

COMBIVERT H6

GEBRAUCHSANLEITUNG | INSTALLATION 24V-NETZTEILMODUL

Originalanleitung Dokument 20105427 DE 05

Vorwort

Die beschriebene Hard- und Software sind Entwicklungen der KEB Automation KG. Die beigefügten Unterlagen entsprechen dem bei Drucklegung gültigen Stand. Druckfehler, Irrtümer und technische Änderungen vorbehalten.

Signalwörter und Auszeichnungen

Bestimmte Tätigkeiten können während der Installation, des Betriebs oder danach Gefahren verursachen. Vor Anweisungen zu diesen Tätigkeiten stehen in der Dokumentation Warnhinweise. Am Gerät oder der Maschine befinden sich Gefahrenschilder. Ein Warnhinweis enthält Signalwörter, die in der folgenden Tabelle erklärt sind:

A GEFAHR

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen wird.

A WARNUNG

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu Tod oder schwerer Verletzung führen kann.

A VORSICHT

Gefährliche Situation, die bei Nichtbeachtung des Sicherheitshinweises zu leichter Verletzung führen kann.

ACHTUNG

Situation, die bei Nichtbeachtung der Hinweise zu Sachbeschädigungen führen kann.

EINSCHRÄNKUNG

Wird verwendet, wenn die Gültigkeit von Aussagen bestimmten Voraussetzungen unterliegt oder sich ein Ergebnis auf einen bestimmten Geltungsbereich beschränkt.

Wird verwendet, wenn durch die Beachtung der Hinweise das Ergebnis besser, ökonomischer oder störungsfreier wird.

Weitere Symbole

- ▶ Mit diesem Pfeil wird ein Handlungsschritt eingeleitet.
- / Mit Punkten oder Spiegelstrichen werden Aufzählungen markiert.
- => Querverweis auf ein anderes Kapitel oder eine andere Seite.

Hinweis auf weiterführende Dokumentation. www.keb.de/nc/de/suche

Gesetze und Richtlinien

Die KEB Automation KG bestätigt mit der EU-Konformitätserklärung und dem CE-Zeichen auf dem Gerätetypenschild, dass es den grundlegenden Sicherheitsanforderungen entspricht.

Die EU-Konformitätserklärung kann bei Bedarf über unsere Internetseite geladen werden. Weitere Informationen befinden sich im Kapitel "Zertifizierung".

Gewährleistung und Haftung

Die Gewährleistung und Haftung über Design-, Material- oder Verarbeitungsmängel für das erworbene Gerät ist den allgemeinen Verkaufsbedingungen zu entnehmen.

Hier finden Sie unsere allgemeinen Verkaufsbedingungen. www.keb.de/de/agb

Alle weiteren Absprachen oder Festlegungen bedürfen einer schriftlichen Bestätigung.

Unterstützung

Durch die Vielzahl der Einsatzmöglichkeiten kann nicht jeder denkbare Fall berücksichtigt werden. Sollten Sie weitere Informationen benötigen oder sollten Probleme auftreten, die in der Dokumentation nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft über die örtliche Vertretung der KEB Automation KG erhalten.

Die Verwendung unserer Geräte in den Zielprodukten erfolgt außerhalb unserer Kontrollmöglichkeiten und liegt daher ausschließlich im Verantwortungsbereich des Kundens.

Die in den technischen Unterlagen enthaltenen Informationen, sowie etwaige anwendungsspezifische Beratung in Wort, Schrift und durch Versuche, erfolgen nach bestem Wissen und Kenntnissen über den bestimmungsgemäßen Gebrauch. Sie gelten jedoch nur als unverbindliche Hinweise und Änderungen sind insbesondere aufgrund von technischen Änderungen ausdrücklich vorbehalten. Dies gilt auch in Bezug auf eine etwaige Verletzung von Schutzrechten Dritter. Eine Auswahl unserer Produkte im Hinblick auf ihre Eignung für den beabsichtigten Einsatz hat generell durch den Anwender zu erfolgen.

Prüfungen und Tests können nur im Rahmen der bestimmungsgemäßen Endverwendung des Produktes (Applikation) vom Kunden erfolgen. Sie sind zu wiederholen, auch wenn nur Teile von Hardware, Software oder die Geräteeinstellung modifiziert worden sind.

Urheberrecht

Der Kunde darf die Gebrauchsanleitung sowie weitere gerätebegleitenden Unterlagen oder Teile daraus für betriebseigene Zwecke verwenden. Die Urheberrechte liegen bei der KEB Automation KG und bleiben auch in vollem Umfang bestehen.

Dieses KEB-Produkt oder Teile davon können fremde Software, inkl. Freier und/oder Open Source Software enthalten. Sofern einschlägig, sind die Lizenzbestimmungen dieser Software in den Gebrauchsanleitungen enthalten. Die Gebrauchsanleitungen liegen Ihnen bereits vor, sind auf der Website von KEB zum Download frei verfügbar oder können bei dem jeweiligen KEB-Ansprechpartner gerne angefragt werden.

Andere Wort- und/oder Bildmarken sind Marken ($^{\text{TM}}$) oder eingetragene Marken ($^{\text{R}}$) der jeweiligen Inhaber.

Inhaltsverzeichnis

	Vorwort	3
	Signalwörter und Auszeichnungen	3
	Weitere Symbole	3
	Gesetze und Richtlinien	4
	Gewährleistung und Haftung	4
	Unterstützung	4
	Urheberrecht	4
	Inhaltsverzeichnis	5
	Abbildungsverzeichnis	8
	Tabellenverzeichnis	
	Glossar	
	Normen für Antriebsstromrichter	
	Produktnormen, die direkt für den Antriebsstromrichter gelten:	
	Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:	
	Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:	13
1	1.1 Zielgruppe	141517171717
2	Produktbeschreibung	. 21
	2.1 Bestimmungsgemäßer Gebrauch	22
	2.2 Nicht bestimmungsgemäßer Gebrauch	22
	2.3 Produktmerkmale	22
	2.3.1 COMBIVERT H6 Serie	22
	2.3.2 24V-Netzteilmodul ohne Ausgangsklemme	23
	2.3.3 24V-Netzteilmodul mit Ausgangsklemme	23
	2.3.4 Steuerungsmodul mit 24V-Netzteil	23
	2.4 Typenschlüssel	24

3	Technische Daten	. 26
	3.1 Betriebsbedingungen	26
	3.1.1 Klimatische Umweltbedingungen	26
	3.1.2 Mechanische Umweltbedingungen	
	3.1.3 Chemisch/ Mechanisch aktive Stoffe	27
	3.1.4 Elektrische Betriebsbedingungen	28
	3.1.4.1 Geräteeinstufung	28
	3.1.4.2 Elektromagnetische Verträglichkeit	28
	3.2 Technische Daten der 24V-Module	29
	3.3 Mechanische Installation	30
	3.3.1 Schaltschrankeinbau	30
	3.3.1.1 Befestigungshinweise bei Schaltschrankmontage	31
	3.3.2 Einbauhinweise bei Flat Rear-Kühlkörper	31
	3.3.3 Abmessungen Zentralkühlkörper	32
	3.3.3.1 Lüftkühlkörper	32
	3.3.3.2 Flüssigkeitskühlkörper	32
	3.3.4 Abmessungen und Gewichte der Module mit Flat Rear-Kühlkörper	33
	3.3.5 Abmessungen und Gewichte der Module mit Luftkühlkörper	34
4	Installation und Anschluss	35
	4.1 Aufbau des Gerätes	35
	4.1.1 Spezifikation des SD-Kartenslot (nur bei Steuerungstyp "D")	
	4.1.2 Verwendung des Programmschalters (nur bei Steuerungstyp "D")	
	4.1.3 Status-LEDs	
	4.2 Anschluss des Leistungsteils	41
	4.2.1 Anschluss des DC-Busses X1D	41
	4.2.2 Anschluss des 24V-Busses X1C	41
	4.2.3 Anschluss der externen 24V-Versorgung X1B	42
	4.2.3.1 Interne Beschaltung mit Option (Prinzipschaltbild)	42
	4.2.4 Anschluss der 24V-Versorgung Hardwarekonfiguration 1 (mit DC-Bus) Gleichrichter-	
	modul	
	4.2.5 Anschluss der 24V-Versorgung Hardwarekonfiguration 2 (ohne DC-Bus) mit AIC	
	4.2.6 Anschluss der 24V-Versorgung Hardwarekonfiguration 3 (mit DC-Bus) mit AIC	
	4.3 Anschluss der Steuerung Typ "D"	
	4.3.1 Ein- und Ausgänge X2A	
	4.3.1.1 Belegung der Klemmleiste X2A	
	4.3.1.2 Technische Daten der Digitaleingänge Steuerung Typ "D"	
	4.3.1.3 Technische Daten der Digitalausgänge Steuerung Typ "D"	
	4.3.1.4 Technische Daten der 24V-Ausgänge	
	4.3.2 Montage von Anschlusslitzen an PUSH IN-Klemmen	
	4.3.3 EtherCAT Systembus Klemmen X4B	
	4.3.4 Feldbus Slavemodul Buchse X4C	48

7	Änderungshistorie	. 60
	6.2 UL-Kennzeichnung	58
	6.1 CE-Kennzeichnung	
6	Zertifizierung	. 57
	5.1.8 Typischer Druckabfall in Abhängigkeit der Durchflussmenge	56
	5.1.7 Kühlmittelerwärmung in Abhängigkeit von Verlustleistung und Durchflussmenge bei Wasser	56
	5.1.6 Kühlkreislauf entleeren	55
	5.1.5 Kühlmitteltemperatur und Betauung	
	5.1.4 Anschluss an das Kühlsystem	
	5.1.3.1 Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:	
	5.1.3 Anforderungen an das Kühlmittel	
	5.1.2 Materialien im Kühlkreis	
	5.1.1 Kühlkörper und Betriebsdruck	
	5.1 Einbau von wassergekühlten Geräten	52
5	Kühlsystem	. 52
	4.5 Anschluss der Steuerung Typ "B"	51
	4.4.2 Belegung der Klemmleiste X2C/D	
	4.4.1.3 Technische Daten der 24 V-Ausgänge	
	4.4.1.2 Technische Daten des Digitalausgangs	50
	4.4.1.1 Technische Daten des Digitaleingangs	50
	4.4.1 Belegung der Klemmleiste X2A	50
	4.4 Anschluss der Steuerung Typ "C"	50
	4.3.5.1 Belegung der Schnittstelle X4A	49
	4.3.5 Diagnose/Visualisierung X4A	49

ABBILDUNGSVERZEICHNIS

Abbildungsverzeichnis

Abbildung 1:	Schaltschrankeinbau	30
Abbildung 2:	Hauptkühler für COMBIVERT H6	32
Abbildung 3:	Abmessungen und Gewichte der Module mit Flat Rear-Kühlkörper	33
Abbildung 4:	Abmessungen und Gewichte der Module mit Luftkühlkörper	34
Abbildung 5:	Frontansicht des Gerätes	35
Abbildung 6:	Anschlüsse der Frontseite	36
Abbildung 7:	Ansicht der Geräteunterseite	37
Abbildung 8:	Ansicht der Geräteoberseite für Steuerung Typ "D"	38
Abbildung 9:	Ansicht der Geräteoberseite für Steuerung Typ "C"	40
Abbildung 10:	Status-LEDs	40
Abbildung 11:	Anschluss des DC-Busses	41
Abbildung 12:	Anschluss des 24V-Busses	41
Abbildung 13:	Anschluss der externen 24V-Versorgung X1B	42
Abbildung 14:	Interne Beschaltung mit Option (Prinzipschaltbild)	42
Abbildung 15:	Anschluss der 24V-Versorgung (mit DC-Bus) Gleichrichtermodul	43
Abbildung 16:	Anschluss der 24V-Versorgung (ohne DC-Bus) mit AIC	44
Abbildung 17:	Anschluss der 24V-Versorgung (mit DC-Bus) mit AIC	45
Abbildung 18:	Belegung der Klemmleiste X2A	46
Abbildung 19:	Montage von Steuerleitungen	47
Abbildung 20:	Belegung der Schnittstelle X4A	49
Abbildung 21:	Belegung der Klemmleiste X2A	50
Abbildung 22:	Kühlmittelerwärmung in Abhängigkeit von Verlustleistung	56
Abbildung 23:	Typischer Druckabfall in Abhängigkeit der Durchflussmenge	56

Tabellenverzeichnis

Tabelle 1:	Typenschlüssel	25
Tabelle 2:	Klimatische Umweltbedingungen	26
Tabelle 3:	Mechanische Umweltbedingungen	27
Tabelle 4:	Chemisch/Mechanisch aktive Stoffe	27
Tabelle 5:	Geräteeinstufung	28
Tabelle 6:	Elektromagnetische Verträglichkeit	28
Tabelle 7:	Leistungsdaten	29
Tabelle 8:	Befestigungshinweise bei Schaltschrankmontage	31
Tabelle 9:	Verwendung des Programmschalters (nur bei Steuerungstyp "D")	39
Tabelle 10:	Schalterstellungen (Seitenansicht)	39
Tabelle 11:	Technische Daten der Digitaleingänge Steuerung Typ "D"	46
Tabelle 12:	Technische Daten der Digitalausgänge Steuerung Typ "D"	46
Tabelle 13:	Aderendhülsen und Abisolierlänge	47
Tabelle 14:	EtherCAT Systembus Buchse X4B	48
Tabelle 15:	Feldbus Slavemodul Buchse X4C	48
Tabelle 16:	Diagnose/Visualisierung X4A	49
Tabelle 17:	Technische Daten des Digitaleingangs	50
Tabelle 18:	Technische Daten des Digitalausgangs	50
Tabelle 19:	Elektrochemische Spannungsreihe/Normpotenziale gegen Wasserstoff	53
Tabelle 20:	Anforderungen an das Kühlmittel	53
Tabelle 21:	Besondere Anforderungen bei offenen und halboffenen Kühlsystemen	54
Tabelle 22:	Taupunkttabelle	55

Glossar

0V	Erdpotenzialfreier Massepunkt	Gebernachbil-	Softwaregenerierter Geberausgang
1ph	1-phasiges Netz	dung	
3ph	3-phasiges Netz	GND	Bezugspotenzial, Masse
AC	Wechselstrom oder -spannung	GTR7	Bremstransistor
AFE	Ab 07/2019 ersetzt AIC die bisherige	Hersteller	Der Hersteller ist KEB, sofern nicht
	Bezeichnung AFE		anders bezeichnet (z.B. als Ma-
AFE-Filter	Ab 07/2019 ersetzt AIC-Filter die		schinen-, Motoren-, Fahrzeug- oder
	bisherige Bezeichnung AFE-Filter		Klebstoffhersteller)
AIC	Active Infeed Converter	HF-Filter	Hochfrequenzfilter zum Netz
AIC-Filter	Filter für Active Infeed Converter	Hiperface	Bidirektionale Geberschnittstelle der
Applikation	Die Applikation ist die bestimmungs-		Fa. Sick-Stegmann
	gemäße Verwendung des KEB-	HMI	Visuelle Benutzerschnittstelle
	Produktes		(Touchscreen)
ASCL	Geberlose Regelung von Asynchron-	HSP5	Schnelles, serielles Protokoll
	motoren	HTL	Inkrementelles Signal mit einer Aus-
Auto motor	Automatische Motoridentifikation;	150	gangsspannung (bis 30V) -> TTL
ident.	Einmessen von Widerstand und	IEC	Internationale Norm
A1A/C	Induktivität	IP xx	Schutzart (xx für Level) Das KEB-Produkt ist das Produkt
AWG	Amerikanische Kodierung für Leitungsquerschnitte	KEB-Produkt	welches Gegenstand dieser Anlei-
B2B	Business-to-business		tung ist
BiSS	Open-Source-Echtzeitschnittstelle	KTY	Silizium Temperatursensor (gepolt)
ыоо	für Sensoren und Aktoren (DIN	Kunde	Der Kunde hat ein KEB-Produkt von
	5008)	ranac	KEB erworben und integriert das
CAN	Feldbussystem		KEB-Produkt in sein Produkt (Kun-
CDM	Vollständiges Antriebsmodul inkl.		den-Produkt) oder veräußert das
	Hilfsausrüstung (Schaltschrank)		KEB-Produkt weiter (Händler)
COMBIVERT	KEB Antriebsstromrichter	MCM	Amerikanische Maßeinheit für große
COMBIVIS	KEB Inbetriebnahme- und Paramet-		Leitungsquerschnitte
	riersoftware	Modulation	Bedeutet in der Antriebstechnik,
DC	Gleichstrom oder -spannung		dass die Leistungshalbleiter ange-
DI	Demineralisiertes Wasser, auch als	,,,,,,,,,	steuert werden
	deionisiertes (DI) Wasser bezeichnet	MTTF NN	Mittlere Lebensdauer bis zum Ausfall
DIN	Deutsches Institut für Normung	Not-Aus	Normalnull
DS 402	CiA DS 402 - CAN-Geräteprofil für	Not-Aus	Abschalten der Spannungsversorgung im Notfall
□ N 4\ /	Antriebe	Not-Halt	Stillsetzen eines Antriebs im Notfall
EMV	Elektromagnetische Verträglichkeit	Not-Hait	(nicht spannungslos)
EN EnDat	Europäische Norm	ос	Überstrom (Overcurrent)
EnDat	Bidirektionale Geberschnittstelle der Fa. Heidenhain	ОН	Überhitzung
Endkunde	Der Endkunde ist der Verwender des	OL	Überlast
Litakullae	Kunden-Produkts	OSSD	Ausgangsschaltelement; Ausgangs-
EtherCAT	Echtzeit-Ethernet-Bussystem der Fa.		signal, dass in regelmäßigen Ab-
201010711	Beckhoff		stände auf seine Abschaltbarkeit hin
Ethernet	Echtzeit-Bussystem - definiert Proto-		geprüft wird. (Sicherheitstechnik)
	kolle, Stecker, Kabeltypen	PDS	Leistungsantriebssystem inkl. Motor
FE	Funktionserde		und Meßfühler
FSoE	Funktionale Sicherheit über Ethernet	PE	Schutzerde
FU	Antriebsstromrichter	PELV	Sichere Schutzkleinspannung, ge-
			erdet

PFD Begriff aus der Sicherheitstechnik (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit PFH Begriff aus der Sicherheitstechnik (EN 61508-1...7) für die Größe der Fehlerwahrscheinlichkeit pro Stunde PT100 Temperatursensor mit R0=100Ω PT1000 Temperatursensor mit R0=1000Ω PTC Kaltleiter zur Temperaturerfassung **PWM** Pulsweitenmodulation (auch Pulsbreitenmodulation) Modulare Steckverbindung mit 8 RJ45 Leitungen Geberlose Regelung von Synchron-SCL motoren **SELV** Sichere Schutzkleinspannung, ungeerdet (<60V) SIL Der Sicherheitsintegritätslevel ist eine Maßeinheit zur Quantifizierung der Risikoreduzierung. Begriff aus der Sicherheitstechnik (EN 61508 -1...7) **SPS** Speicherprogrammierbare Steuerung SS1 Sicherheitsfunktion "Sicherer Halt 1" gemäß IEC 61800-5-2 SSI Synchron-serielle Schnittstelle für Geber STO Sicherheitsfunktion "sicher abgeschaltetes Drehmoment" gemäß IEC 61800-5-2 Inkrementelles Signal mit einer Aus-TTL gangsspannung bis 5V USB Universell serieller Bus VARAN Echtzeit-Ethernet-Bussystem

Normen für Antriebsstromrichter

Produktnormen, die direkt für den Antriebsstromrichter gelten:

EN 61800-2	Drehzahlveränderbare elektrische Antriebe Teil 2: Allgemeine Anforderungen - Festlegungen für die Bemessung von Niederspannungs-Wechselstrom-Antriebssystemen mit einstellbarer Frequenz (VDE 0160-102, IEC 61800-2)
EN 61800-3	Drehzahlveränderbare elektrische Antriebe. Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren (VDE 0160-103, IEC 61800-3)
EN 61800-5-1	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-1: Anforderungen an die Sicherheit – Elektrische, thermische und energetische Anforderungen (VDE 0160-105-1, IEC 61800-5-1)
EN 61800-5-2	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl. Teil 5-2: Anforderungen an die Sicherheit – Funktionale Sicherheit (VDE 0160-105-2, UL61800-5-2, IEC 22G/264/CD)
UL61800-5-1	Amerikanische Version der EN 61800-5-1 mit "National Deviations"

Basisnormen, auf die Antriebsstromrichternormen direkt verweisen:

EN 55011	Industrielle, wissenschaftliche und medizinische Geräte - Funkstörungen - Grenzwerte und Messverfahren (IEC/CISPR 11)		
EN 55021	Störung von Mobilfunkübertragungen in Gegenwart von Impulsstörgrößen - Verfahren zur Beurteilung der Beeinträchtigung und Maßnahmen zur Verbesserung der Übertragungsqualität (IEC/CISPR/D/230/FDIS)		
EN 60529	Schutzarten durch Gehäuse (IP-Code) (VDE 0470, IEC 60529)		
EN 60664-1	Isolationskoordination für elektrische Betriebsmittel in Niederspannungsanlagen Teil 1: Grundsätze, Anforderungen und Prüfungen (IEC 60664-1)		
EN 60721-3-1	Klassifizierung von Umgebungsbedingungen - Teil 3-1: Klassifizierung von Einflussgrößen in Gruppen und deren Grenzwerte - Hauptabschnitt 1: Langzeitlagerung (IEC 60721-3-1)		
EN 60721-3-2	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinflussgrößen und deren Grenzwerte; Hauptabschnitt 2: Transport (IEC 60721-3-2)		
EN 60721-3-3	Klassifizierung von Umweltbedingungen - Teil 3: Klassen von Umwelteinfluss- größen und deren Grenzwerte; Hauptabschnitt 3: Ortsfester Einsatz, wetterge- schützt (IEC 60721-3-3)		
EN 61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems		
EN 61000-2-4	Elektromagnetische Verträglichkeit (EMV) - Teil 2-4: Umgebungsbedingungen; Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in Industrieanlagen (IEC 61000-2-4)		
EN 61000-4-2	Elektromagnetische Verträglichkeit (EMV) - Teil 4-2: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen die Entladung statischer Elektrizität (IEC 61000-4-2)		
EN 61000-4-3	Elektromagnetische Verträglichkeit (EMV) - Teil 4-3: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen hochfrequente elektromagnetische Felder (IEC 61000-4-3)		
EN 61000-4-4	Elektromagnetische Verträglichkeit (EMV) - Teil 4-4: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ Burst (IEC 61000-4-4)		
EN 61000-4-5	Elektromagnetische Verträglichkeit (EMV) - Teil 4-5: Prüf- und Messverfahren - Prüfung der Störfestigkeit gegen Stoßspannungen (IEC 61000-4-5)		

EN 61000-4-6	Elektromagnetische Verträglichkeit (EMV) - Teil 4-6: Prüf- und Messverfahren - Störfestigkeit gegen leitungsgeführte Störgrößen, induziert durch hochfrequente Felder (IEC 61000-4-6)
EN 61000-4-34	Elektromagnetische Verträglichkeit (EMV) - Teil 4-34: Prüf- und Messver- fahren - Prüfungen der Störfestigkeit von Geräten und Einrichtungen mit einem Netzstrom > 16 A je Leiter gegen Spannungseinbrüche, Kurzzeitunterbre- chungen und Spannungsschwankungen (IEC 61000-4-34)
EN 61508-17	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme Teil 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Sicherheit von Maschinen - Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer und programmierbarer elektronischer Steuerungssysteme (VDE 0113-50, IEC 62061)
EN ISO 13849-1	Sicherheit von Maschinen - Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze (ISO 13849-1)

Normen, die im Umfeld des Antriebstromrichters verwendet und herangezogen werden:

DGUV Vorschrift 3	Elektrische Anlagen und Betriebsmittel
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
DIN 46228-1	Aderendhülsen; Rohrform ohne Kunststoffhülse
DIN 46228-4	Aderendhülsen; Rohrform mit Kunststoffhülse
DIN EN 12502-15	Korrosionsschutz metallischer Werkstoffe - Teil 15
DINIEC 60364-5-54	Errichten von Niederspannungsanlagen - Teil 5-54: Auswahl und Errichtung elektrischer Betriebsmittel - Erdungsanlagen, Schutzleiter und Schutzpotential-ausgleichsleiter (IEC 64/1610/CD)
DIN VDE 0100-729	Errichten von Niederspannungsanlagen - Teil 7-729: Anforderungen für Betriebsstätten, Räume und Anlagen besonderer Art - Bedienungsgänge und Wartungsgänge (IEC 60364-7-729); Deutsche Übernahme HD 60364-7-729
EN 1037	Sicherheit von Maschinen - Vermeidung von unerwartetem Anlauf; Deutsche Fassung EN 1037
EN 60204-1	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Typgeprüfte und partiell typgeprüfte Kombinationen (IEC 60439-1)
EN 60947-7-1	Niederspannungsschaltgeräte - Teil 7-1: Hilfseinrichtungen - Reihenklemmen für Kupferleiter (IEC 60947-7-1:2009)
EN 60947-8	Niederspannungsschaltgeräte - Teil 8: Auslösegeräte für den eingebauten thermischen Schutz (PTC) von rotierenden elektrischen Maschinen (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN 61373	Bahnanwendungen - Betriebsmittel von Bahnfahrzeugen - Prüfungen für Schwingen und Schocken (IEC 61373)
EN 61439-1	Niederspannungs-Schaltgerätekombinationen - Teil 1: Allgemeine Festlegungen (IEC 121B/40/CDV:2016); Deutsche Fassung FprEN 61439-1:2016
VGB R 455 P	Wasserbehandlung und Werkstoffeinsatz in Kühlsystemen
ISO 4017	Mechanische Verbindungselemente - Sechskantschrauben mit Gewinde bis Kopf - Produktklassen A und B
ISO 4762	Zylinderschrauben mit Innensechskant
ISO 7090	Flache Scheiben mit Fase - Normale Reihe - Produktklasse A
ISO 7092	Flache Scheiben - Kleine Reihe - Produktklasse A
ISO 7045	Flachkopfschrauben mit Kreuzschlitz Form H oder Form Z

1 Grundlegende Sicherheitshinweise

Die Produkte sind nach dem Stand der Technik und anerkannten sicherheitstechnischen Regeln entwickelt und gebaut. Dennoch können bei der Verwendung funktionsbedingt Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Schäden an der Maschine und anderen Sachwerten entstehen.

Die folgenden Sicherheitshinweise sind vom Hersteller für den Bereich der elektrischen Antriebstechnik erstellt worden. Sie können durch örtliche, länder- oder anwendungsspezifische Sicherheitsvorschriften ergänzt werden. Sie bieten keinen Anspruch auf Vollständigkeit. Die Nichtbeachtung der Sicherheitshinweise durch den Kunden, Anwender oder sonstigen Dritten führt zum Verlust aller dadurch verursachten Ansprüche gegen den Hersteller.

ACHTUNG

Gefahren und Risiken durch Unkenntnis.

- ▶ Lesen Sie die Gebrauchsanleitung!
- ▶ Beachten Sie die Sicherheits- und Warnhinweise!
- ► Fragen Sie bei Unklarheiten nach!

1.1 Zielgruppe

Diese Gebrauchsanleitung ist ausschließlich für Elektrofachpersonal bestimmt. Elektrofachpersonal im Sinne dieser Anleitung muss über folgende Qualifikationen verfügen:

- · Kenntnis und Verständnis der Sicherheitshinweise.
- · Fertigkeiten zur Aufstellung und Montage.
- Inbetriebnahme und Betrieb des Produktes.
- Verständnis über die Funktion in der eingesetzten Maschine.
- Erkennen von Gefahren und Risiken der elektrischen Antriebstechnik.
- Kenntnis über *DIN IEC 60364-5-54*.
- Kenntnis über nationale Unfallverhütungsvorschriften (z.B. DGUV Vorschrift 3).

1.2 Transport, Lagerung und sachgemäße Handhabung

Der Transport ist durch entsprechend unterwiesene Personen unter Beachtung der in dieser Anleitung angegebenen Umweltbedingungen durchzuführen. Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen.

Transport von Antriebsstromrichtern mit einer Kantenlänge >75 cm

Der Transport per Gabelstapler ohne geeignete Hilfsmittel kann zu einer Durchbiegung des Kühlkörpers führen. Dies führt zur vorzeitigen Alterung bzw. Zerstörung interner Bauteile.

- ► Antriebsstromrichter auf geeigneten Paletten transportieren.
- ► Antriebsstromrichter nicht stapeln oder mit anderen schweren Gegenständen belasten.

Produkt enthält elektrostatisch gefährdete Bauelemente.

- Berührung vermeiden.
- ► ESD-Schutzkleidung tragen.

Lagern Sie das Produkt nicht

- in der Umgebung von aggressiven und/oder leitfähigen Flüssigkeiten oder Gasen.
- in Bereichen mit direkter Sonneneinstrahlung.
- außerhalb der angegebenen Umweltbedingungen.

1.3 Einbau und Aufstellung

▲ GEFAHR

Nicht in explosionsgefährdeter Umgebung betreiben!

▶ Das Produkt ist nicht für den Einsatz in explosionsgefährdeter Umgebung vorgesehen.

A VORSICHT

Bauartbedingte Kanten und hohes Gewicht!

Quetschungen und Prellungen!

- ▶ Nie unter schwebende Lasten treten.
- Sicherheitsschuhe tragen.
- ▶ Produkt beim Einsatz von Hebewerkzeugen entsprechend sichern.

Um Schäden am und im Produkt vorzubeugen:

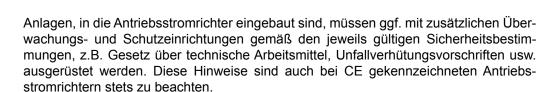
- Darauf achten, dass keine Bauelemente verbogen und/oder Isolationsabstände verändert werden.
- Bei mechanischen Defekten darf das Produkt nicht in Betrieb genommen werden. Die Einhaltung angewandter Normen ist nicht mehr gewährleistet.
- Es darf keine Feuchtigkeit oder Nebel in das Produkt eindringen.
- Das Eindringen von Staub ist zu vermeiden. Bei Einbau in ein staubdichtes Gehäuse ist auf ausreichende Wärmeabfuhr zu achten.
- Einbaulage und Mindestabstände zu umliegenden Elementen beachten. Lüftungsöffnungen nicht verdecken.
- Produkt entsprechend der angegebenen Schutzart montieren.
- Achten Sie darauf, dass bei der Montage und Verdrahtung keine Kleinteile (Bohrspäne, Schrauben usw.) in das Produkt fallen. Dies gilt auch für mechanische Komponenten, die während des Betriebes Kleinteile verlieren können.
- Geräteanschlüsse auf festen Sitz prüfen, um Übergangswiderstände und Funkenbildung zu vermeiden.
- · Produkt nicht begehen.
- Die Sicherheitshinweise sind aufzubewahren!

1.4 Elektrischer Anschluss

A GEFAHR

Elektrische Spannung an Klemmen und im Gerät!

Lebensgefahr durch Stromschlag!


- ▶ Niemals am offenen Gerät arbeiten oder offen liegende Teile berühren.
- ▶ Bei jeglichen Arbeiten am Gerät Versorgungsspannung abschalten, gegen Wiedereinschalten sichern und Spannungsfreiheit durch Messung feststellen.
- ► Warten bis alle Antriebe zum Stillstand gekommen sind, damit keine generatorische Energie erzeugt werden kann.
- ► Kondensatorentladezeit (5 Minuten) abwarten, ggf. DC-Spannung an den Klemmen messen.
- ➤ Sofern Personenschutz gefordert ist, für Antriebsstromrichter geeignete Schutzvorrichtungen einbauen.
- ➤ Vorgeschaltete Schutzeinrichtungen niemals, auch nicht zu Testzwecken überbrücken.
- ▶ Schutzleiter immer an Antriebsstromrichter und Motor anschließen.
- ➤ Zum Betrieb alle erforderlichen Abdeckungen und Schutzvorrichtungen anbringen.
- ► Schaltschrank im Betrieb geschlossen halten.
- ▶ Fehlerstrom: Dieses Produkt kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite dieses Produktes nur ein RCD oder RCM vom Typ B zulässig.
- ► Antriebsstromrichter mit einem Ableitstrom > 3,5 mA Wechselstrom (10 mA Gleichstrom) sind für einen ortsfesten Anschluss bestimmt. Schutzleiter sind gemäß den örtlichen Bestimmungen für Ausrüstungen mit hohen Ableitströmen nach EN 61800-5-1, EN 60204-1 oder DIN IEC 60364-5-54 auszulegen.

Wenn beim Errichten von Anlagen Personenschutz gefordert ist, müssen für Antriebsstromrichter geeignete Schutzvorrichtungen benutzt werden.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_gene-ral/ti_rcd_0400_0002_deu.pdf

Für einen störungsfreien und sicheren Betrieb sind folgende Hinweise zu beachten:

- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen.
- Leitungsquerschnitte und Sicherungen sind entsprechend der angegebenen Minimal-/ Maximalwerte für die Anwendung durch den Anwender zu dimensionieren.
- Die Verdrahtung ist mit flexibler Kupferleitung für eine Temperatur > 75°C auszuführen.
- Der Anschluss der Antriebsstromrichter ist nur an symmetrische Netze mit einer Spannung Phase (L1, L2, L3) gegen Nulleiter/Erde (N/PE) von maximal 300 V zulässig. Bei Versorgungsnetzen mit höheren Spannungen muss ein entsprechender Trenntransformator vorgeschaltet werden. Bei Nichtbeachtung gilt die Steuerung nicht mehr als PELV-Stromkreis.
- Der Errichter von Anlagen oder Maschinen hat sicherzustellen, dass bei einem vorhandenen oder neu verdrahteten Stromkreis mit PELV die Forderungen erfüllt bleiben.
- Bei Antriebsstromrichtern ohne sichere Trennung vom Versorgungskreis (gemäß EN 61800-5-1) sind alle Steuerleitungen in weitere Schutzmaßnahmen (z.B. doppelt isoliert oder abgeschirmt, geerdet und isoliert) einzubeziehen.
- Bei Verwendung von Komponenten, die keine potenzialgetrennten Ein-/Ausgänge verwenden, ist es erforderlich, dass zwischen den zu verbindenden Komponenten Potenzialgleichheit besteht (z.B. durch Ausgleichsleitung). Bei Missachtung können die Komponenten durch Ausgleichströme zerstört werden.

1.4.1 EMV-gerechte Installation

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Kunden.

Hinweise zur EMV-gerechten Installation sind hier zu finden.

www.keb.de/fileadmin/media/Manuals/emv/0000ndb0000.pdf

1.4.2 Spannungsprüfung

Eine Prüfung mit AC-Spannung (gemäß *EN 60204-1* Kapitel 18.4) darf nicht durchgeführt werden, da eine Gefährdung für die Leistungshalbleiter im Antriebsstromrichter besteht.

Aufgrund der Funkentstörkondensatoren wird sich der Prüfgenerator sofort mit Stromfehler abschalten.

Nach *EN 60204-1* ist es zulässig, bereits getestete Komponenten abzuklemmen. Antriebsstromrichter der KEB Automation KG werden gemäß Produktnorm zu 100% spannungsgeprüft ab Werk geliefert.

1.4.3 Isolationsmessung

Eine Isolationsmessung (gemäß *EN 60204-1* Kapitel 18.3) mit DC 500 V ist zulässig, wenn alle Anschlüsse im Leistungsteil (netzgebundenes Potenzial) und alle Steueranschlüsse mit PE gebrückt sind. Der Isolationswiderstand des jeweiligen Produkts ist in den technischen Daten zu finden.

1.5 Inbetriebnahme und Betrieb

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist solange untersagt, bis festgestellt wurde, dass die Maschine den Bestimmungen der Maschinenrichtlinie entspricht; *EN 60204-1* ist zu beachten.

WARNUNG

Softwareschutz und Programmierung!

Gefährdung durch ungewolltes Verhalten des Antriebes!

- ► Insbesondere bei Erstinbetriebnahme oder Austausch des Antriebsstromrichters prüfen, ob Parametrierung zur Applikation passt.
- ▶ Die alleinige Absicherung einer Anlage durch Softwareschutzfunktionen ist nicht ausreichend. Unbedingt vom Antriebsstromrichter unabhängige Schutzmaßnahmen (z.B. Endschalter) installieren.
- ► Motoren gegen selbsttätigen Anlauf sichern.

A VORSICHT

Hohe Temperaturen an Kühlkörper und Kühlflüssigkeit!

Verbrennung der Haut!

- ► Heiße Oberflächen berührungssicher abdecken.
- ► Falls erforderlich, Warnschilder an der Anlage anbringen.
- ▶ Oberfläche und Kühlflüssigkeitsleitungen vor Berührung prüfen.
- ► Vor jeglichen Arbeiten Gerät abkühlen lassen.
- Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.
- Nur für das Gerät zugelassenes Zubehör verwenden.
- Anschlusskontakte, Stromschienen oder Kabelenden nie berühren.

Sofern ein Antriebsstromrichter mit Elektrolytkondensatoren im Gleichspannungszwischenkreis (siehe technische Daten) länger als ein Jahr nicht in Betrieb war, beachten Sie folgende Hinweise.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_gene-ral/ti_format_capacitors_0400_0001_deu.pdf

ACHTUNG

Dauerbetrieb (S1) mit Auslastung > 60 % oder Motorbemesungsleistung ab 55 kW!

Vorzeitige Alterung der Elektrolytkondensatoren!

▶ Netzdrossel mit U_k = 4% zwingend erforderlich.

Schalten am Ausgang

Bei Einzelantrieben ist das Schalten zwischen Motor und Antriebsstromrichter während des Betriebes zu vermeiden, da es zum Ansprechen der Schutzeinrichtungen führen kann. Ist das Schalten nicht zu vermeiden, muss die Funktion "Drehzahlsuche" aktiviert sein. Diese darf erst nach dem Schließen des Motorschützes eingeleitet werden (z.B. durch Schalten der Reglerfreigabe).

Bei Mehrmotorenantrieben ist das Zu- und Abschalten zulässig, wenn mindestens ein Motor während des Schaltvorganges zugeschaltet ist. Der Antriebsstromrichter ist auf die auftretenden Anlaufströme zu dimensionieren.

Wenn der Motor bei einem Neustart (Netz ein) des Antriebsstromrichters noch läuft (z.B. durch große Schwungmassen), muss die Funktion "Drehzahlsuche" aktiviert sein.

Schalten am Eingang

Bei Applikationen, die zyklisches Aus- und Einschalten des Antriebsstromrichters erfordern, muss nach dem letzten Einschalten eine Zeit von mindestens 5 min vergangen sein. Werden kürzere Taktzeiten benötigt, setzen Sie sich bitte mit der KEB Automation KG in Verbindung.

Kurzschlussfestigkeit

Die Antriebsstromrichter sind bedingt kurzschlussfest. Nach dem Zurücksetzen der internen Schutzeinrichtungen ist die bestimmungsgemäße Funktion gewährleistet. Ausnahmen:

- Treten am Ausgang wiederholt Erd- oder Kurzschlüsse auf, kann dies zu einem Defekt am Gerät führen.
- Tritt ein Kurzschluss während des generatorischen Betriebes (zweiter bzw. vierter Quadrant, Rückspeisung in den Zwischenkreis) auf, kann dies zu einem Defekt am Gerät führen.

1.6 Wartung

Die folgenden Wartungsarbeiten sind nach Bedarf, mindestens jedoch einmal pro Jahr, durch autorisiertes und eingewiesenes Personal durchzuführen.

- ► Anlage auf lose Schrauben und Stecker überprüfen und ggf. festziehen.
- ► Antriebsstromrichter von Schmutz und Staubablagerungen befreien. Dabei besonders auf Kühlrippen und Schutzgitter von Ventilatoren achten.
- ▶ Ab- und Zuluftfilter vom Schaltschrank überprüfen bzw. reinigen.
- ► Funktion der Ventilatoren des Antriebsstromrichters überprüfen. Bei hörbaren Vibrationen oder Quietschen sind die Ventilatoren zu ersetzen.
- ▶ Bei flüssigkeitsgekühlten Antriebsstromrichtern ist eine Sichtprüfung des Kühlkreislaufs auf Dichtigkeit und Korrosion durchzuführen. Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

1.7 Instandhaltung

Bei Betriebsstörungen, ungewöhnlichen Geräuschen oder Gerüchen informieren Sie eine dafür zuständige Person!

A GEFAHR

Unbefugter Austausch, Reparatur und Modifikationen!

Unvorhersehbare Fehlfunktionen!

- ▶ Die Funktion des Antriebsstromrichters ist von seiner Parametrierung abhängig. Niemals ohne Kenntnis der Applikation austauschen.
- Modifikation oder Instandsetzung ist nur durch von der KEB Automation KG autorisiertem Personal zulässig.
- ► Nur originale Herstellerteile verwenden.
- Zuwiderhandlung hebt die Haftung für daraus entstehende Folgen auf.

Im Fehlerfall wenden Sie sich an den Maschinenhersteller. Nur dieser kennt die Parametrierung des eingesetzten Antriebsstromrichters und kann ein entsprechendes Ersatzgerät liefern oder die Instandhaltung veranlassen.

1.8 Entsorgung

Elektronische Geräte der KEB Automation KG sind für die professionelle, gewerbliche Weiterverarbeitung bestimmt (sog. B2B-Geräte).

Hersteller von B2B-Geräten sind verpflichtet, Geräte, die nach dem 14.08.2018 hergestellt wurden, zurückzunehmen und zu verwerten. Diese Geräte dürfen grundsätzlich nicht an kommunalen Sammelstellen abgegeben werden.

Sofern keine abweichende Vereinbarung zwischen Kunde und KEB getroffen wurde oder keine abweichende zwingende gesetzliche Regelung besteht, können so gekennzeichnete KEB-Produkte zurückgegeben werden. Firma und Stichwort zur Rückgabestelle sind u.a. Liste zu entnehmen. Versandkosten gehen zu Lasten des Kunden. Die Geräte werden daraufhin fachgerecht verwertet und entsorgt.

In der folgenden Tabelle sind die Eintragsnummern länderspezifisch aufgeführt. KEB Adressen finden Sie auf unserer Webseite.

Rücknahme durch	WEEE-Registrierungsnr.		Stichwort:
Deutschland			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Frankreich			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Italien			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Österreich			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"

Die Verpackung ist dem Papier- und Kartonage-Recycling zuzuführen.

2 Produktbeschreibung

Die Produktfamilie COMBIVERT H6 ist für den Einsatz in Mehrachsantrieben optimiert. Der Aufbau ist modular und kann dadurch optimal auf die jeweiligen Anforderungen abgestimmt werden. Aus folgenden Komponenten kann ein System kombiniert werden:

Bezeichnung	Funktion
Gleichrichtermodul	Dient zur Versorgung des Hauptenergergieflusses DC-gekoppelter Antriebsstromrichter. Besteht aus einer B6 Dioden- oder Thyristorbrücke mit nachfolgendem Zwischenkreis zur Pufferung der Energie. Der Eingang wird mit Netzspannung versorgt. Am Ausgang wird eine Gleichspannung auf Zwischenkreispotenzial ausgegeben. Der Energiefluss ist nur in eine Richtung möglich (keine Rückspeisung). Das Gleichrichtermodul steuert die Vorladung. Es wird eingesetzt, wenn kein Active Front End Modul verwendet wird. Ein integrierter Bremstransistor kann Energie über einen Bremswiderstand in Wärme umwandeln.
Vorlademodul	Dient zur Vorladung des Gleichspannungszwischenkreis im DC-Verbund von Antriebsstromrichtern. Das Vorlademodul wird in Verbindung mit einem Active Front End Modul (AIC) eingesetzt. Es schaltet und überwacht nach erfolgreicher Vorladung das Netzschütz. Ein integrierter Bremstransistor kann Energie über einen Bremswiderstand in Wärme umwandeln.
Active Front End	Ab 07/2019 ersetzt AIC die bisherige Bezeichnung AFE.
Modul (AIC)	Dient zur Versorgung des Hauptenergieflusses DC-gekoppelter Antriebsstromrichter. Der Eingang wird mit Netzspannung versorgt. Am Ausgang wird eine Gleichspannung auf Zwischenkreispotenzial ausgegeben. Der Energiefluss ist in zwei Richtungen möglich (Ein- und Rückspeisung). Der AIC kann überschüssige Energie aus dem DC-Verbund sinusförmig ins Netz zurückspeisen. Bei Einsatz eines AIC ist eine Vorladung erforderlich.
24V-Netzteilmodul	Stellt die 24 V-Gleichspannungsversorgung für die einzelnen Module zur Verfügung. Der Eingang wird aus dem Netz/DC-Bus gespeist. Das 24 V-Netzteilmodul kann entfallen, wenn eine vorhandene 24 V-Versorgung genutzt werden soll.
Steuerungsmodul mit 24V-Netzteil	Das Steuerungsmodul dient zur dezentralen Ansteuerung eines H6 Geräteverbunds. Das H6 Steuerungsmodul kann als Gateway zwischen einem externen Feldbus und dem Systembus eingesetzt werden. Ein integriertes 24 V-Netzteil versorgt den 24 V-Bus.
Einzelachsmodul	Modul zur Ansteuerung einer einzelnen Antriebsachse in einem Antriebssystem. Das Einzelachsmodul wird über den DC-Zwischenkreisbus versorgt. Einzelachsmodule gibt es in verschiedenen Gehäuseformen und Leistungsklassen. Entsprechend den Anforderungen können unterschiedliche Sicherheitsmodule integriert werden.
Doppelachsmodul	Einzelnes Modul dient zur Ansteuerung von zwei unterschiedlichen Achsen. Das Doppelachsmodul wird über den DC-Zwischenkreisbus versorgt.
DC-Anschlussmodul	Das DC-Anschlussmodul ermöglicht den Anschluss weiterer Komponenten an den DC-Zwischenkreis des COMBIVERT H6. Damit lassen sich Geräte anderer Serien oder anderer Hersteller an den DC-Verbund anschließen. Der Abzweig kann optional mit DC-Sicherungen abgesichert sein. Die Auslösung der Sicherung(en) wird überwacht.
DC-Anschlussklemme	Die DC-Anschlussklemme ermöglicht den Abzweig per Kabeln von den DC-Bus-Schienen beim COMBIVERT H6. Damit lassen sich Geräte anderer Serien oder anderer Hersteller an den DC-Verbund anschliessen. Die DC-Anschlussklemme ist ein passives Bauelement und besitzt im Gegensatz zum DC-Anschlussmodul keine interne Sicherungen.

2.1 Bestimmungsgemäßer Gebrauch

Der COMBIVERT H6 ist ein DC-gekoppeltes Antriebssystem zur Ansteuerung unterschiedlicher Achsen. Es dient ausschließlich zur Steuerung und Regelung von Drehstrommotoren. Er ist zum Einbau in elektrische Anlagen oder Maschinen bestimmt.

Die technischen Daten sowie die Angaben zu Anschlussbedingungen vom Typenschild und der Gebrauchsanleitung sind unbedingt einzuhalten.

Die bei der KEB Automation KG eingesetzten Halbleiter und Bauteile sind für den Einsatz in industriellen Produkten entwickelt und ausgelegt.

Einschränkung

Wenn das Produkt in Maschinen eingesetzt wird, die unter Ausnahmebedingungen arbeiten, lebenswichtige Funktionen, lebenserhaltende Maßnahmen oder eine außergewöhnliche Sicherheitsstufe erfüllen, ist die erforderliche Zuverlässigkeit und Sicherheit durch den Maschinenbauer sicherzustellen und zu gewährleisten.

Restgefahren

Trotz bestimmungsgemäßen Gebrauch können Antriebsstromrichter im Fehlerfall, bei falscher Parametrierung, durch fehlerhaften Anschluss oder nicht fachmännische Eingriffe und Reparaturen unvorhersehbare Betriebszustände annehmen. Dies können sein:

- Falsche Drehrichtung
- · Zu hohe Motordrehzahl
- Motor läuft in die Begrenzung
- Motor kann auch im Stillstand unter Spannung stehen
- Automatischer Anlauf

2.2 Nicht bestimmungsgemäßer Gebrauch

Der Betrieb anderer elektrischer Verbraucher ist untersagt und kann zur Zerstörung der Geräte führen. Der Betrieb unserer Produkte außerhalb der in den technischen Daten angegebenen Grenzwerte führt zum Verlust jeglicher Schadensersatzansprüche.

2.3 Produktmerkmale

Diese Gebrauchsanleitung beschreibt folgende Geräte:

Gerätetyp 24V-Netzteilmodul mit/ohne Ausgangsklemme

Steuerungsmodul mit 24V-Netzteil

2.3.1 COMBIVERT H6 Serie

Einsatzbereich • Großer Leistungsbereich an der Achse

Durch Modulbauweise entsprechend dem Einsatzfall

anpassbar

Sicherheit • STO, SBC als Standard

Durch Module entsprechend der Anforderungen

erweiterbar

Kühlsystem • Flat Rear auf verschiedenen Kühlkörpergrößen

Luftkühlkörper

Ansteuerung • EtherCAT Systembus zur Übertragung von Soll- und

Istwerten zwischen Steuerung, Active Front End (AIC) Modul und Achsmodulen.

Antriebsprofile gemäß CiA402

Regelung • Synchron- und Asynchronmaschinen, mit und ohne

Geberrückführung

• Kanal 1: Fehlerausgabe der angeschlossenen DC-

Teilnehmer

Kanal 2: Ladezustand des Zwischenkreisesbusses

Getrennte Versorgung

• Interne Versorgungen von Steuer- und Treiber-/Leis-

tungsteil sind sicher getrennt

2.3.2 24V-Netzteilmodul ohne Ausgangsklemme

Ausgang • Kurzschlussfestes 24 V Gleichspannungsnetzteil mit

25A Ausgangsbemessungsstrom 1 x DC 24V/19 A Ausgang (optional)

Eingang
 Netzversorgung ohne Verbindung zum Zwischen-

kreis des H6-Systems (somit Entkopplung der Versorgung bei B6-Einspeisung/Active Front End)

 Netzversorgung mit Verbindung zum Zwischenkreis des H6-Systems, um generatorische Energie zur

Pufferung bei Netzausfall zu nutzen

2.3.3 24V-Netzteilmodul mit Ausgangsklemme

Ausgang • Kurzschlussfestes 24 V Gleichspannungsnetzteil mit

25A Ausgangsbemessungsstrom

• 1 x DC 24 V/5A Ausgang

1 x DC 24 V/7A Ausgang

1 x DC 24 V/19A Ausgang (optional)

Netzversorgung ohne Verbindung zum Zwischenkreis

des H6-Systems (somit Entkopplung der Versorgung

bei B6-Einspeisung/Active Front End (AIC))

Netzversorgung mit Verbindung zum Zwischenkreis

des H6-Systems, um generatorische Energie zur

Pufferung bei Netzausfall zu nutzen

Digitale Ein- und

Ausgänge • 1 x digitaler Ausgang

2.3.4 Steuerungsmodul mit 24V-Netzteil

Ausgang • Kurzschlussfestes 24 V-Gleichspannungsnetzteil mit

1 x digitaler Eingang

25A Ausgangsbemessungsstrom

• 4xDC-Ausgang 24V/0.7A (max. 1A Gesamtstrom)

1xDC 24V/19A Ausgang (optional)

weiter auf nächster Seite

TYPENSCHLÜSSEL

Netzversorgung ohne Verbindung zum Zwischenkreis des H6-Systems (somit Entkopplung der Versorgung bei B6-Einspeisung / Active Front End (AIC))
 Netzversorgung mit Verbindung zum Zwischenkreis des H6-Systems, um generatorische Energie zur Pufferung bei Netzausfall zu nutzen
 Digitale Ein- und Ausgänge
 4 x digitaler Eingang
 4 x digitaler Ausgang
 EtherCAT
 optional PROFIBUS DP, InterBus, CanOpen, Profilink, ProfiNET

Diagnose/Visualisierung

RS232/485-Schnittstelle mit DIN66019II-Protokoll

2.4 Typenschlüssel

xxH6xxx-xxx	x	
	Reserviert	0: Reserviert
	Geberinterface	A: Kein Geberinterface B: Zweikanalige Multigeberschnittstelle
	Softwarekonfiguration	1: BASIC 2: PRO ADVANCED 3-9: KEB Standard A-Z: Kunden-/Sonderversion
	Hardwarekonfiguration	Keine DC-Bus Ankopplung DC-Bus Ankopplung/Betrieb an Gleichrichtermodulen (B6) DC-Bus Ankopplung/Betrieb an Active Front End Modulen (AIC) Keine DC-Bus Ankopplung mit externem 24V-Anschluss DC-Bus Ankopplung/Betrieb an Gleichrichtermodulen (B6) mit externem 24V-Anschluss DC-Bus Ankopplung/Betrieb an Active Front End Modulen (AIC) mit externem 24V-Anschluss A-Z: Kunden-/Sonderversion (Firmware und Download)
	Gehäuse	B: 50 mm Flat Rear Kühlkörper P: 50 mm Luftkühlkörper
	Steuerungstyp	B: 24V-Netzteilmodul ohne Steuerklemmleiste C: 24V-Netzteilmodul mit Steuerklemmleiste D: Steuerungsmodul mit 24V-Netzteil
	Gerätetyp	G: 24V-Netzteilmodul/Steuermodul
	Baureihe	H6 Multiachsen-Antriebssystem
		weiter auf nächster Seite

XXH6XXX-XX

	01: Kein Feldbus Slavemodul
	02: Reserviert
	03: PROFIBUS® 1) DP
Foldbyg Clayers dyd	04: Interbus
Feldbus Slavemodul	05: CANopen® 2)
	06: ProfiNet
	07: POWERLINK
	08: EtherCAT® 3)
abelle 1: Typenschlüssel	

Der Typenschlüssel dient nicht als Bestellcode, sondern ausschließlich zur Identifikation!

PROFIBUS® ist eine eingetragene Marke der PROFIBUS Nutzerorganisation e.V.

CANopen® ist eine eingetragene Marke der CAN in AUTOMATION - International Users and Manufacturers Group e.V.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie, lizenziert durch die Beckhoff Automation GmbH, Deutschland.

3 Technische Daten

3.1 Betriebsbedingungen

3.1.1 Klimatische Umweltbedingungen

Lagerung		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-1	1K4	-2555°C
Relative Luftfeuchte	Relative Luftfeuchte		1K3	595% (ohne Kondensation)
Lagerungshöhe		_	_	Max. 3000 m über NN
Transport		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-2	2K3	-2570°C
Relative Luftfeuchte		EN 60721-3-2	2K3	95% bei 40°C (ohne Kondensation)
Betrieb		Norm	Klasse	Bemerkungen
Umgebungstempera	atur	EN 60721-3-3	3K3	540 °C (erweitert auf -1045 °C)
Kühlmitteleintritts-	Luft	_	_	540 °C (-1045 °C)
temperatur Wasser		_	_	540°C
Relative Luftfeuchte		EN 60721-3-3	3K3	585% (ohne Kondensation)
			IP20	Schutz gegen Fremdkörper > ø12,5 mm
Bau- und Schutzart		EN 60529		Kein Schutz gegen Wasser
Bau- unu Schutzart		LIV 00329	11 20	Nichtleitfähige Verschmutzung, gelegentliche Betauung wenn PDS außer Betrieb ist.
				Max. 2000 m über NN
Aufstellhöhe			_	Ab 1000 m ist eine Leistungsreduzierung von 1 % pro 100 m zu berücksichtigen.
		_		Ab 2000 m hat die Steuerkarte zum Netz nur noch Basisisolation. Es sind zusätzli- che Maßnahmen bei der Verdrahtung der Steuerung vorzunehmen.

3.1.2 Mechanische Umweltbedingungen

Lagerung	Norm	Klasse	Bemerkungen
Cobwingungagranzwarta	EN 60721-3-1	1M2	Schwingungsamplitude 1,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 00721-3-1	IIVIZ	Beschleunigungsamplitude 5 m/s² (9200 Hz)
Schockgrenzwerte	EN 60721-3-1	1M2	40 m/s ² ; 22 ms
Transport	Norm	Klasse	Bemerkungen
			Schwingungsamplitude 3,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 60721-3-2	2M1	Beschleunigungsamplitude 10 m/s² (9200 Hz)
			Beschleunigungsamplitude 15 m/s² (200500 Hz)
Schockgrenzwerte	EN 60721-3-2	2M1	100 m/s²; 11 ms
Betrieb	Norm	Klasse	Bemerkungen
	EN 60721-3-3	3M4	Schwingungsamplitude 3,5 mm (29 Hz)
Schwingungsgrenzwerte	EN 00721-3-3	31014	Beschleunigungsamplitude 10 m/s² (9200 Hz)
Schwingungsgrenzwerte	EN 61800-5-1		Schwingungsamplitude 0,075 mm (1057 Hz)
	EN 61800-3-1	_	Beschleunigungsamplitude 10 m/s² (57150 Hz)
Schockgrenzwerte	EN 60721-3-3	3M4	100 m/s²; 11 ms
Druck im Wasserkühler	_		Max. Betriebsdruck: 10 bar
Tabelle 3: Mechanische Ur	nweltbedingunger	1	

3.1.3 Chemisch/ Mechanisch aktive Stoffe

Lagerung		Norm	Klasse	Bemerkungen
Kontamination	Gase	EN 60721-3-1	1C2	-
Kontamination	Feststoffe	EN 00721-3-1	1S2	_
Transport		Norm	Klasse	Bemerkungen
Kontamination	on Gase <i>EN 60721-3-2</i>	2C2	_	
Kontamination	Feststoffe	EN 00721-3-2	2S2	_
Betrieb		Norm	Klasse	Bemerkungen
Vantamination	Gase	EN 60704 2 2	3C2	_
Kontamination	Feststoffe	EN 60721-3-3	3S2	-
Tabelle 4: Chemisch/Mechanisch aktive Stoffe				

3.1.4 Elektrische Betriebsbedingungen

3.1.4.1 Geräteeinstufung

Anforderung Norm Klas		Klasse	Bemerkungen
Überenannungeketegerie	EN 61800-5-1	III	-
Überspannungskategorie	EN 60664-1	111	-
Verschmutzungsgrad	EN 60664-1	2	Nichtleitfähige Verschmutzung, gelegentliche Betauung, wenn PDS außer Betrieb ist.
Tabelle 5: Geräteeinstufung			

3.1.4.2 Elektromagnetische Verträglichkeit

Die angegebenen Werte gelten nur für Geräte mit externem Filter.

EMV-Störaussendung	Norm	Klasse	Bemerkungen
Leitungsgebundene Störungen	EN 61800-3	C2	-
Abgestrahlte Störungen	EN 61800-3	C2	-
Störfestigkeit	Norm	Pegel	Bemerkungen
Statische Entladungen	EN 61000-4-2	8 kV 4 kV	AD (Luftentladung) CD (Kontaktentladung)
Burst - Anschlüsse für pro- zessnahe Mess- und Regel- funktionen und Signalschnitt- stellen	EN 61000-4-4	2kV	_
Burst - Leistungsschnittstellen	EN 61000-4-4	4 kV	-
Surge - Leistungsschnittstellen	EN 61000-4-5	1kV 2kV	Phase-Phase Phase-Erde
Leitungsgeführte Störgrößen, induziert durch hochfrequente Felder	EN 61000-4-6	10 V	0,1580 MHz
		10 V/m	80 MHz1 GHz
Elektromagnetische Felder	EN 61000-4-3	3 V/m	1,42 GHz
		1 V/m	22,7 GHz
Spannungsschwankungen/	EN 61000-2-1		-15 %+10 %
-einbrüche	EN 61000-4-34	_	90%
Frequenzänderungen	EN 61000-2-4	_	≤ 2 %
Spannungsabweichungen	EN 61000-2-4		±10%
Spannungsunsymmetrien	EN 61000-2-4	_	≤ 3 %
Tabelle 6: Elektromagnetisch	he Verträglichkeit		

3.2 Technische Daten der 24V-Module

Gehäuse			В, Р
Eingangsdaten Netzversorgung			
Eingangsbemessungsspannung		Un/V	400
Eingangsbemessungsspannung UL		UN_UL/V	480
Eingangsspannungsbereich		Uin / V	320528
Eingangsspannungsbereich	1)	Uin_dc / V	210750
Netzfrequenz		f _N /Hz	50/60 ±2
Netzphasen			3
Eingangsbemessungsleistung		Sn/kVA	0,6
Eingangsbemessungsstrom		In/A	1
Max. zulässige Netzsicherung Typ gL/gG		la / A	10
Netzleitungsquerschnitt		Aa / mm²	1,5
Eingangsdaten DC-Versorgung			
DC-Versorgung			Nur zum Anschluss an H6-DC-Bus
Ausgangsdaten			
Ausgangsbemessungsspannung		UoutN_dc / V	24,2 (± 2%)
Ausgangsbemessungsstrom 1 (intern)		loutN_dc / A	25
Ausgangsbemessungsstrom 2 (X2A)	2)	loutN_dc / A	5
Ausgangsbemessungsstrom 3 (X2A)	2)	loutN_dc / A	7
Ausgangsbemessungsstrom 4 (X1B)	3)	loutN_dc / A	19
Ausgangsbemessungsstrom gesamt (1-4)		loutN_dc / A	25
Anschlussquerschnitt 24V-Bus		A_24v / mm²	2 x 1,0
Sonstige Daten			
Sicherung F1 (5x20mm, träge)	4)	<i>I</i> F1 / A	20
Verlustleistung		PD/W	60,5
Max. Kühlkörpertemperatur		Ths / °C	80
Isolationswiderstand @ Udc = 500 V		Rsio / MΩ	>5
Versorgung Steuerteil			
Eingangsspannung		Uc∪_dc / V	24 (±10%)
Eingangsstrom	5)	Icu_dc / A	0,6
Tabelle 7: Leistungsdaten			

Powerderating Uin < 260 VDC 2%/V.

Nur bei Steuerung Typ "C".

³⁾ Nur bei xxH6xxx-Yxxx Y = 4, 5, 6.

Die Auslegung der externen 24 V-Anschlussleitungen ist applikationsabhängig. Die Feinsicherung F1 ist entsprechend der Applikation gegebenenfalls auf einen kleineren Wert anzupassen.

Nur bei Steuerung Typ "D";
Eingangsstrom, wenn kein Digitalausgang gesetzt ist. Bei max. Belastung des digitalen Ausganges kann sich der Eingangsstrom um bis zu maximal 0,7A erhöhen.

3.3 Mechanische Installation

3.3.1 Schaltschrankeinbau

Einbauabstände	Maß	Abstand in mm	Abstand in inch
	Α	150	6
A	B 1)	100	4
	С	30	1,2
	X 2)	50	2
B		er Abstand zur Kühlur zu vorgelagerten Bed hranktür.	

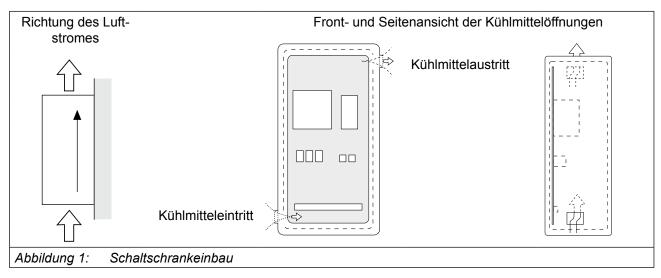
ACHTUNG

Ausrichtung der Geräte bei der Montage

Der DC-Verbund zwischen den Modulen wird über Metallbrücken hergestellt.

► Für eine einwandfreie Montage ist der horizontale und vertikale Versatz unter den Geräten minimal zu halten.

▲ VORSICHT


Heiße Oberfläche

Kühlkörper können Temperaturen erreichen, die bei Berührung Verbrennungen hervorrufen können.

► Wenn durch bauliche Maßnahmen ein direkter Kontakt nicht zu vermeiden ist, muss ein Warnhinweis auf "Heiße Oberfläche" an der Maschine angebracht werden.

Wenn konstruktionsbedingt nicht auf eine Innenraumlüftung des Schaltschrankes verzichtet werden kann, muss durch entsprechende Filter der Ansaugung von Fremdkörpern entgegen gewirkt werden.

Montage des Antriebsstromrichters

Für einen betriebssicheren Betrieb, muss der Antriebsstromrichter ohne Abstand auf einer glatten, geschlossenen, metallisch blanken Montageplatte montiert werden.

3.3.1.1 Befestigungshinweise bei Schaltschrankmontage

Zur Montage der Antriebsstromrichter müssen folgende Befestigungsmaterialen mit der entsprechenden Güte verwendet werden.

Benötigtes Material	Anzugsdrehmoment		
Zylinderschraube ISO 4762 - M6x10 und M6x16 - 8.8	5 Nm 45 lb inch		
Tabelle 8: Befestigungshinweise bei Schaltschrankmontage			

3.3.2 Einbauhinweise bei Flat Rear-Kühlkörper

ACHTUNG

Überhitzung des Gerätes.

Flat Rear-Geräte nie ohne Hauptkühler betreiben.

- Geeignete Kühlfläche auswählen (z. B. Wasserkühlkörper, Rippenkühlkörper, Maschinenbett).
- ► Flache Rückseite der Geräte mit der Kühlfläche verschrauben.
- ► Auf gute thermische Leitfähigkeit achten (z. B. Wärmeleitpaste)
- ▶ Der Maschinenbauer ist für die Kühlung der Geräte verantwortlich

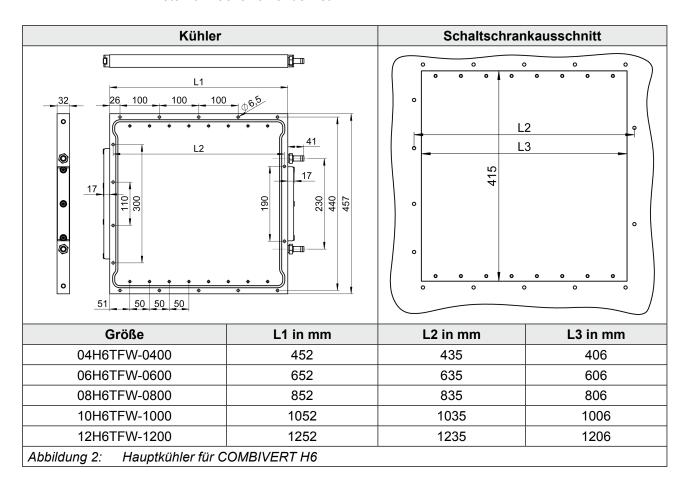
Wärmeleitpaste

Informationen zum richtigen Auftragen der Wärmeleitpaste finden Sie auf www.keb.de unter dem Suchbegriff "Wärmeleitpaste".

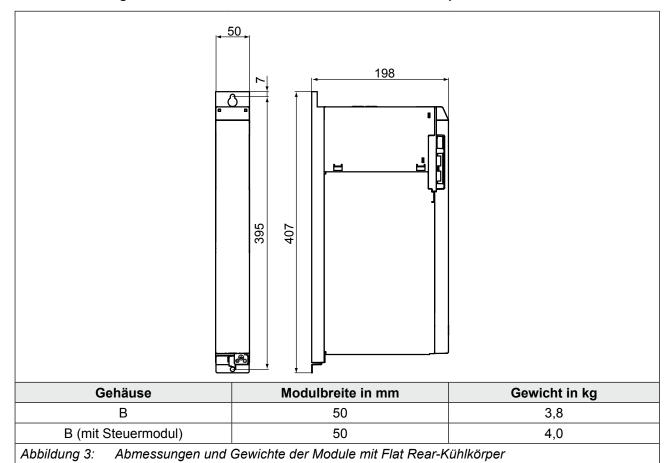
Bei Flüssigkeitskühlern richtige Vorlauftemperatur wählen

▶ Die Vorlauftemperatur ist so zu wählen, dass keine Betauung auftritt.

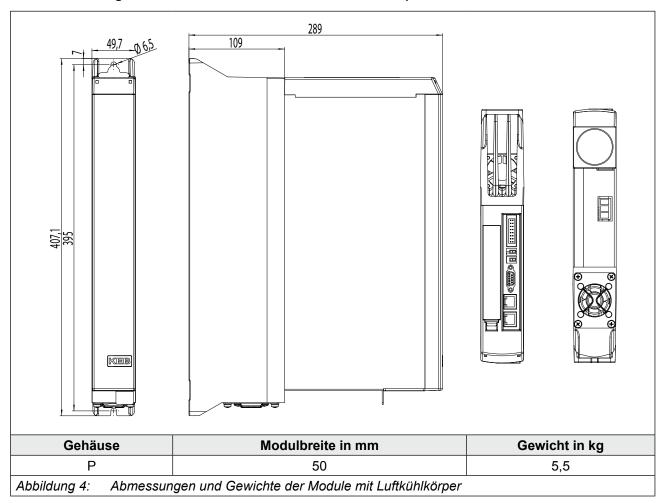
3.3.3 Abmessungen Zentralkühlkörper


3.3.3.1 Lüftkühlkörper

Zentralkühlkörper für Luftkühlung auf Anfrage.

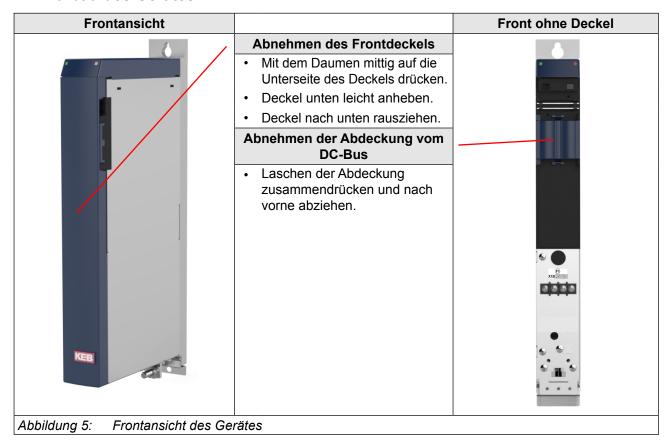

3.3.3.2 Flüssigkeitskühlkörper

Folgende Flüssigkeitskühlkörper stehen zur Verfügung, falls kundenseitig keine geeignete Kühlfläche vorhanden ist:



3.3.4 Abmessungen und Gewichte der Module mit Flat Rear-Kühlkörper

MECHANISCHE INSTALLATION


3.3.5 Abmessungen und Gewichte der Module mit Luftkühlkörper

4 Installation und Anschluss

4.1 Aufbau des Gerätes

▲ GEFAHR

Lebensgefährliche Spannung unter der Abdeckung des DC-Busses

► Spannungsfreiheit des DC-Busses an der Ein-/Rückspeiseeinheit sicherstellen!

AUFBAU DES GERÄTES

Beschreibung	Klemme	Anschlüsse der Frontseite	Klemme	Beschreibung
+24V-Bus	X1C.1		X1C.3	+24V-Bus
0 V	X1C.2		X1C.4	0 V
DC-Bus +	X1D.1	3 · E	X1D.3	DC-Bus +
DC-Bus -	X1D.2	3) &	X1D.4	DC-Bus -
Geberinterface 1 (optional)	ХЗА		_	SD-Kartenslot (optional)
Geberinterface 2 (optional)	ХЗВ		_	Programmschalter (optional)
		X18,20003	F1	Feinsicherung (optional) 5x20mm, T 20A
24V			_	Kabelbefestigung (Zugentlastung)
0V (optional)	X1B	0.011	_	Schnapper für Frontdeckel
				Anschluss für Schutzerde 1)
Abbildung 6: Anschlüs	se der Fron	tseite		

Abgebildetes Erdungsblech nur bei Materialnummer xH6xxx-[4, 5, 6]xxx erhältlich.

	Ansicht der Geräteunterseite					
	Größe B/P					
·	(a.a.a.a.)		Netzklemmleiste X1A			
		L1 L2 L3	L1, L2, L3	Netzeingang 3-phasig 400 V		
			Querschnitt	Anzugsdrehmoment		
			0,26 mm² AWG 24-10	0,7 Nm 6,2 lb inch		
	_	Sc	hutz- und Funktionse	erde		
11213		2 x Schraubanschluss für Ringkabelschuh Ø 4 mm davon 1 x Schutzerde 1 x Funktionserde 3 x Schraubanschluss für Ringkabelschuh 1)				
			Querschnitt	Anzugsdrehmoment		
	1)		Schraube M4 für Ringkabelschuh	1,3 Nm 11,5 lb inch		
Abbildung 7: Ar	nsicht der Geräteun	terseite	ı	1		

Nur bei Materialnummer xH6xxx-[4, 5, 6]xxx erhältlich.

Die Klemmleisten entsprechen den Anforderungen nach *EN 60947-7-1*.

AUFBAU DES GERÄTES

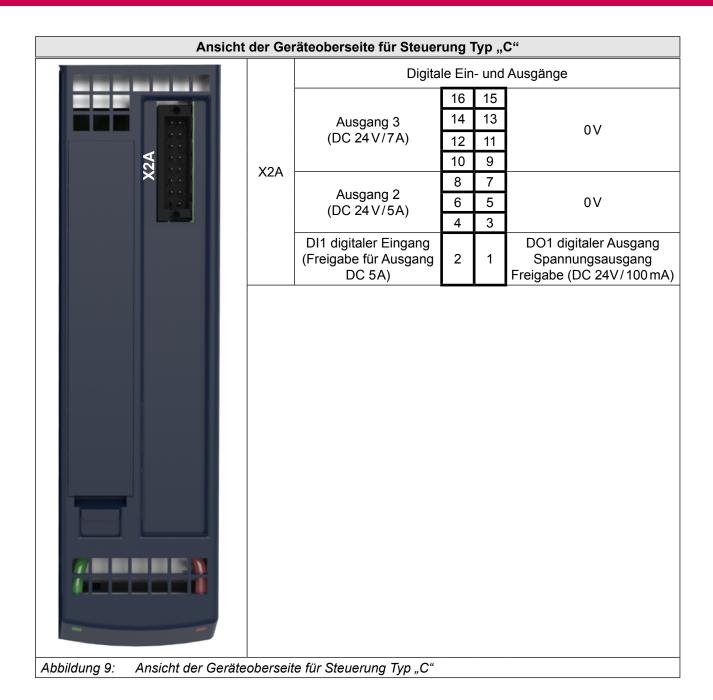
Ansicht der Geräteoberseite für Steuerung Typ "D"											
		Dig	jitale	Ein- u	nd Ausgänge)					
		Dig. Eingang 4	16	15	DC 24 V/< 0	,7A Ausg	gang				
		Dig. Eingang 3	14	13	DC 24 V/< 0	DC 24 V/< 0,7 A Ausgang					
		Dig. Eingang 2	12	11	DC 24 V/< 0,7A Ausgang						
2A	X2A	Dig. Eingang 1	10	9	DC 24 V/< 0	,7A Aus	gang				
$ \mathbf{x} \sim \mathbf{x} $		Dig. Ausgang 4	8	7	0 V						
		Dig. Ausgang 3	6	5	0 V						
- O		Dig. Ausgang 2	4	3	0 V						
X2C		Dig. Ausgang 1	2	1	0 V						
X2D	X2C	Fehlerkette	2	1	Ladezustan						
	X2D	Fehlerkette	2	1	kreises und Fehlerausgabe der Achsmodule						
I ✓		reserviert	1								
X4A		TxD (RS232)	2	6	reserviert						
	X4A	RxD (RS232)	3	7	DGND (Bezugspotential)						
			RxD-A (RS485)	4	8	TxD-A (RS4					
Q			}						5	9	TxD-B (RS4
×		RxD-B (RS485)	5	<u> </u>							
		Ethernet,		LE	D	1	TX+				
<u> </u>	X4C	CoDeSys, COMBIVIS,		Speed		2	TX-				
X4B	7.40	Visualisierung oder ü	iber-			3	RX+				
		geordnete Steuerung				4	_				
						5	_				
						6	RX-				
	X4B	EtherCAT Master out			Link	7	_				
		Master out		LE	D	8	_				
Abbildung 8: Ansicht der Geräteoberseite für Steuerung Typ "D"											

4.1.1 Spezifikation des SD-Kartenslot (nur bei Steuerungstyp "D")

Folgende Kartenformate können mit dem SD-Kartenslot verwendet werden:

- MMC
- SD
- SDHC

Die maximale Größe der verwendeten Speicherkarte darf 8GB nicht überschreiten. Die Speicherkarte muss FAT16 oder FAT32 formatiert sein.


4.1.2 Verwendung des Programmschalters (nur bei Steuerungstyp "D")

Der Programmierschalter kann für folgende Funktionen verwendet werden:

Aktion	Status-LED / Gerät	Funktion			
Stop → Run	Grün	Programm wird gestartet			
Stop → Run	Orange	Kein Programm geladen			
Run → Stop	Orange	Programm wird gestoppt, alle Variablen werden zurückgesetzt (Reset Warm)			
Stop → Clear und halten (>3s)	Orange → Rot	Nach dem Loslassen werden alle Retain- Variablen zurückgesetzt (Reset Kalt)			
Stop→ Clear und halten (>10s)	Orange → Rot → Grün → Orange	Nach dem Loslassen des Tasters werden alle Variablen und das Bootprojekt gelöscht (Reset Ursprung)			
Stop → Clear und halten (>10s) mit eingestecker SD-Karte	Orange → Rot → Grün	Nach dem Loslassen des Tasters werden die Dateien von der SD-Karte auf den internen Flash-Speicher der Control Unit geladen. Während des Kopiervorgangs blinkt die Status-LED Rot/Orange.			
Tabelle 9: Verwendung des Programmschalters (nur bei Steuerungstyp "D")					

Schalterstellu	Schalterstellungen (Seitenansicht)			
	Clear (Taster)			
	Stop/Reset			
	Run (Schalter)			
Tabelle 10: Schalterstellungen (Seitenansicht)				

AUFBAU DES GERÄTES

4.1.3 Status-LEDs

4.2 Anschluss des Leistungsteils

4.2.1 Anschluss des DC-Busses X1D

Die verzinnten Kupferschienen verbinden den DC-Bus der unterschiedlichen H6-Geräte. Vorladung, Stromversorgung und Rückspeisung (falls erforderlich) erfolgen durch das Active Front End Modul (AIC) oder das Gleichrichtermodul. Das 24V-Netzteilmodul stellt die 24V-Spannung zur Verfügung. Der elektrische Anschluss erfolgt mit Metallbrücken, die wie auf dem Foto gezeigt, montiert werden müssen. Als Berührungsschutz muss an beiden Enden des H6-Systems eine Kunststoffkappe angebracht werden.

▲ GEFAHR

Lebensgefährliche Spannung

▶ Die Spannung auf dem DC-Bus kann im Betrieb bis zu DC 840 V betragen!

Nach der Installation ist die Abdeckung für den DC-Bus wieder anzubringen.

4.2.2 Anschluss des 24V-Busses X1C

Der 24V-Bus versorgt die Steuerung und das Treiberteil der Achsmodule und der Ein-/Rückspeiseeinheit mit einer 24V DC-Spannung. Diese Spannung wird in der Regel von dem COMBIVERT H6-Netzteilmodul bereitgestellt, kann aber auch von einer vorhandenen 24V-Spannungsquelle genutzt werden.

Die Brücke zur Verbindung des 24V-Busses wird den Geräten aufgesteckt und jeweils mit einer Schraube gesichert.

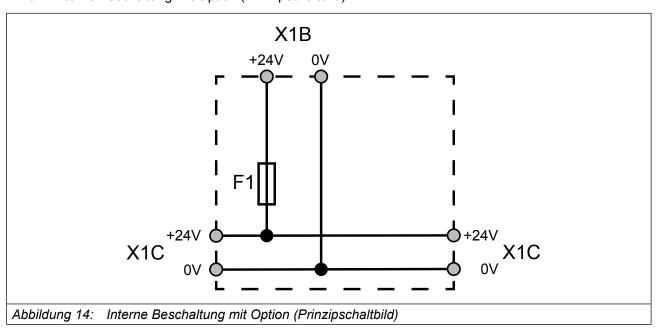
Kreuzschlitzschraube M3x10

Anzugsdrehmoment 0,5 Nm

Abbildung 12: Anschluss des 24V-Busses

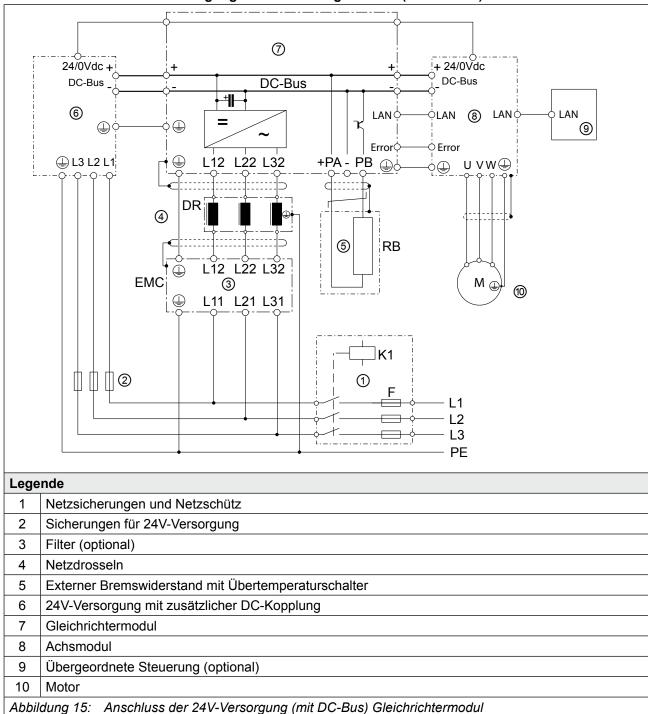
ACHTUNG

Die Montage der Steckbrücke ist mit besonderer Sorgsamkeit durchzuführen. Ein Verkanten oder Abbrechen der Steckkontakte ist so zu verhindern.

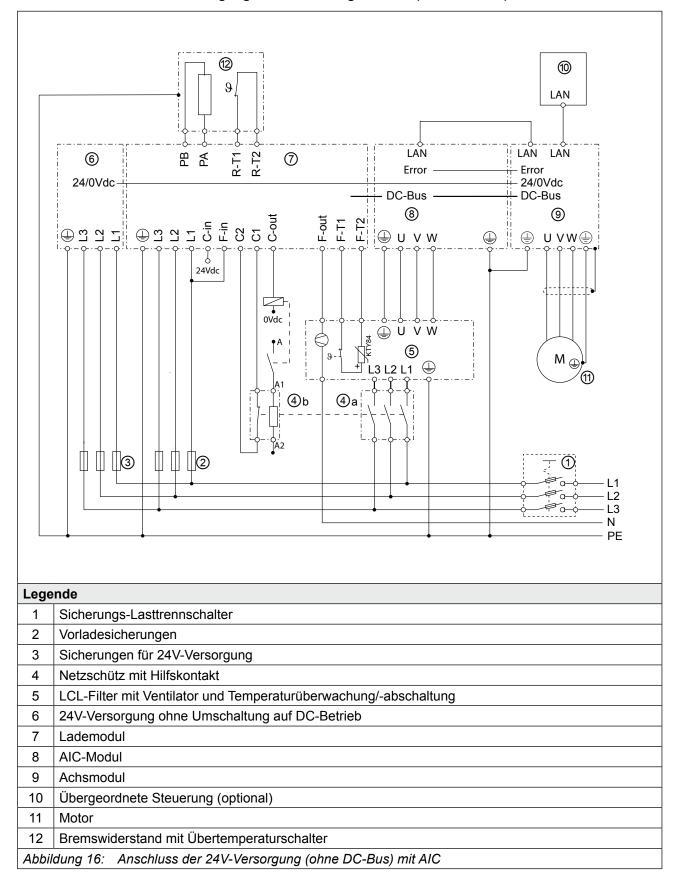

ACHTUNG

Eine Parallelschaltung von 24V-Netzteilmodulen ist nicht zulässig.

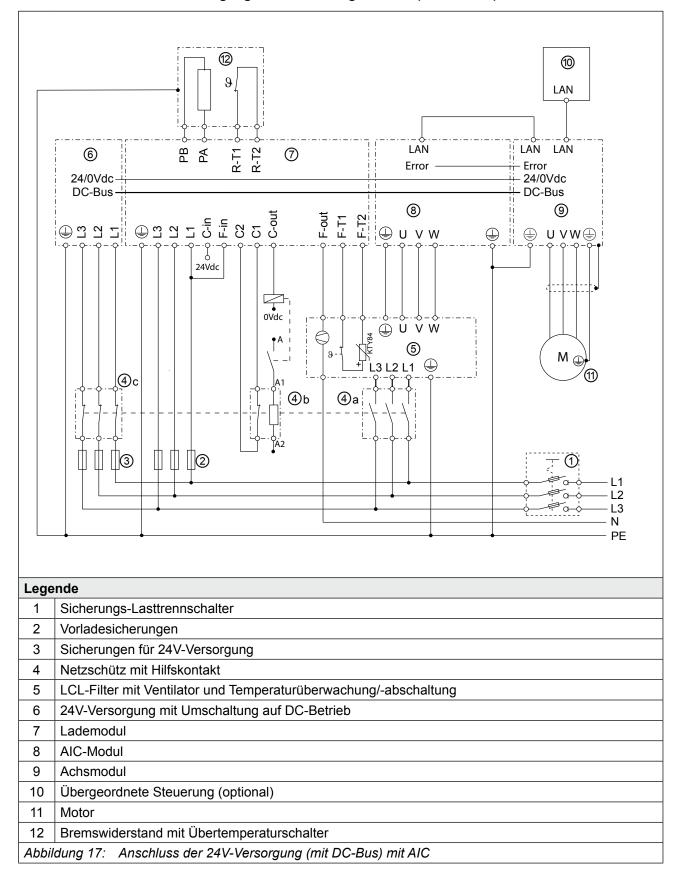
4.2.3 Anschluss der externen 24V-Versorgung X1B


X1B	Name	Funktion	Anschluss	Anzugsdrehmoment		
24V 0V	24V 0V	Anschluss für externe 24V-Versorgung (optional)	Kabelschuh: Gabelform <8 mm Querschnitt: ≤6 mm²	1,3 Nm 12 lb inch		
Abbildung 13: Anschluss der externen 24V-Versorgung X1B						

4.2.3.1 Interne Beschaltung mit Option (Prinzipschaltbild)



4.2.4 Anschluss der 24V-Versorgung Hardwarekonfiguration 1 (mit DC-Bus) Gleichrichtermodul



4.2.5 Anschluss der 24V-Versorgung Hardwarekonfiguration 2 (ohne DC-Bus) mit AIC

4.2.6 Anschluss der 24V-Versorgung Hardwarekonfiguration 3 (mit DC-Bus) mit AIC

4.3 Anschluss der Steuerung Typ "D"

4.3.1 Ein- und Ausgänge X2A

4.3.1.1 Belegung der Klemmleiste X2A

Digitale Ein- und Ausgänge					
Funktion	KI.		KI.	Funktion	
Digitaler Eingang 4	16		15	DC 24 V/< 0,7 A Ausgang	
Digitaler Eingang 3	14	4700	13	DC 24 V/< 0,7 A Ausgang	
Digitaler Eingang 2	12		11	DC 24 V/< 0,7 A Ausgang	
Digitaler Eingang 1	10		9	DC 24 V/< 0,7 A Ausgang	
Digitaler Ausgang 4	8		7	0V	
Digitaler Ausgang 3	6		5	0 V	
Digitaler Ausgang 2	4		3	0 V	
Digitaler Ausgang 1	2	4 000	1	0 V	
		 			
Abbildung 18: Belegung der Klemmleiste X2A					

4.3.1.2 Technische Daten der Digitaleingänge Steuerung Typ "D"

Der digitale Eingang ist gemäß IEC61131-2 Typ 3 spezifiziert.

Status "0"	Status "1"			
-35V	1130 V			
Tabelle 11: Technische Daten der Digitaleingänge Steuerung Typ "D"				

4.3.1.3 Technische Daten der Digitalausgänge Steuerung Typ "D"

Der digitale Ausgang ist kurzschlussfest und gemäß IEC61131-2 spezifiziert.

Technische Daten				
Max. Schaltspannung	U/V	30		
Max. Strom	//A	0,7 (pro Ausgang) 1 (Gesamtstrom für alle Ausgänge)		
Innenwiderstand	R/Ω	250		
Max. Schaltfrequenz	f / kHz	1		
Induktive Last	L/mJ	max. 300 (ohne Freilaufdiode)		
Tabelle 12: Technische Daten der Digitalausgänge Steuerung Typ "D"				

4.3.1.4 Technische Daten der 24V-Ausgänge

Es stehen vier unabhängige DC 24 V/< 0,7 A Ausgänge zur Verfügung. Der Summenstrom der kurzschlussfesten Ausgänge beträgt max. 1A.

4.3.2 Montage von Anschlusslitzen an PUSH IN-Klemmen

ACHTUNG

Fehlfunktionen durch lose Kabelverbindungen!

► Metallhülsen- und Abisolierlänge beachten

Querschnitt	Aderendhülse	Metallhülsenlänge	Abisolierlänge	
0,50 mm ²		10 mm	12 mm	
0,75 mm ²	mit Kunststoffkragen (DIN 46228-4)	12 mm	14 mm	
1,00 mm ²	(DIN 40220-4)	12 mm	15 mm	
1,50 mm ²	ohne Kunststoffkragen (DIN 46228-1)	10 mm	10 mm	
0,21,5 mm² ein- oder feindrähtig	ohne Aderendhülse	T	1012 mm	

Tabelle 13: Aderendhülsen und Abisolierlänge

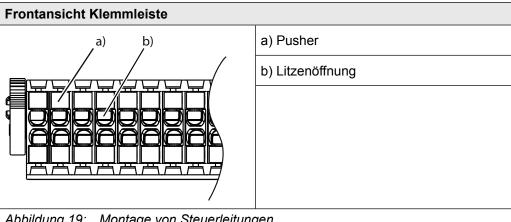


Abbildung 19: Montage von Steuerleitungen

- Pusher von Hand drücken. Litze in die zugehörige Öffnung stecken, so dass keine einzelnen Drähte von außen zu sehen sind bzw. sich diese nicht nach außen zurückbiegen. Beim Einstecken muss ein erster Widerstand überwunden werden. Pusher wieder loslassen.
- Prüfen, ob die Litze fest sitzt und nicht wieder herausgezogen werden kann. Es ist darauf zu achten, dass die Litze und nicht die Isolierung geklemmt wird. Bei Querschnitten ab 1 mm² kann die Litze auch ohne Drücken des Pushers eingesteckt werden.

4.3.3 EtherCAT Systembus Klemmen X4B

Der EtherCAT Systembus dient zur Kommunikation des Masters mit den Achsmodulen und der Ein-/Rückspeiseeinheit. Als Protkoll wird "CanOpen over EtherCAT" verwendet.

Beschreibung der LEDs		RJ45-Buchse		KI.	Belegung
LED gelb	Link			1	TX+
			X4C Feldbus Slavemodul	2	TX-
aus	keine Verbindung			3	Rx+
blinkend	Kommunikation	™ ∞		4	_
an	Verbindung vorhanden				
				5	_
LED grün	Speed		X4B EtherCAT out	6	RX-
aus	10 MBit			7	_
an	100 Mbit	ω ω		8	_
Tabelle 14:	Tabelle 14: EtherCAT Systembus Buchse X4B				

4.3.4 Feldbus Slavemodul Buchse X4C

Das Feldbus Slavemodul dient zur Anbindung an eine übergeordnete Steuerung. Folgende Slavemodule stehen zur Auswahl:

Slavemodul	Materialnummer		
PROFIBUS DP	03H6GDx-xxxx		
Interbus	04H6GDx-xxxx		
CanOpen	05H6GDx-xxxx		
ProfiNet	06H6GDx-xxxx		
POWERLINK	07H6GDx-xxxx		
EtherCAT	08H6GDx-xxxx		
Tabelle 15: Feldbus Slavemodul Buchse X4C			

Weitere Informationen im Downloadbereich von www.keb.de unter den Suchbegriffen "Profibus H6", "CanOpen H6" und "Realtime Ethernet Modul H6".

4.3.5 Diagnose/Visualisierung X4A

Die integrierte RS232/485-Schnittstelle dient zum Anschluss von Servicetools (z.B. COMBIVIS) und Displays. Als Kommunikationsprotokoll wird das Telegramm DIN66019II eingesetzt.

Schnittstelle	Norm	Verbindungskabel	
RS485	TIA/EIA-485 und ISO 8482	_	
RS232	ANSI TIA/EIA-232	0058025-001D und ggf. USB Serial- wandler	
Tabelle 16: Diagnose/Visualisierung X4A			

ACHTUNG

Die Diagnoseschnittstelle ist nicht potenzialgetrennt und auf Steuerungspotential.

COMBIVIS 6

Zum Betrieb mit COMBIVIS 6 ist eine aktuelle XML-Datei erforderlich. Bei bestehender Internetverbindung kann der Download direkt aus COMBIVIS 6 erfolgen.

4.3.5.1 Belegung der Schnittstelle X4A

reserviert - nicht belegen! TxD (RS232) RxD (RS232) RxD-A (RS485)	1 2 3 4	6 7 8	reserviert - nicht belegen! DGND (Bezugspotential) TxD-A (RS485) TxD-B (RS485)
RxD-B (RS485) Abbildung 20: Belegung der Schnittstelle	5 X4A		TAB B (I to 100)

4.4 Anschluss der Steuerung Typ "C"

4.4.1 Belegung der Klemmleiste X2A

Digitale Ein- und Ausgänge							
Funktion	KI.		KI.	Funktion			
	16		15				
Ausgang DC 24V/7A	14	4 600 00	13	- 0V			
Ausgang DC 24 V/7A	12		11	0 0			
	10		9				
	8		7				
Ausgang DC 24V/5A	6		5] o v			
	4		3				
Digitaler Eingang DI1		4 DO ~ [DO1 Spannungsausgang			
(Freigabe für Ausgang DC 24 V / 5 A)	2		1	Freigabe (DC 24 V / 100 mA)			
DC 24 V/3A)							
Abbildung 21: Belegung der Klemmleiste X2A							

4.4.1.1 Technische Daten des Digitaleingangs

Die digitalen Eingänge sind gemäß IEC61131-2 Typ 3 spezifiziert.

Status "0"	Status "1"
-35V	1130 V
Tabelle 17: Technische Daten des Digitale	eingangs

4.4.1.2 Technische Daten des Digitalausgangs

Die digitalen Ausgänge sind kurzschlussfest und gemäß IEC61131-2 spezifiziert.

0 0					
Technische Daten					
Max. Schaltspannung	U/V	30			
Max. Strom	//A	0,7 (pro Ausgang) 1 (Gesamtstrom für alle Ausgänge)			
Innenwiderstand	R/Ω	250			
Max. Schaltfrequenz	f / kHz	1			
Induktive Last	L/mJ	max. 300 (ohne Freilaufdiode)			
Tabelle 18: Technische Daten des Digitalausgangs					

4.4.1.3 Technische Daten der 24 V-Ausgänge

Es stehen zwei unabhängige DC 24 V-Ausgänge (5A/7A) zur Verfügung. Die Ausgänge sind kurzschlussfest. Die Belegung ist unter "Belegung der Klemmleiste X2A" beschrieben.

4.4.2 Belegung der Klemmleiste X2C/D

X2C	X2D
0V	PE

Für einen Erdschlussschutz der 24V-Hochstromausgänge ist die Verbindung von X2C und X2D herzustellen, falls sie nicht schon zwischen der Klemme X1B und dem Erdungsblech erfolgt ist.

4.5 Anschluss der Steuerung Typ "B"

Geräte mit Steuerung Typ "B" bestehen nur aus dem 24 V-Netzteilmodul. Sie besitzen kein Steuermodul und auch keine 24 V-Ausgangsklemme. Ein weiterer Anschluss ist daher nicht erforderlich.

5 Kühlsystem

5.1 Einbau von wassergekühlten Geräten

Wassergekühlte Antriebsstromrichter werden im Dauerbetrieb deutlich kühler betrieben als luftgekühlte Geräte. Dies hat positive Auswirkungen auf die Lebensdauer von Komponenten wie Lüfter, Zwischenkreiskondensatoren und Endstufen (IGBT). Auch die temperaturabhängigen Schaltverluste werden positiv beeinflusst. Bei Applikationen wo prozessbedingt Kühlflüssigkeit vorhanden ist, bietet sich die Anwendung von wassergekühlten KEB COMBIVERT Antriebsstromrichtern in der Antriebstechnik an. Bei der Verwendung sind jedoch nachfolgende Hinweise unbedingt zu beachten.

5.1.1 Kühlkörper und Betriebsdruck

Bauart	Material (Spannung)	max. Betriebsdruck	Anschlussstutzen		
Stranggusskühlkörper	Aluminium (-1,67 V)	10 bar	0000650-G140		

Die Kühlkörper sind durch Dichtungsringe abgedichtet und verfügen auch in den Kanälen über einen Oberflächenschutz (eloxiert).

ACHTUNG

Maximaler Betriebsdruck

Der Kühlkörper ist für eine Druck- bzw. Dichtigkeitsprüfung bis zum 2-fachem, maximalen Betriebsdruck zugelassen. Eine UL-Abnahme mit 5-fachem, maximalem Betriebsdruck wurde durchgeführt. Es sind die Richtlinien 97/23/EG über Druckgeräte zu beachten.

5.1.2 Materialien im Kühlkreis

Für die Verschraubungen und auch im Kühlkreis befindliche metallische Gegenstände, die mit der Kühlflüssigkeit (Elektrolyt) in Kontakt stehen, ist ein Material zu wählen, welches eine geringe Spannungsdifferenz zum Kühlkörper bildet, damit keine Kontaktkorrosion und/oder Lochfraß entsteht (elektrochemische Spannungsreihe, siehe Tabelle). Eine Aluminiumverschraubung oder ZnNi beschichtete Stahlverschraubung wird empfohlen. Andere Materialien sind jeweils vor dem Einsatz selbst zu prüfen. Der spezifische Einsatzfall ist in Abstimmung des gesamten Kühlkreislaufes vom Kunden selbst zu prüfen und hinsichtlich der Verwendbarkeit der eingesetzten Materialien entsprechend einzustufen. Bei Schläuchen und Dichtungen ist darauf zu achten, dass halogenfreie Materialien verwendet werden.

Eine Haftung für entstandene Schäden durch falsch eingesetzte Materialien und daraus resultierender Korrosion kann nicht übernommen werden!

Material	Gebildetes Ion	Normpotenzial	Material	Gebildetes Ion	Normpotenzial
Lithium	Li ⁺	-3,04 V	Cobald	Co ²⁺	-0,28 V
Kalium	K ⁺	-2,93 V	Nickel	Ni ²⁺	-0,25 V
Calcium	Ca ²⁺	-2,87 V	Zinn	Sn ²⁺	-0,14 V
Natrium	Na⁺	-2,71 V	Blei	Pb ³⁺	-0,13 V
Magnesium	Mg ²⁺	-2,38 V	Eisen	Fe ³⁺	-0,037 V
Titan	Ti ²⁺	-1,75V	Wasserstoff	2H⁺	0,00V
			•	weiter auf	der nächsten Seite

Material	Gebildetes Ion	Normpotenzial	Material	Gebildetes Ion	Normpotenzial	
Aluminium	Al ³⁺	-1,67 V	Kupfer	Cu ²⁺	0,34 V	
Mangan	Mn ²⁺	-1,05 V	Kohlenstoff	C ²⁺	0,74 V	
Zink	Zn ²⁺	-0,76 V	Silber	Ag⁺	0,80 V	
Chrom	Cr ³⁺	-0,71 V	Platin	Pt ²⁺	1,20 V	
Eisen	Fe ²⁺	-0,44 V	Gold	Au ³⁺	1,42 V	
Cadmium	Cd ²⁺	-0,40 V	Gold	Au⁺	1,69 V	
Tabelle 19: Elektrochemische Spannungsreihe/Normpotenziale gegen Wasserstoff						

5.1.3 Anforderungen an das Kühlmittel

Die Anforderungen an das Kühlmittel hängen von den Umgebungsbedingungen, sowie vom verwendeten Kühlsystem ab. Generelle Anforderungen an das Kühlmittel:

Anforderungen	Beschreibung
Schwebstoffe	Die Größe und der Anteil der Schwebstoffe im Kühlwasser sollte folgende Werte nicht überschreiten: <100 µm <10 mg pro Liter.
pH-Wert	Aluminium wird besonders von Laugen und Salzen angegriffen. Der optimale pH-Wert für Aluminium sollte im Bereich von 7,58,0 liegen.
Abrasivstoffe	Abrasivstoffe, wie sie in Scheuermitteln (Quarzsand) verwendet werden, setzen den Kühlkreislauf zu.
Kupferspäne	Kupferspäne können sich am Aluminium anlagern und führen zur galvanischen Korrosion. Kupfer sollte aufgrund der elektrochemischen Spannungsdifferenz nicht zusammen mit Aluminium verwendet werden.
Hartes Wasser	Kühlwasser darf keine Wassersteinablagerungen oder lockere Ausscheidungen verursachen. Es soll eine geringe Gesamthärte (<20°dH) insbesondere Karbonhärte haben.
Weiches Wasser	Weiches Wasser (<7°dH) greift die Werkstoffe an.
Frostschutz	Bei Applikationen, bei denen der Kühlkörper oder die Kühlflüssigkeit Temperaturen unter 0°C ausgesetzt ist, muss ein entsprechendes Frostschutzmittel eingesetzt werden. Zur besseren Verträglichkeit mit anderen Additiven am Besten Produkte von einem Hersteller verwenden.
Korrosionsschutz	Als Korrosionsschutz können Additive eingesetzt werden. In Verbindung mit Frostschutz muss der Frostschutz eine Konzentration von 2025 Vol% haben, um eine Veränderung der Additive zu verhindern.
Tabelle 20: Anforderun	gen an das Kühlmittel

5.1.3.1 Besondere Anforderungen bei offenen und halboffenen Kühlsystemen:

Anforderungen	Beschreibung			
Verunreinigungen	Mechanischen Verunreinigungen in halboffenen Kühlsystemen kann durch den Einsatz entsprechender Wasserfilter entgegen gewirkt werden.			
Salzkonzentration	Bei halboffenen Systemen kann durch Verdunstung der Salzgehalt ansteigen. Dadurch wird das Wasser korrosiver. Zufügen von Frischwasser und Entnahme von Nutzwasser wirkt dem entgegen.			
Algen und Schleimbakterien	Durch die erhöhte Wassertemperatur und der Kontakt mit Luftsauerstoff können sich Algen und Schleimbakterien bilden. Diese setzten die Filter zu und behindern somit den Wasserfluss. Biozid-haltige Additive können dies verhindern. Insbesondere bei längerem Stillstand des Kühlkreislaufs ist hier vorzubeugen.			
Organische Stoffe	Die Verunreinigung mit organischen Stoffen ist möglichst gering zu halten, da sich dadurch Schlammabscheidungen bilden.			
Tabelle 21: Besondere Anforderungen bei offenen und halboffenen Kühlsystemen				

ACHTUNG

Verlust der Garantieansprüche

Schäden am Gerät, die durch verstopfte, korrodierte Kühlkörper oder andere offensichtliche Gebrauchsfehler resultieren, führen zum Verlust der Garantieansprüche.

5.1.4 Anschluss an das Kühlsystem

- Anschlussstutzen gemäß Anleitung einschrauben.
- Der Kühlwasseranschluss ist mit elastischen, druckfesten Schläuchen auszuführen und mit Schellen zu sichern.
- Flussrichtung beachten und auf Dichtheit pr
 üfen!
- Vor Inbetriebnahme des KEB COMBIVERT ist immer der Kühlmittelfluss zu starten.

Die Anbindung an das Kühlsystem kann als geschlossener oder auch als offener Kühlkreislauf erfolgen. Empfohlen wird die Anbindung an einen geschlossenen Kühlkreislauf, da die Gefahr der Verunreinigung der Kühlflüssigkeit sehr gering ist. Vorzugsweise sollte auch eine Überwachung des pH-Wertes der Kühlflüssigkeit installiert werden. Beim erforderlichen Potentialausgleich ist auf einen entsprechenden Leiterquerschnitt zu achten, um elektrochemische Vorgänge möglichst gering zu halten.

5.1.5 Kühlmitteltemperatur und Betauung

Die Zulauftemperatur darf maximal 40 °C betragen. Die maximale Kühlkörpertemperatur liegt je nach Leistungsteilausführung und Überlastfähigkeit bei 60 °C oder 80 °C. Um einen sicheren Betrieb zu gewährleisten, muss die Kühlmittelausgangstemperatur 10 K unterhalb dieser Temperatur liegen.

Bedingt durch hohe Luftfeuchtigkeit und hohe Temperaturen kann es zur Betauung führen. Betauung stellt eine Gefahr für den Antriebsstromrichter dar, da durch eventuell entstehende Kurzschlüsse der Antriebsstromrichter zerstört werden kann.

ACHTUNG

Zerstörung des Antriebsstromrichters durch Kurzschluss!

Der Anwender muss sicher stellen, dass jegliche Betauung vermieden wird!

Zur Bestimmung der zulässigen Temperaturdifferenzen dient die folgende Taupunkttabelle. Die Tabelle zeigt die Kühlmitteleintrittstemperatur in Abhängigkeit von Umgebungstemperatur und Luftfeuchtigkeit.

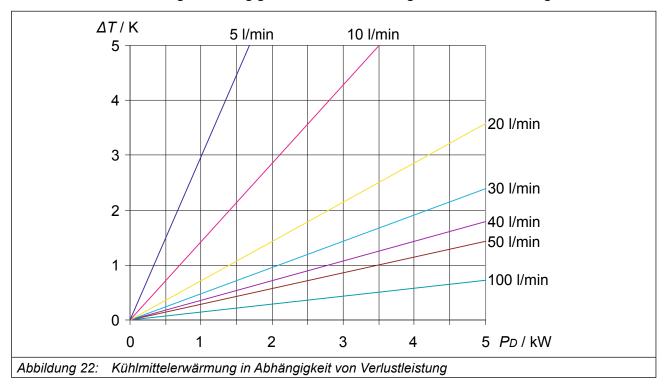
Luftfeuchtigkeit in %	10	20	30	40	50	60	70	80	90	100
Umgebungs-										
temperatur in °C										
-25	-45	-40	-36	-34	-32	-30	-29	-27	-26	-25
-20	-42	-36	-32	-29	-27	-25	-24	-22	-21	-20
-15	-37	-31	-27	-24	-22	-20	-18	-16	-15	-15
-10	-34	-26	-22	-19	-17	-15	-13	-11	-11	-10
-5	-29	-22	-18	-15	-13	-11	-8	-7	-6	-5
0	-26	-19	-14	-11	-8	-6	-4	-3	-2	0
5	-23	-15	-11	-7	-5	-2	0	2	3	5
10	-19	-11	-7	-3	0	1	4	6	8	9
15	-18	-7	-3	1	4	7	9	11	13	15
20	-12	-4	1	5	9	12	14	16	18	20
25	-8	0	5	10	13	16	19	21	23	25
30	-6	3	10	14	18	21	24	26	28	30
35	-2	8	14	18	22	25	28	31	33	35
40	1	11	18	22	27	31	33	36	38	40
45	4	15	22	27	32	36	38	41	43	45
50	8	19	28	32	36	40	43	45	48	50
Tabelle 22: Taupunkttabelle										

Um eine Betauung zu vermeiden, gibt es folgende Möglichkeiten:

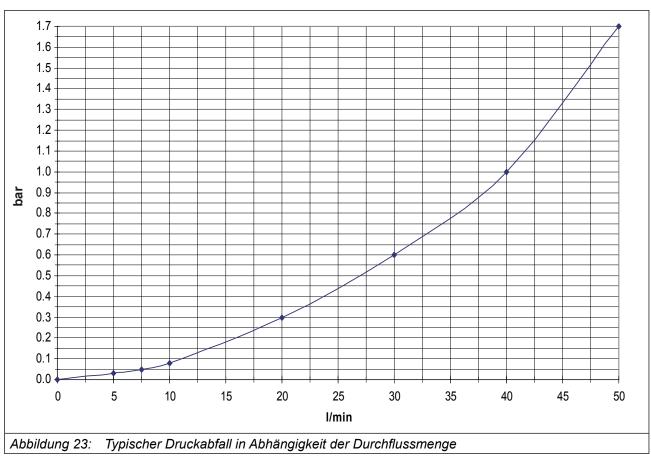
- Zuführung temperierter Kühlflüssigkeit
- Temperaturregelung

Weitere Informationen unter folgendem Link:

Infoblatt Kühlflüssigkeitsmanagment www.keb.de/fileadmin/media/Techinfo/dr/an/ti_dr_an-cooling-00004_de.pdf



5.1.6 Kühlkreislauf entleeren


Soll eine Anlage für einen längeren Zeitraum abgeschaltet werden, ist der Kühlkreislauf vollständig zu entleeren. Bei Temperaturen unter 0°C muss der Kühlkreislauf zusätzlich mit Druckluft ausgeblasen werden.

EINBAU VON WASSERGEKÜHLTEN GERÄTEN

5.1.7 Kühlmittelerwärmung in Abhängigkeit von Verlustleistung und Durchflussmenge bei Wasser

5.1.8 Typischer Druckabfall in Abhängigkeit der Durchflussmenge

6 Zertifizierung

6.1 CE-Kennzeichnung

CE gekennzeichnete Netzteile sind in Übereinstimmung mit den Vorschriften der Niederspannungsrichtlinie 2014/35/EU und EMV-Richtlinie (2014/30/EU) entwickelt und hergestellt worden.

Die Inbetriebnahme (d.h. die Aufnahme der bestimmungsmäßigen Verwendung) der 24V-Netzteile ist solange untersagt, bis festgestellt wurde, dass die Anlage oder Maschine den Bestimmungen der Maschinenrichtlinie (2006/42/EG) entspricht.

Dies ist ein Produkt mit eingeschränkter Erhältlichkeit nach *EN 61800-3*. Dieses Produkt kann im Wohnbereich Funkstörungen verursachen; in diesem Fall kann es für den Betreiber erforderlich sein, entsprechende Maßnahmen durchzuführen.

6.2 UL-Kennzeichnung

Acceptance according to UL is marked at KEB inverters with the adjacent logo on the type plate.

To be conform according to UL for use on the North American and Canadian Market the following additionally instructions must be observed (summary of original texts of the UL-Files):

- These devices shall be mounted within a suitable ultimate enclosure.
- These devices are intended for use in a controlled environment, Pollution Degree 2 or cleaner.
- The spacings from exposed live parts to other live parts or enclosure shall be maintained in accordance with the requirements for the end-use equipment.
- Devices provided with Flat Rear Heat Sink are intended to be mounted with adequate Heat Sink assemblies in the end-use equipment. The cooling suitability of the devices provided with a Flat Rear Heat Sink, shall be determined in the end-use equipment by subjected Temperature Test.
- These devices shall be used within their electrical rating.
- The terminals on these devices are suitable for factory and field wiring.
- These devices are evaluated for use in maximum Surrounding Air Temperature of 45°C.
- These devices shall be provided with a wiring diagram to indicate the wiring connections. These devices are evaluated for use with 60°C or 75°C copper conductors only.
- These 24V supply module are only for use in combination with other supply and drive modules that are part of the Combivert H6 series.
- Maximum heatsink temperature for all H6 drive modules shall be maintained at 80°C via a liquid cooled system.
- Short Circuit rating only achieved when used with H6 supply modules. See supply module ratings for Short Circuit rating information.

6.3 Weitere Informationen und Dokumentation

Ergänzende Anleitungen und Hinweise zum Download finden Sie unter www.keb.de/de/service/downloads

Allgemeine Anleitungen

- · EMV- und Sicherheitshinweise
- Anleitungen für weitere Steuerkarten, Sicherheitsmodule, Feldbusmodule, etc.

Anleitungen für Konstruktion und Entwicklung

- · Eingangssicherungen gemäß UL
- Programmierhandbuch f
 ür Steuer- und Leistungsteil
- Motorkonfigurator, zur Auswahl des richtigen Antriebsstromrichters, sowie zur Erstellung von Downloads zur Parametrierung des Antriebsstromrichters

Zulassungen und Approbationen

- · CE-Konformitätserklärung
- TÜV-Bescheinigung
- FS-Zertifizierung

Sonstiges

- COMBIVIS, die Software zur komfortablen Parametrierung der Antriebsstromrichter über einen PC (per Download erhältlich)
- EPLAN-Zeichnungen

ÄNDERUNGSHISTORIE

7 Änderungshistorie

Version	Datum	Beschreibung
00	2015-07	Umstellung auf Dokumentenversion
01	2016-08	Kühlkörperkonzepte
02	2017-09	Neue CI, generelle Überarbeitung, Verknüpfung mit InCopy-Bausteinen
03	2018-11	Überarbeitung Produktbeschreibung und Aufbau des Gerätes
04	2019-06	Aktualisierungen vorgenommen
05	2020-05	Redaktionelle Änderungen

Benelux | KEB Automation KG

Dreef 4 - box 4 1703 Dilbeek Belgien

Tel: +32 2 447 8580

Brasilien | KEB SOUTH AMERICA - Regional Manager

Rua Dr. Omar Pacheco Souza Riberio, 70

CEP 13569-430 Portal do Sol, São Carlos Brasilien

China | KEB Power Transmission Technology (Shanghai) Co. Ltd.

No. 435 QianPu Road Chedun Town Songjiang District

201611 Shanghai P. R. China

Tel: +86 21 37746688 Fax: +86 21 37746600

Deutschland | Getriebemotorenwerk

KEB Antriebstechnik GmbH

Wildbacher Straße 5 08289 Schneeberg Deutschland

Telefon +49 3772 67-0 Telefax +49 3772 67-281

Internet: www.keb-drive.de E-Mail: info@keb-drive.de

Frankreich | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel

94510 La Queue en Brie Frankreich

Tel: +33 149620101 Fax: +33 145767495

Großbritannien | KEB (UK) Ltd.

5 Morris Close Park Farm Indusrial Estate

Wellingborough, Northants, NN8 6 XF Großbritannien

Tel: +44 1933 402220 Fax: +44 1933 400724

Italien | KEB Italia S.r.l. Unipersonale

Via Newton, 2 20019 Settimo Milanese (Milano) Italien

Tel: +39 02 3353531 Fax: +39 02 33500790

Japan | KEB Japan Ltd.

15 - 16, 2 - Chome, Takanawa Minato-ku Tokyo 108 - 0074 Japan

Tel: +81 33 445-8515 Fax: +81 33 445-8215

Österreich | KEB Automation GmbH

Ritzstraße 8 4614 Marchtrenk Österreich

Tel: +43 7243 53586-0 Fax: +43 7243 53586-21

Polen | KEB Automation KG

Tel: +48 60407727

Russische Föderation | KEB RUS Ltd.

Lesnaya str, house 30 Dzerzhinsky MO

140091 Moscow region Russische Föderation

Tel: +7 495 6320217 Fax: +7 495 6320217

Schweiz | KEB Automation AG

Witzbergstraße 24 8330 Pfäffikon/ZH Schweiz

Tel: +41 43 2886060 Fax: +41 43 2886088

Spanien | KEB Automation KG

c / Mitjer, Nave 8 - Pol. Ind. LA MASIA

08798 Sant Cugat Sesgarrigues (Barcelona) Spanien

Tel: +34 93 8970268 Fax: +34 93 8992035

E-Mail: vb.espana@keb.de

Südkorea | KEB Automation KG

Room 1709, 415 Missy 2000 725 Su Seo Dong

Gangnam Gu 135-757 Seoul Republik Korea

Tel: +82 2 6253 6771 Fax: +82 2 6253 6770

E-Mail: vb.korea@keb.de

Tschechien | KEB Automation GmbH

Videnska 188/119d 61900 Brno Tschechien

Tel: +420 544 212 008

USA | KEB America, Inc

5100 Valley Industrial Blvd. South Shakopee, MN 55379 USA

Tel: +1 952 2241400 Fax: +1 952 2241499

WEITERE KEB PARTNER WELTWEIT:

... www.keb.de/de/kontakt/kontakt-weltweit

Automation mit Drive

www.keb.de

KEB Automation KG Südstraße 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de