR LE COURANT DANS UN RELAIS DE SURCHARGE, LE RELAIS TOUT ENTIER DOIT ÊTRE REMPLACÉ.

· For high performance:

• Maximum working pressure: 10 bar (145 psi)

• Max. inlet liquid temperature: +55°C

• Min. liquid flow rate: 20 l/min

• Water or a mixture of water with a maximum of 52% monoethylene glycol

7.3 Weitere Informationen und Dokumentation

Ergänzende Anleitungen und Hinweise zum Download finden Sie unter www.keb.de/de/service/downloads

Allgemeine Anleitungen

- EMV- und Sicherheitshinweise
- Anleitungen für weitere Steuerkarten, Sicherheitsmodule, Feldbusmodule, etc.

Anleitungen für Konstruktion und Entwicklung

- · Eingangssicherungen gemäß UL
- Programmierhandbuch f
 ür Steuer- und Leistungsteil
- Motorkonfigurator, zur Auswahl des richtigen Antriebsstromrichters, sowie zur Erstellung von Downloads zur Parametrierung des Antriebsstromrichters

Zulassungen und Approbationen

- · CE-Konformitätserklärung
- TÜV-Bescheinigung
- FS-Zertifizierung

Sonstiges

- COMBIVIS, die Software zur komfortablen Parametrierung der Antriebsstromrichter über einen PC (per Download erhältlich)
- EPLAN-Zeichnungen

8 Änderungshistorie

Version	Datum	Beschreibung
00	2023-10	Erstellung der Vorserienanleitung
01	2023-12	Auffnahme der wassergekühlten Geräte
02	2024-07	Aufnahme der UL-Abnahme, Erstellung der Serienversion

WEITERE KEB PARTNER WELTWEIT:

www.keb-automation.com/de/contact

Automation **mit Drive**

www.keb-automation.com

KEB Automation KG Südstraße 38 D-32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de